
General-Purpose Computation Using Graphics Hardware for Fast

HDR Image Processing

Dawid Paja̧k∗

Institute of Computer Graphics

Technical University of Szczecin

Szczecin / Poland

Abstract

This paper presents a new approach to hardware aided im-

age processing and analysis, primarily focused on HDR

imaging. In order to achieve interactive frame rates and

great processing speeds we propose a library model which

is able to utilize efficiently most powerful of the under-

lying vector hardware. The resulting library architecture

was implemented and tested on GPUs and SIMD capable

multicore CPUs.

Keywords: GPGPU, GLSL programming, SSE, SIMD,

optimization, HDR image processing, tone reproduction

1 Introduction

In recent years, graphics applications and algorithms have

increased their computational complexity greatly. The

problem of effective image processing arises more when

applied to HDR (high dynamic range) images. Compar-

ing to regular 8-bit per channel LDR images, HDR images

store color and luminance data with much greater preci-

sion. Greater precision implies more data being processed

per pixel. Also, as the HDR image reflects real world lumi-

nance values, displaying it on a LDR (low dynamic range)

device is not a trivial problem. LDR devices like CRT

monitors or LCD panels are able to represent two orders

of absolute dynamic range, while HDR images often span

over ten orders of magnitude. There is a class of software

(games, image editors, face/human recognition programs

etc.) which require HDR image processing in real-time or

at least interactive rates. Obviously computational power

of today’s computers increased to meet the demands of the

industry. A low cost mass market PC is equipped with

multicore SIMD (SSE, Altivec) capable CPU and fully

programmable graphics accelerator (GPU). Additionally

PCs can be augmented with dedicated boards used for

game physics (Ageia PhysX) or general calculation accel-

eration (IBM/Sony/Toshiba Cell processor). All these ad-

vances in technology put a heavy burden on a programmer,

a lot of platform dependent know-how is required to im-

plement algorithms effectively on certain hardware. There

∗dpajak@wi.ps.pl

are some examples [3] [5] [6] of GPU being used effec-

tively in HDR image processing, tone mapping [12] in par-

ticular. Tone mapping is an operation which converts HDR

luminance values to LDR range - [0,1] usually. Some of

the tone mapping algorithms are considered to be among

the most computationally expensive operations that can be

performed on HDR images. A more general approach to

image processing using vector parallel hardware can be

found in Cornwall et al. [2] and some commercial products

like Matlab, Nvidia CUDA, Intel Performance Primitives

library.

In this paper we present an efficient and flexible way of

processing and analyzing HDR images by the best hard-

ware available (GPU or SIMD CPUs). A result of our

work is a system independent library equipped with a set

of mathematical functions each characterized by different

kind of operation and type of performed computations (lo-

cal, global or accumulative). Programmer does not need

to know the API/architecture details of execution environ-

ment nor he needs to know the execution hardware itself.

The paper is organized as follows. In Section 2 we ex-

plain the basic ideas behind the library architecture and

API constraints that need to be set in order to efficiently

implement the library abstract objects on vector enabled

parallel hardware. In Section 3 we discuss all the imple-

mentation details on target architectures. We present the

results of library working on photographic tone mapping

operator in Section 4. Finally we conclude our paper in

Section 5.

2 Hardware aided HDR image pro-

cessing library

A library which is able to work fast on multiple hardware

platforms requires a special approach in the early design

stage. Public API structure is a careful trade off between

performance, flexibility and portability on vector perform-

ers. HDR image processing and analysis is basically very

similar to general purpose floating point data processing,

so what we need is a library that could process two

dimensional float arrays (image data) in a parallel manner.

2.1 Basic library features

Listed below are the basic design requirements that need

to be met in order to allow implementation of vast majority

of image processing and analysis algorithms.

