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Supervised by: Ivana Kolingerová‡

Department of Computer Science and Engineering
University of West Bohemia

Pilsen / Czech Republic

Abstract

In many natural or artificial objects some form of reflec-
tional symmetry can be found. For most objects there is
no exact symmetry but still the object may look symmet-
rical to a person. In such cases an approximate plane of
symmetry can be estimated. The plane of symmetry can
be used for example in cases when we need to align a
given object with coordinate axes. This paper presents a
new simple algorithm which can be used to estimate the
plane of symmetry of a 3D object represented by a trian-
gle mesh. Unlike other algorithms proposed in this field,
our algorithm does not use any advanced numerical calcu-
lations, is fairly easy to implement and configure.
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1 Introduction

Symmetry information can be useful, e.g., in geometric
modeling for object alignment or in computer vision for
object recognition. This paper deals with reflection sym-
metry, specifically with finding a plane of symmetry of a
given three dimensional object represented by a triangle
mesh. The main motivation for our work was finding a
symmetry plane of 3D scans of real human faces. This
symmetry information was then intended to be used in an-
thropology. It is almost impossible for an exact reflection
symmetry to exist in a 3D object but there is something
very close to a symmetry in many real world objects, nat-
ural or artificial. If we look at such objects, we usually see
the symmetry in them, even when it is only approximate.
The human face is actually a good example, because there
can never be an exact symmetry in it, but we usually see
the symmetry between eyes, ears and between the whole
right and left side of the face. When the object is repre-
sented by a triangle mesh and has no exact reflection sym-
metry in it, i.e. no plane of symmetry exists, we can still
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find its very good approximation. Our goal was to design
an algorithm which could find a ’decent’ approximation of
a symmetry plane of a given 3D object represented by a tri-
angle mesh, possibly the one a person would expect after
looking at the object. Figure 1 shows an example of a 3D
object where a person would expect the vertical symmetry
plane (marked red).

Figure 1: Symmetrical object represented by a triangle
mesh

Figure 2 shows the same object with a missing part.
Even in such a case a person would most likely still ex-
pect the symmetry plane the same as in Figure 1.

Figure 2: Symmetrical object with missing parts

There are many methods for symmetry detection but
most of them use complicated calculations and are dif-
ficult to implement, sometimes even to understand with-
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out rather deep mathematical knowledge. We propose an
algorithm for the estimation of an approximate symme-
try plane which gives good results, often even for objects
where some part is missing. The proposed algorithm is
quite simple, fairly easy to understand and implement even
by someone new in the triangle mesh processing and dif-
ferential geometry. The proposed solution was derived as
a simplification of [11]. The advantage of our method is
that it does not require calculation of the Laplace-Bertrami
operator’s eigenvalues and eigenvectors to find the signifi-
cant points, instead we use quite a simple Gaussian curva-
ture estimation. Our method also works well when used on
a triangle mesh with a low number of vertices (thousands).

The structure of the paper is as folows. Section 2
describes related work, Section 3 explains the proposed
method. Section 4 presents results and Section 5 con-
cludes the paper.

2 Related Work

In the past, there has been a lot of research in estimation
of many types of symmetry. The reason is that many of
algorithms in computer graphics and computer vision can
benefit from the knowledge about the symmetricity of an
object.

Let us concentrate on the papers which focus on de-
tection of imperfect or approximate symmetry of objects.
There are some common approaches. The first approach
uses some symmetry measurements. Zabrodsky et al. [14]
used Symmetry Distance - a measure of how much dif-
ferent is the given object from a perfectly symmetric ob-
ject. However, it required the processing of all points of
the object to evaluate the function. Podolak et al. [10]
suggested a Monte Carlo algorithm for sampling points
which were used in the measurement. Martinet et al. [6]
described Generalized moment functions. These functions
have the same symmetries as the processed object plus a
small number of extra candidate symmetries that can be
filtered. The main disadvantage of all the methods de-
scribed above is that they expect the plane of symmetry
going through the center of mass of the object, which is
not always true in the case of an object with missing parts.

