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Abstract

This paper reports experiments performed during the work
on my master’s thesis which focuses on 3D reconstruc-
tion of vehicles passing in front of a traffic surveillance
camera. Calibration process of surveillance camera is first
introduced and the relation of automatic calibration with
3D information about observed traffic is described. Af-
terwards, a set of experiments with feature matching and
Structure from Motion algorithm are presented and their
results on images of passing vehicles are examined. Mod-
ifications to correspondence search stage of Structure from
Motion pipeline are then proposed. Most importantly,
instead of using SIFT features, DeepMatching algorithm
(originally devised to find quasi-dense point matches in
optical flow calculation) is used to obtain point correspon-
dences for subsequent reconstruction phase. As a result
of implemented modifications, the overall completeness of
reconstructed point cloud model of passing vehicle has im-
proved significantly.

Keywords: 3D Reconstruction, Structure from Motion,
Traffic Surveillance, Traffic Analysis, Camera Calibration

1 Introduction

Deployment of high-resolution digital cameras in traffic
surveillance has increased the need for computer vision
algorithms that automatically extract data from captured
video streams. When supplemented with computer vi-
sion methods, traffic surveillance cameras can serve a wide
range of purposes, such as counting of passing vehicles,
their classification, finding driving lanes, detecting traf-
fic jams and discovering drivers in the opposite direction.
Moreover, the primary aim of many traffic surveillance
systems is to measure the speed of passing vehicles. Nev-
ertheless, many of the tasks cannot be achieved without
preceding camera calibration.

This paper addresses the problem of reconstruction of
3D information about vehicles passing in front of a surveil-
lance camera. In existing algorithms developed for auto-
matic traffic surveillance, the only obtained 3D data about
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Figure 1: An example of points found by DeepMatching
algorithm (left) and the corresponding result of 3D recon-
struction of a passing truck (right).

a passing vehicle is its bounding box. This work therefore
aims to devise a method that could acquire more precise
3D representation of a vehicle captured in a video stream.
Such information is desired not only for visualisation pur-
poses, but may also be utilized to infer the scale of the pro-
jected scene, and thus contribute to the camera calibration
process.

Available tools for 3D reconstruction are first examined
and tested to find out whether they could directly be used
for the outlined task. Additionally, a set of experiments
carried out with keypoint extraction is described. Lastly,
a modification of the correspondence search stage of 3D
reconstruction pipeline is proposed and implemented. An
example of improved keypoint search and resultant 3D re-
construction is shown in Figure 1.

2 Calibration of Traffic Surveillance
Camera

Monocular cameras can be utilized in numerous tasks of
traffic analysis and surveillance, one of which is speed
measurement of passing vehicles. Techniques for visual
speed measurement have been developed by various au-
thors [8, 4, 1, 3, 9]. Nevertheless, many of the traf-
fic surveillance tasks, especially accurate speed measure-
ments, require precise calibration of the particular road-
side camera. This section therefore focuses on the ap-
proaches to calibration of monocular camera employed in
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traffic surveillance.

2.1 Camera Calibration Model

Traffic camera calibration can either be performed manu-
ally or fully automatically. As standard pattern-based ap-
proaches (such as the one developed by Zhang [13]) can-
not be used, manual calibration requires user input of some
information about the scene that is viewed by the camera.
Such approach often relies on physical measurements in
the scene or on placement of specific markers, and thus
involves considerable amount of effort. This renders man-
ual calibration impractical for large-scale deployment of
roadside cameras, and it is therefore desirable for the cali-
bration to be fully automatic [2, 8].

Standard camera calibration process involves finding its
intrinsic parameters (matrix K) and extrinsic parameters
(matrix [RT]) that form the projection matrix P:

P = K [RT] (1)

However, for the purpose of speed measurement in vi-
sual traffic surveillance, it is more convenient to define
the problem of camera calibration as finding the intrinsic
parameters, determining the road plane, and finding the
scale of the road plane. This approach is more suitable, as
it enables direct speed measurement of vehicles driving on
the road plane. This concept of camera calibration can be
considered equivalent with the above mentioned standard
camera model and methods exist to convert the obtained
parameters from one model to the other [8].

