
Interactive Shape-Aware Deformation of 3D Furniture Models

Lea Aichner∗

Supervised by: Associate Prof. Dipl.-Ing. Dipl.-Ing. Dr.techn. Michael Wimmer†

Institute of Computer Graphics
Technical University Vienna

Vienna / Austria

Abstract

Resizing of 3D models can be very useful when creating
new models or when reusing old ones. However, naive re-
sizing can create serious visual artifacts which destroy the
characteristics of an object. In this work an algorithm that
protects the features of 3D models during resizing is in-
troduced. It is specialized for furniture models because it
should be applied to a furniture configurator. We observed
that the distortion that occurs during scaling is not dis-
tributed uniformly across the object. Our algorithm auto-
matically detects the vulnerable parts of a model and then
stretches only the non-vulnerable ones. Furthermore, the
algorithm takes into account that when scaling a mesh in a
specific direction, the texture has to be adapted as well in
order to prevent representation errors.

Keywords: Deformation, Distortion, Mesh, 3D Model,
Resizing, Scaling, Structure, Texture

1 Introduction

Starting from the late 1990s, digital geometry has emerged
as a new type of digital media. Discrete digital models
such as meshes are widely used in many applications, for
example in entertainment, design, or engineering. They al-
low for a great flexibility regarding modifications and ad-
justment. Generating such models is still time-consuming
and demands a lot of experience. Because of this, there
is an emerging trend towards the reuse of existing models,
parts, or designs [6].

In practice, models often have the same structure but a
different scaling. A natural idea in such scenarios is to
reuse the existing models by reshaping them, for example
through resizing. The simplest approach to resize a geom-
etry is to apply a global scale to the mesh along a specific
direction. However, this will lead to unwanted distortions
of significant features. An example of the distortion of a
mesh and the texture can be seen in Figure 1 (c).

Clearly, this visual distortion depends on the magnitude
of the scale and is not distributed uniformly across the sur-
face. The visual artifacts are located in specific, vulnera-

∗lea.aichner@yahoo.de
†wimmer@cg.tuwien.ac.at

Figure 1: The Figure (a) shows the original furniture
model. (b) shows the model with a test texture. (c) Ap-
plying a global scale leads to unwanted distortions at the
seat, the back and the texture. (d) Scaling the model with
our method preserves the characteristic features and cor-
rects the texture.)

ble regions on the surface. Other regions remain visually
correct regardless of the magnitude of the scaling. This
observation shows that it is important to resize a mesh
non-homogeneously, protecting some parts, while stretch-
ing others excessively.

Our goal is to implement an algorithm that enables
stretching a model without destroying its characteristic
features. For example, rounded edges should not be dis-
torted when scaling an objects along a specific direction
(Figure 1 (d)) . Therefore, our algorithm takes into account
the structure of the 3D model and avoids visual artifacts
when scaling at runtime. The possibilities to extract such
high-level information in digital models are still limited.
Instead, our algorithm uses low-level analysis of the ge-
ometry to automatically detect vulnerable parts given pre-
defined scaling axes.

In contrast to already existing context aware scaling al-

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

gorithms, our work discusses the adjustment of the texture
after scaling as well. Even if the algorithm scales only the
regions that are indifferent to the scale, the texture has to
be adapted on the whole 3D model (Figure 1 (d)).

Our approach is specialized for parts of furniture models
(Figure 1) because it is supposed to be applied to a furni-
ture configurator. The models are characterized by rather
simple geometries which have a regular shape along a spe-
cific scale direction. However, with some modifications it
can be applied to complex models as well.

In order to facilitate the integration into existing Unity
projects, the algorithm is implemented using the game en-
gine Unity.

The next Section, Related Work, describes the state of
the art of Shape-Aware deformation techniques. The third
Section, Structure Aware Resizing Algorithm Overview,
gives an overview of our algorithm and discusses its prac-
tical relevance. The Section Implementation describes the
analysis phase and the processing phase of our algorithm.
The fourth Section, Results and Evaluation, contains the
results of evaluation achieved by our implementation. The
last Section, Conclusion and Future Work, includes a dis-
cussion of possible improvements and extensions to our
application.