Another frequently used approach is to employ voting.
It is based on the assumption that the better the approxi-
mation of the plane of symmetry is, the more points their
symmetric counterpart has. This approach was firstly de-
scribed by Mitra et al. [8]. They use a clustering of sym-
metry transformations for determining partial symmetries
of an object. The symmetry transformation candidates are
generated by matching points with high Gaussian curva-
ture with points that have similar principal curvatures. An-
other algorithm based on voting was introduced by Lip-
man et al. [5] - they search for correspondences in points
and store them in a symmetry correspondence matrix. The
best symmetric transformation is then found by spectral
methods.

All methods mentioned so far were designed for objects
without missing parts. However, many applications re-
quire working with incomplete data. For example Sipiran
et al. [11] use symmetry to repair or complete the miss-
ing parts of scanned cultural heritage objects. The vot-
ing approach mentioned in the previous paragraph can be
improved to work with incomplete data. Xu et al. [13]
proposed a method which is similar to the [10], but only
points that fulfill a certain criterion can contribute to (or
we can say vote for) the given measure. Jiang et al. [4] use
a curve skeleton to find the symmetry in the point cloud.
Their method is similar to [5], however, only points of the
skeleton are considered for creating the symmetry corre-
spondence matrix. Most recently, Sipiran et al. [11] de-
scribed an algorithm that selects points as local maxima
of heat diffusion signatures and then generates candidate
symmetry planes between each pair of points. All the pairs
then vote for the best symmetry plane. This method is very
robust to missing parts and noise in data, however, it is re-
ally complex.

For further information about all types of symmetry,
other algorithms for its estimation and its use in computer
science see [9].

3 Proposed Algorithm

Our algorithm works in two phases. During the first phase
a given number of significant points are extracted from the
mesh. In the second phase a voting process is deployed
to find a pair of points which generates the best plane of
symmetry. This is a similar approach to the one used in
[11], but to find the significant points we use a quite simple
Gaussian curvature estimation and the voting process is
simplified too.

3.1 Extraction of Significant Points

Let P be an optional parameter giving the required number
of significant points. As the significant points, P vertices
with the highest Gaussian curvature are taken. Gaussian
curvature is a term from differential geometry and is de-
fined in a point on a continuous surface. Since a triangle
mesh is not a continuous but discrete representation of a
surface, there is no way how to calculate the exact Gaus-
sian curvature in a vertex of a triangle mesh. It can only
be estimated. There is more than one way to estimate the
Gaussian curvature in a vertex of a 3D triangle mesh. The
one we used in this algorithm is described as follows [7].

G(xi) =
1
Ai
(2π−

n

∑
j=1

ϕ j)

G(xi) is the Gaussian curvature in a vertex xi, n is the total
number of vertices neighboring to xi. The meaning of the
angle ϕ j is depicted in Figure 3. The value Ai is the surface
area which belongs to the vertex xi and it can be calculated
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as one third of the sum of areas of the triangles incident to
the vertex xi. We used a little different way to calculate
the area. Specifically we calculate it as the sum of areas
of Voronoi regions incident to xi, more details about this
calculation can be found in [7], but it is not very complex.

Figure 3: Vertex xi and its neighborhood with angle ϕ j
shown

3.2 Selecting Candidate Planes

Let X denote the set of vertices chosen in the first phase. In
the second phase only vertices in X are processed. In the
next step we choose all pairs of vertices {xi,x j}, xi,x j ∈X ,
i 6= j which satisfy the following two criteria:

Curvature similarity criterion

S≤ G(xi)

G(x j)
≤ 1

S
, S ∈ (0,1〉 ,

where S is an optional parameter, which denotes how
similar the Gaussian curvatures in the two vertices must
be for this criterion to be satisfied. The higher the S value
is the more similar they must be.

Normal angle criterion

|cos(α i j
i j )| ≥CminNorm, CminNorm ∈ 〈0,1〉,

where α
i j
i j is the angle between vectors (xi − x j) and

(ni−n j), where ni,n j are unit normal vectors in vertices
xi,x j, respectively, and CminNorm is an optional parameter
which denotes how large the angle α

i j
i j can be for this

criterion to be satisfied.

Then a set R of candidate planes ρi j for all pairs of
points chosen in the previous step is created. The plane
ρi j is the plane of symmetry of the vertices xi and x j. It is
defined by the implicit equation ai jx+bi jy+ci jz+di j = 0,
where ni j = [ai j,bi j,ci j]

T is the plane normal vector calcu-
lated as ni j = xi− x j. The di j coefficient is calculated by
substituting xi+x j

2 for [x,y,z]T in the equation.