When determining the intrinsic parameters, surveillance
camera is assumed to exhibit zero pixel skew and to have
principal point in the center of the image. The only re-
maining intrinsic parameter to determine is therefore its
focal length. This parameter can be calculated using two
vanishing points. Once the vanishing points are deter-
mined, the parameters of the road plane (without scale)
can also be obtained. The scale of the road plane is thus
the last necessary parameter to infer [8].

2.2 Automatic Calibration Using the Motion
of Passing Vehicles

Whenever fully automatic calibration of surveillance cam-
era is to be performed, it is suitable to extract the informa-
tion necessary for obtaining the aforementioned calibra-
tion parameters from observed traffic flow.

Finding Vanishing Points and Road Plane

Methods, such as the one presented by Dubská et al. [2],
first detect vanishing points using the observed motion of
vehicles. Once positions of two vanishing points in image
space are obtained, focal length of the camera can be cal-
culated. Two vectors from the origin of the camera system
can then be constructed from the coordinates of the van-
ishing points and the focal length. Cross product of these

two vectors then yields the normal vector of the road plane.
The only remaining parameter is thus the distance of the
road plane from the camera which establishes the relation
between the image and real-world units, i.e. the scale [8].

Determining the Scale of the Road Plane

If passing vehicles are to be used as the source of infor-
mation to obtain the scale of the road plane, camera cali-
bration inevitably becomes closely related to 3D structure
of the vehicles. Two significant approaches to determine
the scale of the road plane from observed traffic flow have
been developed.

The first approach, presented by Dubská et al. [3], uses
3D bounding boxes of passing vehicles and statistical do-
main adaptation of their dimensions. The authors detect a
vehicle blob and construct its 3D bounding box using lines
that pass through vanishing points and that are tangent to
the vehicle blob. Once image coordinates of corners of the
bounding box are known, it is possible to project the base
of the bounding box onto the road plane. As a result, coor-
dinates of the bounding box base in 3D space are acquired.
The distance between these coordinates, together with the
information about the real-world dimensions of the vehi-
cle, can be used to determine the scale of the road plane.
In order to determine the scale factor, Dubská et al. [3] col-
lected statistical data about sold cars and their dimensions,
and subsequently formed a histogram of their bounding
box dimensions. Scene scale was then determined by fit-
ting statistics of known dimensions and the measured data
from the observed traffic.

It is important to note that when extraction of 3D in-
formation about observed traffic is considered, bounding
boxes have been so far the only 3D information obtained
about passing vehicles. Moreover, the fact that bounding
boxes are extracted using lines tangent to the vehicle blobs,
whose edges tend to be bent, has negative influence on the
overall accuracy.

The second approach to scale inference is proposed by
Sochor et al. [8], who infer the scene scale by aligning ren-
dered 3D models of frequently passing cars. They use fine-
grained information abut vehicle type (i.e. make, model,
variant, model year) and obtain 3D models for two vehicle
types that are commonly observed. The method starts with
classification of passing vehicles. When vehicle type with
available 3D model is detected, the image of its 3D model
is rendered in multiple different scales and its 2D bound-
ing box is matched with 2D bounding box of the detected
vehicle blob. Once rendered 3D model is aligned to the
detected vehicle in the image, two points representing the
front and the rear of the vehicle are projected to the road
plane. Knowing the real-world distance of these points
from available vehicle dimensions provides sufficient in-
formation for the scene scale to be calculated.
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2.3 Prospective Contribution of This Work to
Camera Calibration Process

As this work aims to reconstruct 3D information about
vehicles passing in front of surveillance camera, the ex-
tracted 3D data can contribute to further improvement of
camera calibration process. In particular, obtained 3D
model could provide additional information for the cali-
bration phase in which scale of the road plane is computed.

Fine-grained classification of detected vehicles could be
used to distinguish between various vehicle models. Real-
world dimensions would also be stored for each vehicle
model. Once particular vehicle with known dimensions is
recognized, its detailed 3D reconstruction could be created
and utilized to infer the scene scale. Unlike the method
where rendered 3D model alignment is used, this approach
would only require the information about vehicles’ dimen-
sions to be saved in the traffic surveillance system, and no
prior 3D model data would be necessary.

