
Extraction of skinning data by mesh
contraction with Collada 1.5 support

Martin Madaras1

Supervisor: Tomáš Ágošton2

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics

Comenius University, Bratislava

INTRODUCTION

A frequently used approach for animation and modification of 3D
models is based on creating articulated hierarchical structures -
skeletons. Skinning data as a skeleton tree and weights can be
either assigned manually or computed from an input mesh. The
first option is most often chosen by artists, although sometimes it
is unnecessary and time consuming. The skeleton has to be cre-
ated (or used from templates), rigged into the mesh and influence
weights have to be set. In this paper we present how to automati-
cally compute the hierarchical skeleton and skinning weights from
an input mesh and use them in a skinning animation using Col-
lada 1.5 as export format between our application and a graphic
animation software such as 3D Studio Max, Blender or Maya.

GRAPH CONVERSION

For running our graph algorithms, we need to have the input mesh
as one connected object. The object needs to be converted into
a 3D graph, defined by an edge matrix E. It is quite common that
models are composed of more objects. These objects appear to
be connected visually, but edges in the model structure between
these objects are not defined. Also the opposite problem has to be
considered. There can be edges defined in an input mesh, which
connect parts that should not been connected. These edges are
remains of the work of graphic designers or artifacts after format
conversion and therefore have to be excluded. Using a simple
depth-first search suitable joining distances can be found to con-
nect or disconnect all graph components. This condition joins the
closest vertices in neighbouring components which creates one-
component graph.

Joining (left) and splitting (right) of the mesh is needed.

MESH CONTRACTION

For contraction of the generated mesh graph we use a
contraction algorithm using Laplacian smoothing proposed by
[Au et al., 2008]. The algorithm does not alter geometry connectiv-
ity, is noise sensitive and works directly on mesh geometry. Geom-
etry contraction removes details from the surface applying Lapla-
cian smoothing. Vertex positions are smoothly contracted along
their normals by solving the equation (2) in few iterations.

Results on a low resolution model.

The Laplacian smoothing operator (1) was introduced by
[Desbrun et al., 1999] for surface smoothing. Laplacian smooth-
ing operator L is n × n square matrix. This operator is applied on
n vertices in vector V as a filter. Term LV approximates curvature
flow normals, so solving LV

′
= 0 removes normal components of

vertices and contracts the geometry, resulting into a new set of
vertices V

′
.

Lij


wij = cotαij + cot βij if (i, j) ∈ E∑k

(i,k)∈E −wik if i = j

0 otherwise
(1)

where:
E – is set of edges generated in previous section during graph
conversion process
αij, βij – are the opposite angles corresponding to the edge (i, j)
[Desbrun et al., 1999] [

WLL
WH

]
V

′
=

[
0

WHV

]
(2)

Results on a middle resolution model.

SKELETON CONSTRUCTION

The contracted mesh graph from the last iteration is simplified.
A greedy algorithm is used to select the most important control
points. During the collapsing process, for each control point, the
collapsed vertices into this control point are stored in a hash map.
Vertices are merged into control points and every control point is
shifted into the center of its local mesh area. For each control
point, the volume of the mesh region the control point represents
in the original mesh is computed. The control point, which repre-
sents the largest volume is chosen as the skeleton root.

The half-edge collapse (ṽ2 → ṽ1).

The first step in the mesh graph simplification is to collapse all
edges, whose vertex distance is smaller than a predefined thresh-
old. Vertices in such pairs can be interpreted as the same control
point, because the distance between them is very small and the
influence over the mesh vertices is almost the same. The second
step is to collapse edges which are the least important. For every
edge the cost value is computed and edges with minimum sam-
pling cost [Garland and Heckbert, 1997] are collapsed. For sim-
plicity we apply half-edge collapse. The half-edge collapse (i → j)
merges vertex i to vertex j and removes all the faces that are in-
cident to the collapsed edge. This step is repeated so many times
that in the end we will have the desired number of control points.

SKINNING WEIGHTS

Skinning indices are computed by finding a set of closest control
points to each vertex. The geodesic distance is used as a distance
measure. A distance between each pair of vertices on the mesh
graph from 0th iteration (after conversion from an input mesh) is
calculated and stored in matrix D. For each control point Ck, the
closest mesh graph vertex is found, for instance vj. Then, the
resulting geodesic distance between the control point Ck and the
mesh vertex vi is computed as a sum of distance between vj and
vi on the mesh graph calculated by Floyd-Warshall algorithm and
the euclidean distance between Ck and vj.

gd(i, k) = D[i, j] + d(Ck, vj) (3)
where:
d(Ci, vk) – is euclidean distance between the mesh vertex vj and
kth control point Ck

Weights are assigned in a way that weight sum for each vertex is
equal to 1.0. Fractions are constructed in a way that weights are
indirectly dependent on the geodesic distance. This construction
guarantees that the closer control points will have greater influence
over mesh vertices than the further ones. The geodesic distance
is a real-value function defined on the mesh surface. Because the
function varies smoothly along the mesh, the resulting weights are
fluently distributed over the mesh regions.

weight(i, k) =

1

gd(i, k)∑
k′∈S

(
1

gd(i, k
′
)

) (4)

where:
gd(i, k) – is geodesic distance between the mesh vertex vi and kth

control point Ck
S – is the set of control point indices controlling one vertex

Results on a high resolution model.

References

[Au et al., 2008] Au, O. K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D.,
and Lee, T.-Y. (2008). Skeleton extraction by mesh contraction.
ACM Transactions on Graphics, 27(3).

[Desbrun et al., 1999] Desbrun, M., Meyer, M., Schroder, P., and
Barr, A. H. (1999). Implicit fairing of irregular meshes using dif-
fusion and curvature flow. Proceedings of ACM SIGGRAPH 99.

[Garland and Heckbert, 1997] Garland, M. and Heckbert, P. S.
(1997). Surface simplification using quadric error metrics. In-
ternational Conference on Computer Graphics and Interactive
Techniques.