3.3 Voting

The next step is to choose a plane from R which best
approximates the symmetry plane of the mesh. In or-
der to do that we start a simple voting process. For
each plane ρi j ∈ R we iterate through all pairs of points
{xk,xl},xk,xl ∈ X ,k 6= l. The plane ρi j gets a vote from
the pair {xk,xl} if and only if the next four criteria are
satisfied:

Curvature similarity criterion

S≤ G(xk)

G(xl)
≤ 1

S
, S ∈ (0,1〉

Angle criterion

|cos(β i j
kl )| ≥Cmin, Cmin ∈ 〈0,1〉,

where β
i j
kl is the angle between the vector (xk − xl) and

the normal vector ni j of the plane ρi j (which is the vector
(xi−x j)) and Cmin is an optional parameter which denotes
how large the angle β

i j
kl can be for this criterion to be sat-

isfied.

Normal angle criterion

|cos(α i j
kl )| ≥CminNorm, CminNorm ∈ 〈0,1〉,

where α
i j
kl is the angle between the vector (nk − nl) and

the normal vector ni j of the plane ρi j (which is the vec-
tor (xi−x j)), where nk,nl are unit normal vectors in the
vertices xk,xl , respectively.

Distance criterion

dist(
xk +xl

2
,ρi j)≤ Dmax,

where dist(x,ρ) is the distance of point x from the plane
ρ and Dmax = Ddiag ·DmaxRel , where Ddiag is the length
of the diagonal of the triangle mesh bounding box and
DmaxRel ≥ 0 is an optional parameter which denotes how
far (relatively to the length of the bounding box diagonal)
the middle point of the two vertices can be from the plane
in order to satisfy this criterion.

You can see that the curvature similarity criterion and
the normal angle criterion are the same as for the candi-
date plane selection. In the end the plane which was given
the highest number of votes is declared the resulting ap-
proximate symmetry plane.

3.4 Averaging

If there are more planes with the same highest number of
votes, we can simply choose one at random or we can av-
erage them all together. Before the averaging is done, we
have to ensure that all the planes have the same orienta-
tion. Let Rwin denote the set of winning planes, i.e. the
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set of planes with the highest number of votes. It is ob-
vious that Rwin ⊆ R, in most cases Rwin ⊂ R. We choose
any default plane ρ0 ∈ Rwin and for all the other planes
ρg ∈ Rwin, g 6= 0, we do the following: if nT

0 ng < 0, then
we switch the direction of ng by multiplying it by −1, if
nT

0 ng ≥ 0, then nothing is done, the vectors n0,ng are the
normal vectors of the planes ρ0,ρg respectively.

The averaging itself is done by averaging the a,b,c,d
coefficients of the given planes after their normalization
(dividing the plane equation by the length of the plane nor-
mal vector). Let R′win denote the set of winning planes after
the orientation adjustment done in the previous step and let
r(ρg) = [ag,bg,cg,dg]

T denote the vector of coefficients of
the plane ρg ∈ R′win. The vector r(ρavrg) of coefficients of
the averaged plane ρavrg is calculated as follows.

r(ρavrg) =
1
|R′win|

∑
g

1
||ng||

r(ρg), ρg ∈ R′win,

where ng is the normal vector of plane ρg. After this cal-
culation ρavrg is declared the resulting approximate sym-
metry plane.

4 Experimental Results

During the implementation and testing of our method we
have set the default configuration of the algorithm pa-
rameters as follows: P = 200, S = 0.5, Cmin = 0.985,
CminNorm = 0.985, DmaxRel = 0.01. All of the results shown
in this section were accomplished with this exact config-
uration unless stated otherwise. We have also used the
winning plane averaging method described in Section 3.4
in all our experiments, but let us note that in most cases
there was only one winning plane.

We have tested our algorithm on several objects. Most
importantly we used four triangle meshes created by scan-
ning real human faces [2]. Figure 4 shows the four face
scans and the approximate symmetry planes which our
algorithm estimated for them. The planes are shown as
dark rectangles in the images. You can see that the esti-
mated planes really capture the reflectional symmetry in
the faces, even when the faces clearly are not perfectly
symmetrical.