3 Utilized Computer Vision Methods

This section introduces computer vision algorithms that
have been used throughout the work on this paper. First,
Structure from Motion (SfM) algorithm is described. Sec-
ondly, the concepts of optical flow and DeepMatching are
addressed. Lastly, a modification of SfM pipeline is pro-
posed.

3.1 Structure from Motion

Structure from Motion (SfM) is an algorithm used for
3D reconstruction from image collections. Several im-
plementations of this reconstruction strategy exist, such
as COLMAP [6], Bundler [7] and VisualSFM [12]. This
subsection introduces and describes individual phases of
incremental Structure from Motion algorithm.

General pipeline of incremental Structure from Motion
is shown at the top part of Figure 2. The input to SfM is
a set of unordered images with projections of a scene that
is to be reconstructed. The first stage of the SfM pipeline
consists of correspondence search and is followed by the
second stage that is represented by an iterative reconstruc-
tion component. The output of SfM is sparse 3D recon-
struction in the form of point cloud.

Correspondence Search

The first stage of the Structure from Motion pipeline is cor-
respondence search. This stage involves extraction of local
feature points, identification of corresponding projections
of the same points in overlapping images (matching), and
subsequent geometric verification of the found matches.

Feature extraction encompasses detecting coordinates
of feature points within every image and representing the
points using descriptors. These points need to be distinc-
tive in order to be uniquely recognized in multiple images,

and thus SIFT [5] is a common choice in many implemen-
tations, including COLMAP. Next, sets of feature points
are matched using similarity metric to find correspond-
ing point pairs. Obtained point correspondences are then
geometrically verified. Verification consists of estimating
a transformation that maps a sufficient number of corre-
sponding points between images, and the remaining point
pairs are filtered out. Since corresponding point pairs are
usually contaminated by outlier, estimation of the transfor-
mation requires techniques such as RANSAC. The result
of this step is a geometrically verified set of image pairs
and their associated inlier correspondences.

Incremental Reconstruction

The stage of incremental reconstruction receives the ob-
tained set of image pairs with their point correspondences
and performs iterative reconstruction of the scene. Initial-
ization by two-view reconstruction is followed by a cy-
cle in which additional images are registered to the al-
ready reconstructed model and new points are triangu-
lated. An image is registered to the current model by solv-
ing the Perspective-n-Point problem using feature corre-
spondences with already existing points in the model (2D-
3D correspondences). Newly added image observes ex-
isting scene points in the model and can also increase the
number of points in the model through triangulation. Once
new scene point is observed from different angle by at least
one more image, its coordinates can be triangulated and
the point extends the current model.

Furthermore, bundle adjustment is employed to improve
the precision of the model. This step is necessary to
prevent reconstruction from drifting into non-recoverable
state due to the accumulation of uncertainties in pose esti-
mations and errors in point coordinates. In bundle adjust-
ment, already reconstructed points are projected back into
image space of their respective images. The aim of bundle
adjustment is then to perform non-linear minimization of
the reprojection error, and thus simultaneously refine the
camera and point parameters.

3.2 Optical Flow and DeepMatching

Optical flow belongs to the set of algorithms used for mo-
tion estimation between two (or more) images. While
other methods exist for simple movements, optical flow is
the most general technique. The aim of optical flow is to
compute an independent estimate of motion at each pixel.
In other words, the task of optical flow is to find a vector
for every pixel that defines the displacement of the pixel
between two images [10].

In order to address the problem of large displacements
contained within the two input images, some authors also
incorporate descriptor matching component into the cal-
culation process. The main idea is to guide optical flow
estimation by providing correspondences from sparse de-
scriptor matching. Weinzaepfel et al. [11] argue that even
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Figure 2: Standard pipeline of incremental Structure from Motion algorithm (top) and modified correspondence search
stage (bottom), which employs DeepMatching to obtain quasi-dense point correspondences for the subsequent reconstruc-
tion phase.

though this modification significantly improves results of
optical flow algorithm, standard methods for feature point
extraction only produce points for salient image locations.
Therefore, in their method for optical flow, named Deep-
Flow, Weinzaepfel et al. [11] enhance the variational ap-
proach with custom descriptor matching algorithm called
DeepMatching.