• Ability to perform simple (e.g. addition, multiplica-
tion, reciprocal) and complex (e.g. logarithm, power)

math operations on float arrays (in atomic manner)

• High performance HDR image processing oriented
functions (e.g. log average of image luminance)

• Ability to perform conditional operations (i f x >
1 then y= z)

• Ability to perform accumulation/gather operations
(e.g. min/max of elements in array, sum of elements,

convolution)

• Ability to group many simple operations in a com-
plex one (having the general input, output and inter-

mediate arrays provided we build up a new operation

which the library engine should execute much faster

comparing to combined time of simple operations)

• Clear and straightforward API

• Ability to detect at run-time the best hardware com-
ponent to execute operations on (in most cases the

GPU will be the best performer)

2.2 Built-in abstract types

Having the GPU/CPU architecture limitations in mind we

came up with an idea (see Figure 1) of 4 built-in abstract

types that would let us:

• Store and manage floating point streams (arrays)

• Execute one/many operations on arrays in an effec-
tive way

• Hardware idependent architecture which performs
the computations

2.2.1 Array

This type is a container for our data. Functionally Array is

similar to a 2D float array with dimensions set up during

the construction.

2.2.2 Queue

Queue is the main acceleration structure of the library. By

using it we can group many simple operations into one

complex command and execute it efficiently one or more

times. However there are some limitations on how Queue

instance should be constructed. In order to exploit vec-

tor processing and parallel computing capabilities of hard-

ware we have set some constraints on queued operations:

Figure 1: Overall model of computation using proposed library
architecture. Image data is stored inside Array objects. Image

processing algorithm is implemented by Queue and/or Kernel

computation engine

• All input Array objects should have same dimensions

• Queue instance has one output Array which queued
operations may write to

• Operations are allowed to write the result either to a
temporary variable (available only for queued opera-

tions internally) or to Queue output

• Operations cannot read from Queue output

• Some operations cannot read from intermediate vari-
ables (gathering operations e.g. 1D convolution -

temporary variables are local scalar types)

• No accumulation (e.g. sum of all elements in certain
input Array) operations are allowed

• Once the operation with certain arguments is added to
Queue it cannot be removed or modified in any way

With these limitations set we can be sure that all the

calculations for each element of Array output are inde-

pendent, thus can be directly mapped on SIMD or par-

allel hardware. Also, because the Array instances used

by Queue can be read-only or write-only the synchroniza-

tion in gathering operations is unnecessary. The increased

performance of Queue execution comes from greatly in-

creased locality of calculations (e.g. we use intermediate

scalar variables and perform many operations on single el-

ement of input array) and reduced memory bandwidth us-

age. The Queue is able to perform writes to output condi-

tionally e.g. if some condition is met then the result of the

calculation will not be written to Queue output Array (so

called ”break if”).

2.2.3 WriteMask

The WriteMask type is a help structure that can be seen

as a bit array with the same dimensions as Queue output.

During the Queue execution, element at index i will have

its value computed only ifQueue currentWriteMask at in-

dex i is set to f alse. Also writing to Queue output Array

at index i sets the WriteMask at index i to true (only if

WriteMask is writable by Queue object). This way we are

able to compute Queue output conditionally between sub-

sequent execution method calls. In other words, multi-pass

conditional computation is possible. It’s worth noticing

that oneWriteMask object can be shared among multiple

Queue instances.

Figure 2: Example of aQueue instance with conditional instruc-
tion execution. The Queue type can be imagined as a container

for a set of operations. Executing a Queue means executing seri-

ally all the operations inside, beginning from the first one added.

The following pseudo code describes the overall algo-

rithm of how Queue from Figure 2 works during the exe-

cution (loop body is performed in parallel/vector manner).

i n t n = wid th ∗ h e i g h t ;
f o r (i n t i = 0 ; i < n ; i ++) {
i f (wri teMask != 0 && wri teMask [i])

{
cont inue ;

}
f l o a t temp0 = C[i] + B[i] ;

temp0 = temp0 ∗ temp0 ;
i f (temp0 < 1 . 0 f) cont inue ;

A[i] = temp0 ;

i f (wri teMask != 0 && wr i t eMaskWr i t a b l e)

{
wri teMask [i] = 1 ;

}
}

2.2.4 Kernel

The Kernel class is able to invoke accumulating functions

and most of Queue functions. It is not capable of group-

ing commands or executing conditional computation, the

operations are complete just after method call. Also the

Kernel class is a manager (Factory) of Array and Queue

abstracts.

3 Implementation

In this section we present the implementation details of

library base types for two target architectures: GPU and

SIMD capable CPUs. CPU implementation was devel-

oped as a proof-of-concept, reference implementation.