Figure 4: Four scans of real human faces with the esti-
mated symmetry planes shown

We also used 3D models of faces artificially generated
by FaceGen 3D Print software [3]. The software also pro-
vides control over how the face will be deformed. The re-
sult of the symmetry estimation for those models is shown
in Figures 5 and 6. It can be clearly seen that the proposed
algorithm has no problems with finding what seems to be
a correct symmetry plane even for faces with higher level
of deformation.

Figure 5: Artificially created faces with the estimated sym-
metry planes shown

Figure 6: Symmetry estimation for artificially created
faces with higher level of deformation

The algorithm also works well with different objects
than faces. For example, for the lion head shown in Figure
1 it estimated the plane of symmetry exactly where it was
expected (see Figure 7a). Another object for which the al-
gorithm can find a perfectly correct plane of symmetry is
the Teeth model from Microsoft 3D Builder sample model
library [1] (see Figure 7b). Such perfect results were ex-
pected as both models are perfectly symmetrical.

4.1 Models with Missing Parts

The algorithm was also tested on models with missing
parts. One of the face scans and two artificially generated
faces were clipped using Microsoft 3D Builder software.
Applied on those models, the algorithm still performs well
and can still find what seems to be a good approximation
of the plane of symmetry (see Figure 8).
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(a) (b)

Figure 7: Example of symmetry estimation of perfectly
symmetrical objects (a) Head of lion, (b) Teeth

Figure 8: Symmetry estimation of face models with miss-
ing parts

Another model with missing parts was created by clip-
ping the head of the lion. The expected plane of symmetry
can be seen in Figure 2. The plane estimated by our algo-
rithm is shown in Figure 9.

Figure 9: Symmetry estimation of the model with missing
parts

4.2 Influence of Parameter Configuration

The default parameter configuration described at the be-
ginning of this section is not universally optimal. There
are many triangle meshes for which a different configura-
tion ensures much better results than the default one. Let
us consider the triangle mesh depicted in Figure 10. Fig-
ure 10a shows the estimated symmetry plane found by our
algorithm with the default configuration.

You can see that the plane does not capture the sym-
metry very well. The reason for this might be the fact
that, although a person probably perceives some symme-
try, the object is actually quite far from symmetrical, i.e.
there is little symmetry between the arms and between the
legs. This means that for this particular triangle mesh the
default configuration might be too constraining (i.e. the
voting criteria are too difficult to satisfy).

(a) (b)

Figure 10: Teddy bear and its symmetry plane estimated
by our algorithm with: (a) the default parameter config-
uration, (b) the adjusted parameter configuration where
DmaxRel = 0.02

If we just change the DmaxRel parameter from 0.01 to
0.02, which makes the configuration less constraining, we
can get much better approximation of the teddy bear’s
symmetry plane. The symmetry plane which was esti-
mated by our algorithm with this adjusted configuration
is depicted in Figure 10b.

You can see that by adjusting the algorithm parameters
to correspond with the object’s properties we can achieve
results which are much better than results achieved using
the default configuration. The less symmetrical the given
object is the less strict symmetry plane we are looking for
and the less constraining the parameters should be.

4.3 Influence of Vertex Count

During our experiments we have discovered that our al-
gorithm works best when used on triangle meshes with a
low number of vertices, specifically when the number of
vertices is in the order of thousands. Figure 11 shows a
triangle mesh [12] with 117535 vertices and the symmetry
plane which our algorithm estimated for it. You can see
that this result is very far from the plane of symmetry.
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Figure 11: Triangle mesh with 117535 vertices and its
symmetry plane estimated by our algorithm

We have used Microsoft 3D Builder [1] to simplify the
mesh and by this we have lowered the number of its ver-
tices to 15652. The simplified triangle mesh and its plane
of symmetry estimated by our algorithm are depicted in
Figure 12. It is obvious that this result is much better than
the previous one, but it certainly cannot be considered a
good result.

Figure 12: Simplified triangle mesh with 15652 vertices
and its symmetry plane estimated by our algorithm

The number of vertices of the simplified mesh is still
quite large for our algorithm when it is using the default
parameter configuration. It would be very convenient to
adjust the configuration to correspond with this fact and
we can do that by increasing the number of extracted sig-
nificant points. So we change the value of parameter
P from 200 to 500. With higher number of significant
points we can also afford to make the other parameters
more constraining, so we change S from 0.5 to 0.8 and we
also change Cmin and CminNorm from 0.985 to 0.99. After
these changes in the configuration our algorithm estimates
a considerably good approximation of the symmetry plane
depicted in Figure 13.