The proposed DeepMatching algorithm aims to retrieve
quasi-dense point correspondences for later optical flow
calculation phase. DeepMatching is strongly inspired by
non-rigid 2D warping and deep convolutional networks.
SIFT descriptors based on histogram of oriented gradients
with 4×4 cells are used. However, instead of keeping the
fixed 4× 4 grid, it is divided into 4 quadrants and each
of the quadrants is allowed to move independently in or-
der to yield non-rigid matching. This approach is then ap-
plied recursively together with max-pooling and convolu-
tion [11]. As a result, DeepMatching produces point cor-
respondences with very high density.

3.3 Modification of Structure from Motion
Pipeline using DeepMatching

As shown by experiments described in Section 4, the cor-
respondence search stage of general Structure from Mo-
tion pipeline proved to be unsuitable for the outlined task
of 3D reconstruction of passing vehicles. Therefore, a
modification of this SfM stage was carried out in order
to achieve improved reconstruction results.

Instead of using SIFT features in the correspondence
search stage, DeepMatching is utilized to find high num-
ber of corresponding points within pairs of input images.
Furthermore, filtering with foreground mask is performed
in order to remove points that do not belong to the passing
vehicle. Obtained matches are then fed to the incremen-
tal reconstruction phase, which remains unchanged. The
modified SfM pipeline is presented at the bottom part of
Figure 2. Implemented modifications are described in full

details in Section 5.

4 Experiments with SIFT Features
and Structure from Motion Tools

Throughout the first part of the work on this paper, a se-
ries of preliminary experiments was carried out in order to
evaluate to what extent the current state-of-the-art Struc-
ture from Motion algorithms can be used when solving the
problem of 3D reconstruction of passing vehicles. For this
purpose, two Structure from Motion tools were selected,
COLMAP [6] and VisualSFM [12]. However, before ex-
amining the performance of SfM tools, one more set of
experiments was carried out. Since both of the selected
SfM tools base their correspondence search stage on SIFT
features [5], experiments were first performed to evaluate
the behaviour of SIFT feature extraction and matching on
images of vehicles.

In this section, data obtained for experimenting are first
described. Next, experiments with SIFT features are dis-
cussed. Subsequently, the results of Structure from Motion
reconstructions are presented.

4.1 Obtained Test Data

Several image sequences of passing vehicles were ob-
tained for experiments presented in this section. In order to
ensure sufficient quality and resolution, images were cap-
tured using stationary reflex camera (Nikon D3200 with
Nikon AF-S DX 18-105mm f/3,5-5,6 G ED lens) used in
burst mode. Therefore, images in each sequence repre-
sent frames that would be extracted from a video at differ-
ent points in time. Each created sequence contains from
7 to 15 images. For the purpose of experiments, a sam-
ple containing sequences of 6 different cars, 2 vans, and
1 truck was selected. Additionally, all images in selected
sequences were cropped to include the vehicle with only
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small border containing the background. Examples from
two image sequences are shown in Figure 3.

Considering the fact that Structure from Motion algo-
rithms expect static scene and moving photographer, an-
other set of image sequences was obtained using a station-
ary car with camera moving around. It is therefore possi-
ble to compare the results of inputs containing stationary
and moving vehicles.

Figure 3: Examples of obtained sequences of images with
a passing vehicle.

4.2 Experiments with SIFT Feature Extrac-
tion and Matching

Characteristics of extracted SIFT keypoints and corre-
spondences were examined on obtained image sequences
using SIFT implementation in OpenCV1 library. First, po-
sitions of detected SIFT keypoints were inspected on sin-
gle images. Secondly, found feature correspondences be-
tween pairs of images in each sequence were studied. In
this case, various image pairs with different steps between
images (i.e. different distance of the images within the
sequence) were considered. All experiments were carried
out on sequences of both stationary and passing vehicles,
with equivalent results.