3.1 Mapping the library computation model

on SIMD CPU

The idea behind SIMD computation is to perform single

operation on many data elements at the same time. Many

current compilers are equipped with features like intrin-

sic and auto vectorization to help the programmer utilize

the vector unit of modern CPU. However, using automated

vectorization feature will result in much smaller perfor-

mance gains than using fine tuned hand-written intrinsic

code for SSE unit.

3.1.1 Math operations on SIMD architectures

When we assume that the Array value at index i is indepen-

dent of any other value in the same Array the transforma-

tion between the SISD and SIMD code becomes simple.

y=
2∗a

b−3
(1)

The following code segment shows a SIMD implemen-

tation of an Equation 1.

inc lude <xmmin t r in . h>

cons t m128 a2 = mm se t1 ps (2 . 0 f) ;

cons t m128 a3 = mm se t1 ps (3 . 0 f) ;

m128 fun (m128 a , m128 b) {
m128 num = mm mul ps (a2 , a) ;

m128 den = mm sub ps (b , a3) ;

re turn mm div ps (num , den) ;

}

Efficient form of this code allows us to accelerate the ex-

ecution of the function by theoretical factor of four. HDR

image processing requires some complex math operations

e.g. log2(x), 2
x to be able to execute on vector data. As

we put more pressure on performance than precision, an

approximation of these functions will fit our needs com-

pletely.

To compute log2(x) we use some specific features of
single precision floating-point number representation. As

defined in IEEE754 specification single precision number

is described by equation: (−1)s2em where s is a sign bit, e
is 8-bit exponent and m is 24-bit normalized mantissa.

log2(x) = log2(2
em) = e+ log2(m),x> 0. (2)

We calculate the log2(x) value by extracting the expo-
nent from the number representation and adding it to the

approximation of log2(x) function in [1, 2] interval (the
value of extracted mantissa). In our implementation we

use Chebyshev mini-max fifth degree polynomial to ap-

proximate the function. This results in small relative error

(10−6) and overall good quality of the function values.

We use a similar approach with 2x evaluation.

2x = 2R(x)+F(x) = 2R(x) ∗2F(x) (3)

2R(x) ∗2F(x) = 2R(x) ∗ (2em) = 2e+R(x)m (4)

, where R(x) is truncated integer part of x and F(x) is
fractional part of the input value. To compute 2x value

first we approximate the 2F(x) (input range [0, 1]) using

polynomial and add the R(x) value directly to the expo-
nent field of approximated value. Both techniques used

(vector bit manipulation and vector polynomial value eval-

uation) can be implemented very efficiently on SIMD ar-

chitectures.

3.1.2 Implementation of Array, WriteMask, Kernel

classes

The mapping of Array and WriteMask abstract types is

quite straightforward. Both are represented as single pre-

cision floating point arrays stored in main memory of com-

puter.

3.1.3 Implementation of Queue class

To make use of CPU cache coherency we put all the vec-

tor operations into a queue and let them run on small data

chunks at a time. Also when multicore/SMP system is

detected then the work on all chunks is split across avail-

able CPUs in interleaved manner (see Figure 3). To avoid

unnecessary branching1 we use SIMD compare instruc-

tions to get comparison result(bit mask) and do a mask

dependent write to Queue output. The downside of this

approach is that we compute all the queued calculations on

the element even if it is already discarded by WriteMask

or condition mask value. However it proved to be much

more profitable it terms of performance than doing sepa-

rate branching for each element.

3.2 Mapping the library computation model

on GPU

Within past few years GPUs have emerged as a powerful

computational platforms. Equipped with extremely pow-

erful memory system and many programmable pipelines

1modern processors suffer great performance penalties when branch-

ing is used, especially when branch prediction was incorrect

Figure 3: Queue execution on multicore CPU. Data is divided
into small chunks. Each chunk is assigned to execution Thread.

On this example Thread 1 is processing chunks 0, 2, 4, 6 and

Thread 2 the reminder, chunks 1, 3 and 5.

the GPUs have added another level of parallelism into

computation area. Effectively utilizing the wealth of this

computational resource requires a different programming

model to be used (stream computation, stream program-

ming model). Below we show a simplified algorithm of a

function calculation for vector input on graphics hardware.