2 Related Work

In this section we present some algorithms that are used
to edit existing shapes. One approach is to work with
free-form deformations, a space based deformation tech-
nique. Simple free-form deformations allow low-level
mesh operations and provide a high degree of flexibil-
ity. To avoid destroying the whole structure of the ob-
ject however, several methods have been proposed to per-
form higher-level deformations. The free-form deforma-
tions implemented by Sederberg et al. [10] and Coquil-
lart [1] use a low-dimensional, band-limited, volumetric
basis to impose smooth, low-frequency deformations to
the geometry. The goal of the algorithm is to preserve parts
with high-frequency details, while the low-frequency parts
should be deformed.

The drawback of free-form deformations is that they
only have a local and non-adaptive way of preserving
structure. They do not take into account the content of
the shape or global relations.

In order to deal with structure-aware deformation Zheng
et al. [12] uses global relations between parts of an ob-
ject. Semantic parts that belong together are represented
by object-aligned bounding boxes or shape components
obtained from segmentation. When deforming an object,
Euclidean invariants (symmetries) are used to propagate
edits to affect all symmetric elements similarly.

A similar idea is used by iWires [2] (Figure 2). The
iWIRES framework of Gal et al. [2] uses global relations
to achieve structure-aware deformation. The method is
based on the researches of Singh et al. [11] and Orzan et

Figure 2: A complex model (left) that consists of 108 dif-
ferent components is analyzed and 250 intelligent wires
(in green) are extracted. Editing a few wires leads to a
new wire configuration (in blue). The result is shown on
the right side. (Image taken from Gal et al. [2].)

al. [8], which show that an entire shape can be defined by a
small set of curves. Furthermore, Singh et al. [11] defined
the name wires to denote the curves that are key structural
features capturing the shape.

In order to get the wires, the algorithm has to extract fea-
ture curves. Doing that in general models is challenging,
but for models depicting man-made objects, sharp crease
lines are good candidates [7]. Single wires can be com-
bined to form a group that also holds geometric character-
istics and information about relations.

The user has the possibility to deform the model us-
ing predefined handles. The algorithm propagates the de-
formation to the closest wire and enforces its individual
characteristics. Thereby, it is important to maintain the
group characteristics and group relations. An example of
the iWires framework can be seen in Figure 2. The algo-
rithm extracts 250 intelligent wires of the model, shown in
green. Editing a few wires leads to a new wire configura-
tion and can be seen in blue on the right side of the figure.

The algorithm of Kraevoy et al. [6] allows to stretch
3D objects along several directions, while protecting the
model features and structures during resizing. To avoid
distortion in particular parts of the object (Figure 3 (b)) it is
important to scale the object non-homogeneously. For in-
stance, while the proportions between the dial and the pen-
dulum of the clock in Figure 3 (c) change, the model still
appears visually correct. The algorithm detects all vulner-
able regions in the model and records this information in a
protective grid defined around the object, the so called vul-
nerability map (Figure 3 (d) and (e)). The digital model is
then scaled non-homogeneously by a space-deformation
technique with respect to the vulnerabiliy map. The com-
putation of the vulnerability according to a specific scale
axis is based on two components, slippage and normal
curvature.

The slippage analysis [3] specifies how persistent a sur-
face is to a given transformation or transformation type.
It measures if a local region on a surface remains on the
surface after the transformation is applied. This is the case
when the surface normal of the local region is perpendic-
ular to the scale axis. The normal curvature of the sur-
face in the scaling direction predicts the amount of surface

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 3: Resizing a clock model. (a) Standard non-uniform scale distorts the shape of parts of the model, e.g. the dial
(b). Non-homogeneous Resizing resizes the clock in a more natural manner protecting its shape (c). Images (d) and (e)
show part of the protective grid before and after resizing. (Image taken from Kraevoy et al. [6].)

bending subject to the scale. The method measures normal
curvature at mesh vertices, projecting the scale axis to the
surface tangent plane.

After the computation of the vulnerability map, the al-
gorithm computes the scale gradients for each cell and for
each direction. The aggregation of the scale gradients of
each cell results in the global resizing transformation.

Linear blending methods like the methods of Schaefer et
al. [9] or Kavan et al. [5] are often used in interactive space
deformation because of their speed: each point on the ob-
ject is transformed by a linear combination of a small num-
ber of affine transformations.