When SIFT keypoint detection algorithm is applied, the
vast majority of obtained keypoints is located on the front
part of the vehicle (mainly on grilles and license plate).
The remaining parts of vehicle are covered very sparsely,
as only low numbers of feature points are detected there.
Furthermore, when feature point matching is performed,
correct correspondences are often found only for small
steps between the images in the particular sequence (i.e.
small changes in vehicle orientation). Larger steps be-
tween images result into significant numbers of incorrectly
calculated correspondences, especially for points which
are not on the front part of the vehicle (grilles and license
plate). An example of computed SIFT correspondences is
shown in Figure 4.

The results of experiments with SIFT features indicate
that algorithms for 3D reconstruction that rely on SIFT in

1http://opencv.org/

Figure 4: Example of found SIFT point correspondences
on a static vehicle (30 best matches are shown). The vast
majority of feature points is detected on the front part of
the vehicle. Moreover, a significant number of incorrect
matches can be observed.

their correspondence search stage are very likely to have
only small numbers of feature points for subsequent re-
construction phase. Moreover, the number will probably
be further reduced by incorrectly found correspondences.

4.3 Experiments with Structure from Motion

Experiments with 3D reconstruction were performed us-
ing COLMAP tool, which was released in 2016 and is
currently the state-of-the-art Structure from Motion im-
plementation [6]. Reconstruction process was tested for
all created image sequences of both stationary and passing
vehicles.

First, experiments with image sequences of stationary
vehicle were performed. Out of 11 experiments, recon-
struction was successfully completed in only six cases. In
the remaining cases, SfM algorithm failed to produce any
result at all, reporting that no good initial image pair was
found. Only three of the successful reconstructions con-
tained recognizable points that belong to the original vehi-
cle. The best achieved result is presented in Figure 5. One
of the remaining successful reconstructions shows an at-
tempt of the algorithm to reconstruct the background scene
instead of the vehicle, while other two successful recon-
structions resulted in a point cloud with no meaningful
structure.

Figure 5: The best obtained result using COLMAP Struc-
ture from Motion tool for a sequence of images containing
a stationary vehicle. Point cloud model (on the right) in-
cludes partially recognizable front part of the vehicle (es-
pecially its license plate) and the front wheel. Remaining
parts of the vehicle are not included at all, or reconstructed
incorrectly.
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Next, COLMAP was used on the image sequences of
passing vehicles. Out of six image sequences of cars, only
one reconstruction was successfully completed and point
cloud model was produced, whereas all other reconstruc-
tions failed (again, the algorithm reported that no good ini-
tial image pair was found). As expected, only front part of
the car is partially recognizable in the successfully created
model. Reconstruction process also failed in case of im-
age sequences of both vans. Nevertheless, a successful re-
construction was obtained for image sequence of passing
truck, where significant portion of front part is recogniz-
able. The resultant model is shown in Figure 6.

Figure 6: The best obtained result using COLMAP Struc-
ture from Motion tool for image sequence of passing ve-
hicle. Resultant point cloud (on the right) contains recog-
nizable front part of the truck.

Results of Structure from Motion algorithm confirm the
conclusions drawn from the previous experiments with
SIFT features. As expected, reconstructed models are of-
ten severely incomplete. In a vast majority of cases, the
reconstruction process either failed entirely, or the resul-
tant point cloud contained no meaningful structure. Apart
from the presented tests using COLMAP, several experi-
ments were also carried out with VisualSFM tool, produc-
ing comparable results.

5 Improvement of the 3D Recon-
struction Process

Based on the experiments described in the previous sec-
tion, two main aspects hindering the 3D reconstruction
process can be identified. The first problem is insufficient
number of feature correspondences, as standard SIFT fea-
tures are not suitable input for reconstruction of passing
vehicles. The second significant problem is represented
by points and point correspondences located in the image
background. In this section, changes to the reconstruction
process are proposed and applied in order to improve the
overall quality of the resultant 3D model.