1. CPU uploads input data to GPU in the form of float-

ing point 2D texture

2. CPU uploads to GPU an appropriate fragment pro-

gram (equivalent to Queue execution loop body)

which will be executed for each pixel of input/output

texture

3. GPU does the calculation, which is equal to drawing

a textured rectangle into destination buffer/texture

4. CPU downloads output texture with calculated results

back to system memory.

Figure 4: CPU-GPU interaction in computation.

In order to perform general purpose computations on

GPUs we need to map our library base types to their GPU

counterparts.

3.2.1 Implementation of Array class

Array type is mapped directly to 2D one component float-

ing point texture. The textures are used as source and

destination for the rendering (off-screen rendering to tex-

ture). The data is stored in two locations: locally (system

RAM) and remotely (GPU RAM). To save bandwidth and

increase performance synchronization is done only when

necessary, meaning when GPU or programmer (CPU) re-

quests the access to data and their copy is obsolete (be-

cause of the changes made in the other copy).

3.2.2 Implementation of Queue class

At the beginning of Queue execution the group of queued

(added) operations is transformed to GLSL fragment pro-

gram source. After the shader is compiled (which might

take some of the CPU time, however it is a one time ac-

tion) the drawing to Queue destination Array (texture) is

performed. Example Queue and GLSL shader:

Array ∗ d e s t = ke rn e l−>c r e a t eA r r a y (10 , 1 0) ;

Array ∗a = de s t−>c l on e () ;

Array ∗b = de s t−>c l on e () ;

Queue ∗q = ke rn e l−>c re a t eQueue (d e s t) ;

q−>add (Q OUTPUT, a , b) ;

q−>l og (Q OUTPUT, Q OUTPUT) ;

q−>sub (Q OUTPUT, Q OUTPUT, a) ;

q−>e x e c u t e () ;

GLSL :

un i fo rm f l o a t param0 ;

un i fo rm samp l e rRec t a r r a y 0 ;

un i fo rm samp l e rRec t a r r a y 1 ;

void main (void) {
f l o a t t x0 = t e x t u r e R e c t (a r ray0 ,

g l TexCoord [0] . s t) . r ;

f l o a t t x1 = t e x t u r e R e c t (a r ray1 ,

g l TexCoord [0] . s t) . r ;

g l F r a gCo l o r = log (t x0 + tx1) − t x0 ;

}

3.2.3 Implementation ofWriteMask class

WriteMask class is realized as a floating point array at-

tachable to FBO (Frame Buffer Object) as a depth buffer.

When Queue has WriteMask set, the rendering is done

with depth buffer set and testing turned on (pixels which

do not pass the test are not rendered to destination texture).

3.2.4 Implementation of Kernel class

The GPU implementation of Kernel class is responsible

for new Queue and Array allocation as well as for invo-

cation of simple math methods (actual implementation in-

ternally creates one element Queue with modifiable argu-

ments) and gathering methods. The fragment program is

not capable of writing to global variables (shared across

all the shader units), so evaluating sum of an array is not

a trivial task. It is accomplished by applying a fragment

program which adds up four adjacent pixels and writes the

output to destination texture (which is 2 times smaller in

each dimension). We repeat the process (switching out-

put with input at the end of each iteration) until we get

1x1 output texture. The complexity of this algorithm is

O(nlog2(n)) comparing to O(n) when calculating the sum
on the CPU. Also it has tendencies to be memory band-

width consuming. Similar algorithm can be applied when

computing minimum/maximum value of Array.

4 Results

In the following section we demonstrate our library at

work. The objective is to prove that API combined with

appropriate hardware gives great speedups in HDR image

processing and the library itself is portable and efficient on

multiple platforms. Our example algorithm is the photo-

graphic tone mapping operator [12] which we describe in

Section 4.1. We have tested five HDR images (see Fig-

ure 5) each characterized by different resolution, lumi-

nance and contrasts values. The tests were mostly focused

on performance and quality of calculations.

In Section 4.2 we include details on the implementation

of the local variance of the operator. Section 4.4 with test

results is preceded by detailed specification of the test en-

vironment (Section 4.3).

4.1 Photographic tone reproduction opera-

tor

The process of photographic tone mapping begins with a

linear scaling by key value which is equal to setting expo-

sure in a camera. The key of a scene is an indicator of how

light or dark the overall impression of the scene is. A good

approximation of scene key is log average of scene lumi-

nance (Equation 5 and 6). A typical value of α is 0.18.