Figure 4: Bounded Biharmonic Weights for Real-Time
Deformation support points, bones and cages as deforma-
tion handles. (Image taken from Jacobson et al. [4].)

Jacobson et al. [4] specifies an approach for real-time
deformation of arbitrary 2D and 3D shapes by supplying
weights for a linear blending scheme that produces smooth
and intuitive deformation for handles of arbitrary topology
(Figure 4). The system supports points, bones and cages
as deformation handles. Bones are used to control rigid
parts, cages to enlarge areas and points to transform flex-
ible parts. The handles have maximum influence in their
immediate environment.

3 Structure Aware Resizing Algo-
rithm Overview

Our structure aware resizing algorithm will be used in an
interactive 3D furniture configurator. The user gets the
ability to create individual furniture such as a sofa. Fur-
thermore, the user can configure a lot of properties of the
furniture, for example the texture, the seat height, or the
width of the arm rest. Because of the fact that the user can
modify every single component of the furniture, including
armrest or feet, a 3D representation of these single com-
ponents is needed.

Unfortunately, this leads to a big amount of data and re-
dundant information. For example, if the user can choose
among ten different forms of arm rests and four different
arm rest widths, the application has to save forty different
3D meshes. It would obviously be better to save only one
mesh for every form and adjust its width at run-time. In
the following sections, a content preserving algorithm that
aims to solve this problem is presented. Furthermore, this
algorithm takes into account that, when scaling a mesh in
a specific direction, the uv coordinates have to be adapted
as well in order to prevent representation errors.

Figure 5: The Figure (a) shows the UI menu for rotating
and translating the element. When clicking on the button
on the bottom the scaling menu appears, shown in Figure
(b). The bounding boxes are rendered in yellow.

The algorithm is implemented in Unity, a cross-
platform game engine developed by Unity Technologies.
The whole application can be divided into four sections:

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

1. The visualization of the furniture geometry: A se-
lected element has to be highlighted and a user in-
terface is needed to manipulate the element (Figure
5).

2. The processing of the user input: The user needs the
ability to navigate through the scene, to select ele-
ments, to rotate, to translate and of course to scale
them (Figure 5).

3. The Analysis Phase of the algorithm: In a pre-
processing step the areas of the model that can be
scaled along a specific axis are computed. Further-
more, the uv coordinates are analyzed in order to sim-
plify their manipulation.

4. The Processing Phase of the algorithm: This step is
executed at run-time. The world coordinates and tex-
ture coordinates are updated according to the results
of the analysis phase.

The last two steps, Analysis Phase and Processing
Phase, are described in detail in the following sections.

4 Implementation

The main idea of our algorithm is to detect the parts of
a model that can be scaled along a predefined axis with-
out destroying its salient features and adapting the texture
coordinates to prevent representation errors.

Our algorithm is divided into an analysis phase and a
processing phase. In the first part of the analysis phase,
the algorithm analyzes the projection of the triangle nor-
mal onto the scaling axis and determines the parts of a
mesh that can be scaled. However, the adjustment of the
world coordinates leads to a distortion of the texture of
the model. In the analysis phase of the texture coordinates
the algorithm first computes the mapping of the texture on
the 3D model. The next step is to detect all vertices of
the model, whose texture coordinates have to be adjusted
when scaling it along a specific axis. Furthermore, the
scale direction and the correlation between the texture co-
ordinate and world coordinate of a vertex are calculated.
In the processing phase all world coordinates and texture
coordinates are updated at runtime, based on the results of
the analysis phase.

4.1 Analysis World Coordinates

Similar to the algorithm of Kraevoy et al. [6], our algo-
rithm uses the projection of the triangle normal onto the
scaling axis to decide whether a part of an element can be
scaled or not.