It can be seen that by adjusting the parameter configura-
tion we were again able to improve the results quality, but
the greatest impact on the quality had the simplification of
the triangle mesh which lowered the number of its vertices
from 117535 to 15652.

Figure 13: Simplified triangle mesh with 15652 ver-
tices and its symmetry plane estimated by our algorithm
with the adjusted parameter configuration (P = 500,S =
0.8,Cmin =CminNorm = 0.99)

4.4 Limitations of our Algorithm

There are triangle meshes for which our algorithm does
not work very well, such as meshes where a person sees
a symmetry but there actually is none. For example let us
consider the triangle mesh depicted in Figure 14. The fig-
ure also shows the symmetry plane estimated by our algo-
rithm. You can see that there is some form of reflectional
symmetry in the object’s image but the estimated plane
does not capture it very well (the plane should be more
centered and less tilted to the right). The reason why this
triangle mesh is problematic is that although its 2D pro-
jection looks very symmetrical when observed from cer-
tain points of view, the 3D object itself actually is quite
asymmetrical.

Figure 14: Triangle mesh representing a knot and its sym-
metry plane estimated by our algorithm

Another limitation is the vertex count. Our algorithm
works very poorly when used on meshes with large num-
ber of vertices (tens of thousands or more) but this prob-
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lem can be resolved with mesh simplification (see Sec-
tion 4.3). Our method also probably would not work very
well with triangle meshes representing rough surfaces or
meshes with high level of detail where the Gaussian cur-
vature is high in all vertices. This is probably also one of
the reasons why it works poorly with meshes with large
vertex count, because such meshes are usually quite de-
tailed. This problem could most likely be resolved with
using some more advanced method for Gaussian curva-
ture estimation, but the simplicity of our algorithm would
suffer.

5 Conclusion

We have proposed a new algorithm for approximate sym-
metry plane estimation for 3D triangle meshes which was
developed as a significant simplification of [11] and we
have shown that it still works considerably well, even
when used on meshes with missing parts. We have sim-
plified both the significant point selection and the voting
process.

Our algorithm is very well configurable, it has a few op-
tional parameters and the result quality often depends on
the configuration of these parameters. Although we have
set a default configuration which works well with many
objects, there are also many other objects for which the
default configuration does not work that well. By setting
the configuration to correspond with the particular mesh
properties the algorithm can be made to give much better
results. In the future we would like to find a way to es-
timate the optimal values of the parameters automatically
for a given triangle mesh.

Our algorithm also has some limitations, specifically
it works very poorly with triangle meshes which have a
large number of vertices. On the other side it works well
with meshes with very low number of vertices (thousands)
which can be considered an advantage, because in our
opinion, simplifying a triangle mesh to lower its vertex
count is much less problematic than subdividing it to make
the vertex count larger.

Acknowledgements. This work was supported by the
Ministry of Education, Youth and Sports of the Czech
Republic, the project SGS-2016-013 Advanced Graphical
and Computing Systems. We would like to thank to Prof.
J. Sochor from the Masaryk University in Brno, Czech Re-
public for inspiring this work and supplying us the data for
the experiments.

References

[1] Microsoft 3d builder. https://www.
microsoft.com/cs-cz/store/p/
3d-builder/9wzdncrfj3t6. Accessed:
2017-02-03.

[2] Fidentis project. https://www.fidentis.cz,
2012.

[3] Singular Inversions. Facegen 3d print 1.9[com-
puter software]. https://facegen.com/
3dprint_demo.htm.

[4] Wei Jiang, Kai Xu, Zhi-Quan Cheng, and Hao
Zhang. Skeleton-based intrinsic symmetry detection
on point clouds. Graphical Models, 75(4):177–188,
2013.

[5] Yaron Lipman, Xiaobai Chen, Ingrid Daubechies,
and Thomas Funkhouser. Symmetry factored embed-
ding and distance. In ACM Transactions on Graphics
(TOG), volume 29, page 103. ACM, 2010.
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