Lavg = e
1
n ∑ni=1 log(0.00001+Lwi) (5)

Lm(x,y) =
α

Lavg
Lw(x,y) (6)

Transfer function from Equation 7 predominantly com-

presses high luminance values and preserves low ones.

The function has asymptote at 1, but usually mapped lu-

minance is not infinitely big to reach this value. Because

of that a modified form of Equation 7 exists which intro-

duces Lwhite parameter, a maximum luminance value (after

pre-scaling) mapped to white (Equation 8). This is analo-

gous to burning process.

Ld(x,y) =
Lm(x,y)

1+Lm(x,y)
(7)

Ld(x,y) =
Lm(x,y)(1+

Lm(x,y)

L2
white

)

1+Lm(x,y)
(8)

The photographic tone mapping operator also has a lo-

cal variant which uses a different luminance compression

function for each pixel (global variant uses the same func-

tion for whole image). This modification was introduced

in order to let the algorithm imitate photographic dodging

and burning. It means that each pixel receives a differ-

ent exposure value estimated on the reminder of the image

bounded by sharp contrast. This is accomplished by find-

ing the largest pixel neighborhood without significant con-

trasts (Equation 10 - difference between gaussian blurred

pixels is close to zero).

Lblurs (x,y) = Lm(x,y)∗Rs(x,y) (9)

Rs is a gaussian kernel.

Vs(x,y) =
Lblurs (x,y)−Lblurs+1(x,y)

2φ α/s2+Lblurs (x,y)
(10)

The denominator of Equation 10 ensures that Vs is in-

dependent of absolute luminance values and kernel size.

A φ parameter might be viewed as sharpening parameter
(setting it to 8 gives good results).

To find the largest area with low contrast we seek the

largest scale value smax for which the Equation 11 remains

true.

smax : |Vsmax(x,y)| < ε (11)

The local operator final luminance value is given by

Equation 12.

Ld(x,y) =
Lm(x,y)

1+Lblursmax(x,y)
(12)

We have implemented successfully both variants of the

operator using our library.

4.2 Local tone mapping operator implemen-

tation

Global variant of photographic operator is simple and

straightforward to implement. The local version performs

condition check for each element and stops when it is false

(Vs exceeds threshold value). We implement similar be-

havior using WriteMask objects. A Queue which com-

putes Vs value writes L
blur
s to output only if Vs is greater

than threshold (ε). After this no further writes to output
are performed as WriteMask at this position is true. One

execution of this Queue is analogous to checking if a con-

dition from Equation 11 is true for particular s. We need to

execute the Queue n-times, where n is the number of dif-

ferent gaussian kernel sizes (we start at the smallest 1-pixel

neighborhood). The shortcoming of this method is that we

have to calculate all the blur levels (we use eight different

gaussian masks, varying in size from 1 to 43) even if all

the pixels have their finalVs set. Another side effect of this

approach is that mapping operation is insensitive to pixel

input neighborhood contrast values.

4.3 Testing environment

Our test system was based on FC5 Linux AMD64 distri-

bution. Programs were compiled as native 64-bit software

using GCC 4.1.1. Hardware configuration:

• AMD Athlon X2 3800+ (2.0Ghz clocked)

• 2048MB DDR RAM (128-bit bus, 400Mhz clock)

• GPU 1 - NVidia Geforce 7600GT 256MB RAM2

• GPU 2 - NVidia Geforce 8800GTS 640MB RAM3

Both GPUs used NVidia driver 1.0-9746 for x86-64 sys-

tems. One of the issues we had to deal with was timing

computation when using GPU. The driver issues rendering

calls fully asynchronously so to measure time properly we

had to force drawing by downloading the destination tex-

ture. The measured download speed is about 780MB/s on

our system. As we want to make CPU/GPU tests reliable,

all the results in this section are without texture data down-

load/upload times counted. Our assumption was that after

tone mapping operation image luminance stays locally at

GPU memory for further processing/displaying.

The CPU implementation by default uses all the avail-

able execution units (cores) during the computation. We

used p f stools [11] package as an example of classic ap-

proach to HDR image processing and analysis.