First, the algorithm runs through all triangles in a furni-
ture mesh. For each triangle the projection of the normal-
ized surface normal onto the scaling direction is computed.
This results in a triplet of scalars γx, γy and γz that indicate
how vulnerable the triangle is to a scaling along the x,y

and z axis, respectively. The surface normal is perpendic-
ular to the scale axis if the projection γ onto the axis is
zero. In that case, this part of the geometry can be scaled
without destroying content features. Obviously, that impli-
cates that all triangles with a projection γ unequal to zero
shall not be adjusted. Due to imprecise vertex values, the
projection γ is seldom exactly zero, even if the surface is
parallel to the scale axis. Therefore, the application uses a
tolerance-threshold ε (for example ε = 0.02). If the abso-
lute value of the dot product is bigger than ε , this part of
the geometry must not be changed.

For the sake of simplicity, the algorithm first computes
all parts of the mesh that should not be modified. In or-
der to specify these parts, the algorithm uses ranges. One
range is defined by only two values indicating the start and
the end of the range. If for example the scalar of the nor-
mal and the x axis is bigger than the tolerance-threshold
(γx > ε), the minimum min(v1x v2x v3x) and the maximum
max(v1x v2x v3x) of the vertices generate a new range rx.
Before saving the range, the algorithm has to detect if the
new range rx overlaps with an already existing range. If
this is the case, the two ranges are merged into one. The
tolerance-threshold can be modified by the user at runtime.

After running through all the triangles, the program can
calculate the Scale Rectangles based on the non-scalable
ranges. A Scale Rectangle is a 3D box that surrounds
the 3D model and contains all vertices that can be scaled.
The Scale Rectangles for different scale directions with
different tolerance-thresholds ε can be seen in Figure 6.
One Scale Rectangle is defined by two values SRmin and
SRmax indicating the start and the end of the Scale Rect-
angle and a factor SRratio that describes the proportion of
the size compared to the other Scale Rectangles. If a Scale
Rectangle is bigger than another, the bigger one has to be
stretched more than the smaller one in order to maintain
the correct proportions of the model.

4.2 Analysis Texture Coordinates

The analysis phase of the texture coordinates is more com-
plex than the analysis phase of the world coordinates.
Therefore, we divide it into 3 steps.

4.2.1 Scale Factor Calculation

First, the algorithm has to find out the mapping of the tex-
ture coordinates if it is not known by default. The mapping
specifies which distance in world coordinates corresponds
to the distance of 1 in the texture coordinates.

The precondition for a correct calculation of the map-
ping is that the used textures have the same mapping in the
u and v direction because our algorithm takes into account
only the y coordinates of the geometry. A distance of 1 in
the u-coordinates corresponds to the same distance in the
world coordinates as a distance of 1 in the v-coordinates.

The calculation of the mapping is performed while run-
ning though all mesh triangles during the analysis phase of

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 6: The figure displays the Scale Rectangles for the
different scale axes. (a) The Scale Rectangles for the scale
axis x with the default threshold ε = 0.02. (b) The Scale
Rectangle for the scale axis x with the threshold ε = 0.055.
(c) The Scale Rectangle for the scale axis y. (d) The Scale
Rectangle for the scale axis z.

the world coordinates. One triangle consists of three ver-
tices with y-world coordinates yi, i = 1,2,3 and the cor-
responding texture coordinate vi, i = 1,2,3. For the com-
putation of the scale factor we are only referring to the
v-coordinate of the UV coordinate system. First, the al-
gorithm searches the two vertices with the largest distance
di, j in the y-world coordinates (Equation 1).

di, j = max(|yi − y j|), i, j = 1,2,3. (1)

Afterwards, it computes the local scale factor sFl by di-
viding the distance in the texture coordinates of the ver-
tices i and j by the distance di, j (Equation 2).

sFl = |vi − v j|/di, j. (2)

In the end, the algorithm sets the local scale factor sFl
computed by the triangle with the largest distance di, j as
the final scale factor sF .

4.2.2 Texture Coordinates Identificaton

Let us assume that V ⊂ ℜ3 consists of all vertices of a 3D
model. When scaling the model in the x direction, Vx holds
all vertices whose world coordinates have to be adjusted.
As shown in the Figure 7, not all texture coordinates in
Vx have to be modified. The texture coordinates of per-
pendicular parts to the scale axis must not be adapted, in
the picture highlighted with a red color. All triangles of
the model whose uv coordinates need to be adjusted are
identified by Tx.

Figure 7: The texture coordinates of perpendicular parts
to the scale axis must not be adapted, in the picture high-
lighted with a red color.