5.1 Substitution of SIFT Features

In order to increase the number of point correspondences
located on vehicle, it is necessary to substitute SIFT fea-
tures with a different method for keypoint extraction and
matching. In particular, a method producing matches with
higher density is desirable. One option would be to use
output of an algorithm for optical flow calculation, which
would produce a vector that estimates movement of each
pixel in an image pair. Nevertheless, in order to address
large displacements, optical flow methods often utilize
feature matching algorithms, too. It is therefore more
beneficial to inspect the feature matching approaches used
within optical flow, rather than entire methods for optical
flow themselves.

As described in Subsection 3.2, optical flow algorithm
DeepFlow employs a custom feature matching procedure,
called DeepMatching, to calculate quasi-dense point cor-
respondences before smoothing them using variational ap-
proach to obtain optical flow estimation. The power of
DeepMatching algorithm, even though originally designed
for optical flow, could be harnessed to provide a high num-
ber of point matches for subsequent 3D reconstruction of
passing vehicles. An illustration of point matches found
by DeepMatching algorithm is shown in Figure 8.

5.2 Filtering of Obtained Correspondences

The second necessary modification of the correspondence
extraction procedure is removal of those point matches that
belong to the scene background, as these points can be
considered outliers, and thus negatively affect the recon-
struction process. Obtained correspondences should there-
fore be filtered using a foreground mask of every individ-
ual image, so that only matches located on the vehicles in
both images of particular image pair are taken as an in-
put for reconstruction phase. An example of the original
image and its respective foreground mask is shown in Fig-
ure 7, filtered correspondences are illustrated by Figure 8.

Figure 7: Original image of passing truck and its fore-
ground mask.
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Figure 8: Correspondences for two images of a passing
truck calculated using the DeepMatching algorithm and
filtered with foreground masks.

5.3 Application of the Proposed Modifica-
tions

Implementation of the proposed modifications requires a
possibility of defining custom keypoint locations and point
correspondences as an input for the following stage of in-
cremental reconstruction. A suitable interface is offered
by VisualSFM and application of presented modifications
was therefore realized using the VisualSFM tool.

Correspondences were first calculated using Deep-
Matching algorithm for all possible pairs of images in an
image sequence. Next, foreground masks were created
and applied to perform filtering of point matches. A file
with locations of matched points is then generated for ev-
ery image. It should be noted that unlike standard SIFT
keypoint detection, DeepMatching can obtain slightly dif-
ferent sets of points for one particular image when match-
ing this image with several other images. Therefore, the
obtained point sets are unified before the output file with
keypoint coordinates is created. Furthermore, one file con-
taining information about all found matches is generated.
The described procedure replaces the first stage of the SfM
pipeline, in which correspondence search is performed (as
shown in Figure 2).

Information stored in the generated files was then used
as the starting point for the 3D reconstruction stage of Vi-
sualSFM tool. An example of the resultant model can be
seen in Figure 9. When compared to the reconstruction ob-
tained with original SfM algorithm, the results of the pro-
posed modifications significantly improve completeness
of the resultant point cloud model.

Figure 9: Resultant 3D reconstruction of a passing truck
obtained when proposed improvements to Structure from
Motion pipeline are applied.

6 Conclusion

In this paper, a set of experiments with SIFT feature
matching and Structure from Motion algorithm was car-
ried out in order to examine their results on images of pass-
ing vehicles. SIFT features were found to be unsuitable for
images of vehicles when 3D reconstruction is to be per-
formed. This fact was also demonstrated by related exper-
iments with Structure from Motion. Reconstructions using
the Structure from Motion algorithm, which utilizes SIFT
correspondences, often failed or produced point clouds
with a minimal number of points belonging to the origi-
nal vehicle.

Therefore, two modifications to the correspondence
search stage of Structure from Motion pipeline were pro-
posed. Firstly, SIFT features were substituted by Deep-
Matching. DeepMatching, which is originally intended
for obtaining quasi-dense point matches for optical flow
calculation, is utilized to obtain correspondences for the
subsequent reconstruction phase. The second modification
involves filtering of the computed correspondences using
foreground masks in order to eliminate points that are not
located on the vehicle. Implementation of both proposed
modifications significantly improved the overall complete-
ness of the reconstructed point cloud models of passing
vehicles.
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