4.4 Tests results

Figure 5: Images used in test. Image names (in top-bottom, left-
to-right fashion): TuolumneTree, BurnedRedwood, BoyScout-

Trail6, BristolBridge, memorial.

2128-bit bus, 1400Mhz memory clock, 650Mhz core clock
3320-bit bus, 1600Mhz memory clock, 500Mhz core clock, 1200Mhz

for shader units

Image Resolution Time [ms]

PFS CPU 7600 8800

memorial 512x768 107 4.8 < 1 < 1
BoyScoutTrail6 1000x1504 421 15 4.1 < 1
BristolBridge 2048x1536 947 30 12 6.2

TuolumneTree 2272x1704 1222 36 15 8.5

BurnedRedwood 2000x3008 2641 59 36 11

Table 1: Global operator benchmark

Resolution Speed-up

CPU 7600GT 8800GTS

512x768 22.2x NA NA

1000x1504 28x 102x NA

2048x1536 31.5x 78x 152x

2272x1704 33.9x 81x 143x

2000x3008 44x 73x 240x

Table 2: Increase in computation performance of global tone
mapping compared to pfs tools.

Tests showed huge speedups when computing global

TMO (Tone Mapping Operator) (Table 2). Both GPU and

CPU were able to tone-map the biggest image at inter-

active speeds. Although even a powerful dual-core CPU

working with SIMD unit is not able to compete in terms of

processing power and memory bandwidth with a mid-end

GPU like 7600GT.

Image Resolution Time [ms]

PFS CPU 7600 8800

memorial 512x768 430 279 27 17

BoyScoutTrail6 1000x1504 1563 875 106 33

BristolBridge 2048x1536 5912 2612 221 82

TuolumneTree 2272x1704 7782 2152 259 98

BurnedRedwood 2000x3008 8226 3273 376 144

Table 3: Local operator benchmark

The computational power of GPUs are even more ex-

posed when it comes to local variance of TMO (Table 4).

CPU implementation suffers from low memory bandwidth

and is not able to perform image blurs at reasonable speeds

(see Section 5). The fragment programs used for local

TMO were fairly simple4 so mapping is purely memory

bound process - which can be observed by comparing

memory bandwidths of tested GPUs with the results (ra-

tio is close to 3:1 in favour of 8800GTS board).

The speedup of local tone mapping for largest image is

smaller than predicted (this applies to GPU and CPU per-

former). The cause of this is the image content itself. It

has some high contrast, noise areas in which the p f stools

TMO usually applies only the smallest kernel. It appears

that our performers slow down, but in fact it is the p f stools

4in terms of floating point operations done per memory word read

Resolution Speed-up

CPU 7600GT 8800GTS

512x768 1.54x 15.9x 25.2x

1000x1504 1.79x 14.7x 47.3x

2048x1536 2.26x 26.7x 72.1x

2272x1704 3.62x 30x 79.4x

2000x3008 2.51x 21.8x 57.1x

Table 4: Increase in computation performance of local tone
mapping compared to p f stools.

TMO which increased its processing speed in this particu-

lar case.

Resolution Time [ms]

CPU 7600GT 8800GTS

512x768 1.5 < 1 < 1
1000x1504 6.2 3.6 < 1
2048x1536 12 6.3 < 1
2272x1704 15 8.1 2.3

2000x3008 24 11 2.8

Table 5: The calculation time of log average of image lumi-
nance.

The computation speed of log average on GPU is no-

ticeably faster, however as the GPU uses bandwidth con-

suming algorithm (see Section 3.2.4) for data accumula-

tion the calculation scales much better on 8800GTS. It is

worth noticing that CPU (single core) is calculating the log

average at the speed of 960MB/s.

The resulting tone mapped images from both perform-

ers were compared using VDP [8] algorithm. Image from

CPU performer was used as reference5. There were no vis-

ible differences which was expected as calculations done

on GPU were also in single precision floating point for-

mat. The images were not exact though. The way the log

function is approximated (when calculating the luminance

log average) is different on both GPU and CPU implemen-

tations. The relative error between approximations is close

to 10−5. Images with high luminance values might aggre-

gate this error into further processing.

5 Conclusions and future work

In order to solve HDR image processing problems effi-

ciently we have presented and implemented a framework

that provides hardware processing power. Unlike other

hardware aided image processing software, our library is

flexible enough to execute any kind of algorithm and run

it on many vector/parallel architectures. Both example im-

plementations showed great speedups (quite often two or-

ders of magnitude).