When running through the mesh triangles, the program
saves the index of all vertices whose normal is smaller than
a certain threshold λ (λ is by default 0.8). These triangles
are not perpendicular to the scale axis and therefore their
texture coordinates need to be adjusted. The threshold λ
is used to make the algorithm more robust against inac-
curacies of the model and can be changed by the user if
needed.

4.2.3 Scale Direction and Correlation Identification

When changing the x coordinate of a vertex, the question
is whether to modify the u or the v coordinate of the UV
coordinate. Therefore, the algorithm has to determine the
so called UV Scale Axis for every vertex in Ti.

Furthermore, an enlargement of a world coordinate does
not lead automatically to an enlargement of the texture co-
ordinate. The application needs to describe the correlation
between world coordinates and texture coordinates for ev-
ery single vertex.

The algorithm calculates the UV Scale Axis for every
triangle in Tx, Ty and Tz using the previously computed UV
Scale Factor. In order to compute the UV Scale Axis, the
algorithm runs though all triangles T , whose texture coor-
dinates have to be adjusted. Assuming the scale direction
is the x-axis, then the algorithm first computes the distance
di, j, i, j = 1,2,3 between all x coordinates of the vertices
that compose the triangle. The distance is then multiplied
by the UV Scale Factor sF . The result is the distance in uv
coordinates that the vertices should have d̃uv. In the next
step the correct distance for both the u coordinates and the
v coordinates are computed based on the original uv coor-
dinates of the mesh (du and dv). The algorithm compares
then the correct distance du and dv with the calculated dis-
tance d̃uv. If d̃uv ≈ du, an enlargement in the x direction
leads to an adaption of the u coordinate of the texture. If
d̃uv ≈ dv, the v coordinate has to be corrected.

Furthermore, the correlation between the texture coor-
dinate and world coordinate of a vertex is calculated by
comparing the sign of the correct distance du or dv and the
calculated distance d̃uv. If they are the same, the vertex has
a positive correlation. If they are different, an enlargement

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

of the world coordinate means a reduction of the texture
coordinate. Obviously, the same vertex is processed mul-
tiple times because it is part of several triangles. In order
to save the most significant value, our method saves the
results calculated from the biggest triangle.

4.3 Processing Phase

After the analysis phase the 3D model has to be scaled at
run-time. This scaling process is again divided into the
adjustment of the world coordinates and the adjustment of
the texture coordinates.

When scaling the element for example in the y direc-
tion, the algorithm runs though all previously computed
Scale Rectangles. All vertices that have a bigger y coordi-
nate than the minimum value of the Scale Rectangle SRmin
have to be adapted. If the 3D mesh consists of n Scale
Rectangles and it is scaled along the y axis by the amound
of d, the algorithm starts with the Scale Rectangle with
the minimal SRmin. The y coordinate of all vertices with a
bigger y coordinate than SRmin are shifted by the amount
of SRratio ∗ d. The SRmin value of all other vertices has to
be adjusted too. Then, the algorithm continues these steps
with the next Scale Rectangle.

After adjusting the world coordinates for one Scale
Rectangle, the uv coordinates have to be adapted too. If
the world coordinates of a vertex have changed by the
amount of d and if the texture coordinate of the vertex has
to be adjusted, the uv coordinate of the vertex is adapted
depending on the above computed UV Scale Factor sF ,
UV Scale Axis and correlation. That means for a positive
correlation and a UV Scale Axis ’v’ vnew = vold + sF ∗ d
and for a negative correlation and a UV Scale Axis ’u’
unew = uold − sF ∗d.

5 Results and Evaluation

Most of the geometries we used for testing will be used
in the 3D furniture generator too. However, in order to
identify the flexibility of the algorithm we also tested it
with more complex 3D models.

5.1 Scale Rectangles and Scaling

In Figure 6 the Scale Rectangles for the three different
scaling directions x, y and z are displayed. The images (a)
and (b) display the Scale Rectangle for the x direction with
different ε values. The smaller the value, the more accu-
rate the Scale Rectangles. Furthermore, the figure shows
that the algorithm is able to detect more than just one Scale
Rectangle per scale axis.