5as the FPU unit is fully IEEE754 compatible

The author of the implementation is aware that a lot of

development is still needed. Here is a list of some im-

provements that could increase the performance of certain

algorithms even more:

• CPU: Rewrite convolution code to make use of SSE
unit - the test program used unoptimized convolution

code, the result was that 80% of the tone mapping

time was spent on blurring the images

• GPU/CPU: Implement automatic Gauss pyramid
building - another optimization opportunity which

HDR processing (tone mapping in particular) would

benefit from

• GPU/CPU: Implement different kinds of branching
in Queue code. Now only ”break if” type is available

• Make specialized ports for current high-end graphics
hardware like G80 - in our opinion porting the com-

putation code of library to NVidia CUDA platform

would give another noticeable performance gain

6 Acknowledgments

Thanks to Radoslaw Mantiuk for providing the initial li-

brary concept and lots of help during writing process of

this article.

The research work, which results are presented in this

paper, was sponsored by Polish Ministry of Science and

Higher Education (years 2006-2007).

References

[1] R. Bogart, F. Kainz, and D. Hess. OpenEXR image file for-

mat. In ACM SIGGRAPH 2003, Sketches & Applications,

2003.

[2] Jay L.T. Cornwall, Olav Beckmann, and Paul H.J. Kelly.

Accelerating a c++ image processing library with a gpu.

2006.

[3] Frédéric Drago, Karol Myszkowski, Thomas Annen, and

Norishige Chiba. Adaptive logarithmic mapping for dis-

playing high contrast scenes. Computer Graphics Forum,

proceedings of Eurographics 2003, 22(3):419–426, 2003.

[4] F. Durand and J. Dorsey. Interactive tone mapping. In Ren-

dering Techniques 2000: 11th Eurographics Workshop on

Rendering, pages 219–230, 2000.

[5] N. Goodnight, R. Wang, C. Woolley, and G. Humphreys.

Interactive time-dependent tone mapping using pro-

grammable graphics hardware. In Rendering Techniques

2003: 14th Eurographics Symposium on Rendering, pages

26–37, 2003.

[6] Grzegorz Krawczyk, Karol Myszkowski, and Hand-Peter

Seidel. Perceptual effects in real-time tone mapping. 2005.

[7] Rafal Mantiuk, Grzegorz Krawczyk, and Radoslaw Man-

tiuk. High dynamic range imaging pipeline: Merging com-

puter graphics, physics, photography and visual percep-

tion. In In Spring Conference on Computer Graphics 2006

Posters and Conference Materials, pages 37–40, 2006.

[8] Rafal Mantiuk, Karol Myszkowski, and Hans-Peter Seidel.

Visible difference predicator for high dynamic range im-

ages. In Proceedings of IEEE International Conference on

Systems, Man and Cybernetics, pages 2763–2769, 2004.

[9] John D. Owens, David Luebke, Naga Govindaraju, Mark

Harris, Jens Krüger, Aaron E. Lefohn, and Tim Purcell. A

survey of general-purpose computation on graphics hard-

ware. In Eurographics 2005, State of the Art Reports, pages

21–51, September 2005.

[10] S. Pattanaik, J.E. Tumblin, H Yee, and D.P. Greenberg.

Time-dependent visual adaptation for realistic image dis-

play. In Proceedings of ACM SIGGRAPH 2000, pages 47–

54, 2000.

[11] Radoslaw Mantiuk Rafal Mantiuk, Grzegorz Krawczyk.

High dynamic range imaging pipeline: Perception-

motivated representation of visual content. In To be pub-

lished in Proc. of Human Vision and Electronic Imaging

XII, IS&T/SPIE’s Annual Symposium on Electronic Imag-

ing, SPIE Proceedings Series, San Jose, California USA,

January 2007.

[12] Erik Reinhard, Michael Stark, Peter Shirley, and James Fer-

werda. Photographic tone reproduction for digital images.

ACM Trans. on Graph., 21(3):267–276, 2002.

[13] G. Ward Larson. LogLuv encoding for full-gamut, high-

dynamic range images. Journal of Graphics Tools,

3(1):815–30, 1998.