Figure 8 shows the stool model before and after scaling
it along the y direction. Comparing the wireframes in Fig-
ure (a) and (b) it can be seen that all vertices in the upper
part of the model that are not inside the Scale Rectangle
are not modified.

Figure 8: The figure shows the wireframe of a stool before
(a) and after (b) scaling it in the y direction.

5.2 Textures

In order to analyze the adjustment of the uv coordinates,
we used a simple test texture, as shown in Figure 9. When
enlarging the 3D model as well as when reducing its size,
the texture coordinates were adjusted in a correct manner.
The texture repeated itself without causing artifacts. Since
the relation between world coordinates and uv coordinates
were considered too, the texture was properly adjusted on
the opposite side of the model as well.

As we already explained above, not all texture coordi-
nates of the updated vertices have to be adjusted (Figure
7). Even if the vertices on top of the model have been
shifted, the texture coordinates remain the same. This is
because the triangles are perpendicular to the scale direc-
tion.

5.3 Complex Models

Even if it is not important for the practical use, we tested
the algorithm with more complex geometries. As shown
in Figure 10, we applied the method to a bench. The left
side shows the original geometry with the Scale Rectan-
gles for the z-axis. After scaling it up (Figure 10 (b)), the
characteristic features such as the stake in the middle are
preserved. Furthermore, it can be seen that the algorithm
can handle multiple textures on one geometry.

Figure 10: The figure shows the Scale Rectangles in z di-
rection of a common bench (a) that is then scaled up (b).
As can be seen the stake in the middle of the model has
not changed.

It is important that the user has the ability to change the
threshold ε manually. As shown in Figure 11 (a), the de-

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 9: The 3D model of an arm rest with the test-texture. (a) Original model with the Scale Rectangle in z direction.
Its size is 77.6 cm. (b) The armrest scaled to a size of 96 cm. The algorithm increased all vertices on the left side of the
red line. (c) The armrest reduced to a size of 35 cm.

fault threshold is not enough if the lampshade should be
scaled as well. In this case, increasing the threshold leads
to more Scale Rectangles (Figure 11 (b)), which has an
impact on the performance of the algorithm at run-time.
Furthermore, we noticed that the more complex a geome-
try is, the more Scale Rectangles are computed.

Figure 11: (a) The algorithm computes 6 Scale Rectan-
gles when ε = 0.02. (b) When ε = 0.03 already 10 Scale
Rectangles are computed.

The last geometry we used during the testing was a
rather complex shelf (Figure 12). The parts of the shelf
that contain no books were scaled extremely. By analyzing
the section with the chemistry model, we noticed that the
algorithm scaled it correctly and in an intuitive way. Only
the foot of the model was scaled as well as the part of the
books above it. The chemistry model itself remained the
same. However, the geometry of the shelf shows the lim-
its of our algorithm. Even if it scales the chemistry model
correctly, the shelf is deformed in an unintuitive way.

6 Conclusion and Future Work

Resizing of 3D models can be very useful when creating
new models. However, naive resizing can create serious

Figure 12: A complex geometry of a shelf. Even if our
algorithm works correctly the shelf is not scaled in an in-
tuitive way.

visual artifacts which destroy the characteristics of an ob-
ject. This work presents a structure aware resizing algo-
rithm that protects the model structures and takes the cor-
rect adaption of the texture into account as well. In order
to facilitate the integration into existing projects, the algo-
rithm was implemented using the game engine Unity. The
application gives the user the ability to resize custom 3D
models along predefined scaling directions at run time.

Our algorithm works well when working with rather
simple 3D models that have a regular shape along a spe-
cific scale direction such as the arm rest, the stool, or the
bench. Our method uses a threshold that indicates whether
the world coordinates of a mesh triangle must be changed
and a threshold that specifies whether a texture coordinate
must be adjusted. Furthermore, the algorithm uses so-
called Scale Rectangles to indicate all parts of the mesh
that have to be scaled along a specific scale axis. For both
thresholds a value can be defined that can be used over
the entire geometry to compute the Scale Rectangles and
to adjust the uv coordinates in a correct manner. Further-
more, only a small set of Scale Rectangles is computed.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

This leads to a good performance when scaling the model
at runtime.

However, our method has a number of limitations.
When scaling complex geometries as the shelf in Figure 12
the algorithm computes unintuitive and unnatural results.
This is because the algorithm computes too many Scale
Rectangles. Complex geometries consist of many parts,
where the mesh triangles are not parallel to the scaling axis
and therefore vulnerable to the scale. However, some re-
gions are parallel to the scaling axis and produce a Scale
Rectangle even if these regions are very small. For every
Scale Rectangle the algorithm repeats the resizing calcula-
tion and the adjustment of the uv coordinates. Therefore,
a big number of Scale Rectangles quickly leads to a bad
performance.

Figure 13: This piece of furniture is composed of several
simple geometries. Nonetheless, the algorithm detects the
correct Scale Rectangles.

In future work, we would give the user more possi-
bilities to influence the calculation of the Scale Rectan-
gles. When scaling the piece of furniture in Figure 13, one
might prefer to scale only the seat and ignore the arm rest.
Because of this, it would be reasonable to allow the user
to delete selected Scale Rectangles after their computation
or define new ones manually.

Furthermore, we would like to optimize the perfor-
mance when scaling a 3D model. There are times when
Scale Rectangles are so small that they have no visual im-
pact on the results. Because of this, it would be reason-
able to only allow Scale Rectangles bigger than a specific
threshold. Alternatively, the algorithm could merge multi-
ple Scale Rectangles that are close together into one.

Analyzing the state of the art leads to the conclusion that
there is no general solution for scaling a model without
destroying its geometric features. Depending on the struc-
ture of the geometry (man-made or not) and the field of
application different algorithms have to be chosen. Never-
theless, because of its numerous benefits, structure-aware
shape processing will remain a topic of research well into
the future.

References

[1] Sabine Coquillart. Extended free-form deformation:
a sculpturing tool for 3D geometric modeling, vol-

ume 24. ACM, 1990.

[2] Ran Gal, Olga Sorkine, Niloy J Mitra, and Daniel
Cohen-Or. iwires: an analyze-and-edit approach to
shape manipulation. In ACM Transactions on Graph-
ics (TOG), volume 28, page 33. ACM, 2009.

[3] Natasha Gelfand and Leonidas J Guibas. Shape seg-
mentation using local slippage analysis. In Proceed-
ings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, pages 214–223.
ACM, 2004.

[4] Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga
Sorkine. Bounded biharmonic weights for real-time
deformation. ACM Trans. Graph., 30(4):78, 2011.

[5] Ladislav Kavan, Steven Collins, Jiřı́ Žára, and Carol
O’Sullivan. Geometric skinning with approximate
dual quaternion blending. ACM Transactions on
Graphics (TOG), 27(4):105, 2008.

[6] Vladislav Kraevoy, Alla Sheffer, Ariel Shamir, and
Daniel Cohen-Or. Non-homogeneous resizing of
complex models. ACM Transactions on Graphics
(TOG), 27(5):111, 2008.

[7] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter
Seidel. Ridge-valley lines on meshes via implicit sur-
face fitting. ACM transactions on graphics (TOG),
23(3):609–612, 2004.

[8] Alexandrina Orzan, Adrien Bousseau, Pascal Barla,
Holger Winnemöller, Joëlle Thollot, and David
Salesin. Diffusion curves: a vector representation
for smooth-shaded images. Communications of the
ACM, 56(7):101–108, 2013.

[9] Scott Schaefer, Travis McPhail, and Joe Warren. Im-
age deformation using moving least squares. In ACM
transactions on graphics (TOG), volume 25, pages
533–540. ACM, 2006.

[10] Thomas W Sederberg and Scott R Parry. Free-form
deformation of solid geometric models. ACM SIG-
GRAPH computer graphics, 20(4):151–160, 1986.

[11] Karan Singh and Eugene Fiume. Wires: a geometric
deformation technique. In Proceedings of the 25th
annual conference on Computer graphics and inter-
active techniques, pages 405–414. ACM, 1998.

[12] Youyi Zheng, Hongbo Fu, Daniel Cohen-Or, Oscar
Kin-Chung Au, and Chiew-Lan Tai. Component-
wise controllers for structure-preserving shape ma-
nipulation. In Computer Graphics Forum, vol-
ume 30, pages 563–572. Wiley Online Library, 2011.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

