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Abstract

The number of installed sensors to acquire data, for exam-
ple electricity meters in smart grids, is increasing rapidly.
This huge amount of collected data needs to be analyzed
and monitored by transmission system operators. This
task is supported by visual analytics techniques, but tradi-
tional multi-dimensional data visualization techniques do
not scale very well for high-dimensional data. The main
contribution of this paper is a framework to efficiently in-
spect and compare such high-dimensional data. The key
idea is to partition the data by the semantics of the un-
derlying data dimensions into groups. Domain experts are
familiar with the meta-information of the data and are able
to structure these groups into a hierarchy. The proposed
system visualizes the subsets of the data by appropriate
means. These visual summaries can then be used to sup-
port the explorative overview tasks of the user.

Keywords: Visual Analytics, Hierarchical Aggregation,
High-Dimensional Data

1 Introduction

Creating an overview of the data is the first task a user re-
quires of an information visualization [17]. However, tra-
ditional multi-dimensional data visualization techniques,
like parallel coordinates or scatterplot matrices, do not
scale very well for high-dimensional data [5, 21]. This
leads to the need of analyzing the unfiltered and raw high-
dimensional data before the interesting information can be
presented to the analyst [6].

Explorative overview tasks are relevant in various ap-
plication domains. Examples include comparing outputs
of multi-run simulations in the automotive sector or mon-
itoring multiple quality indicators of products in advanced
manufacturing.

This work is motivated by High-Dimensional Overview
(HDO) tasks in the energy sector — a domain where the
amount of acquired data is increasing rapidly. Power gen-
eration, power consumption, and meteorological quanti-
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ties are constantly measured by the providers, creating a
vast number of time series. The number of sensors will
grow even further with the advent of smart meters. Un-
til the year 2020 EU member states are required to equip
at least 80% of their consumers with smart meter de-
vices [13]. The transmission system operators need to an-
alyze and process this acquired time series in regular in-
tervals, e.g. weekly or monthly. It is impossible for them
to inspect every single acquired time series. Thus, they
need to get an overview of the data first and interactively
explore the data further to get an insight.

The primary contribution of this paper is a framework
for analyzing and comparing high-dimensional data. The
key idea is to partition the data by meta-information and
to visualize the resulting subsets by appropriate means. In
the energy sector, various data sensors are placed at the
same location or share the same type, for example, tem-
perature sensors. This meta-information of the data is fa-
miliar to domain experts and allows them to analyze and
compare the data in a more intuitive way. An example
task would be the comparison of multiple time series of
power consumptions of multiple locations, where only lo-
cations are compared and power consumptions of the dif-
ferent sensors within a location are combined. This scales
better than comparing every single data dimension like at
the Rank By Feature Framework (RBFF) [16] or compar-
ing every data record like in parallel coordinates or scatter-
plot matrices. Still, the user is able to flexibly drill-down
on demand in order to explore the details of the different
dimensions.

2 Related Work

A vast amount of scientific and application areas are con-
fronted with high-dimensional datasets. Interactive visual
analysis is an effective way to understand and process
the data [5]. Approaches to visualize multi-dimensional
datasets are an important topic of research. Traditional vi-
sualization techniques like parallel coordinates or scatter-
plot matrices are well suited for targeting this problem for
a small number of dimensions [12]. But when the num-
ber of dimensions increases, these techniques fail. This
is because of the boundaries of our visual system, visual
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clutter, and technical challenges [3].
There are multiple surveys that focus on high-

dimensional data visualization [9, 12]. One way to main-
tain the scalability of the data is to reduce the information
of the data by the number of data records or the number of
data dimensions [14]. Principle component analysis, mul-
tidimensional scaling and self organizing maps are com-
mon techniques to reduce dimensions in data visualization.
The drawback of these methods is that they produce a sub-
space that has no intuitive meaning to the data analyst [4].

A technique that supports the generation of meaningful
subspaces is called Visual Hierarchical Dimension Reduc-
tion [20]. It uses a similarity measure to hierarchically
cluster the dimensions and allows the user of this frame-
work to interactive explore and modify the created hier-
archy. From this hierarchy clusters, a meaningful subset
is selected. Representative dimensions of these selected
clusters are then visualized as visual representations. The
drawback of this method is that not all dimensions are used
for the encoding of the visual representations.

The RBFF by Seo and Shneiderman [16] ranks small
preview visualizations of one dimension or two dimen-
sions by statistical properties which give a good initial
overview of all dimensions. This approach scales well for
the number of data records but has limitations regarding
the number of dimensions. Especially for the comparison
of dimension pairs (a scatterplot matrix), the number of si-
multaneously displayed pairs increases quadratically, but
also in the case of one-dimensional statistics the limit of
displayed visual representations that can be handled rea-
sonably is a few hundred [15].

Stole and Hanrahan developed the system “Tableau”
(former “Polaris”) [18]. It introduces a scalable pivoting
algebra on meta-information on data records. This work
applies this algebra on the partitioning of data dimensions
into subsets using the categories of a data dimension as
meta-information.

Elmqvist and Fekete presented a model for implement-
ing hierarchically aggregated visualizations [2]. Their pro-
posed guidelines are used in this work to create visual ag-
gregates of the data subsets that are more scalable for the
limited perceptual capabilities of a human viewer.

3 Tasks and Goals

This section characterizes tasks that are needed for an ex-
plorative overview of high-dimensional data in the energy
sector. These are used to derive the goals of the design
process of the Hierarchical Data Overview (HDO) frame-
work.

3.1 Task Analysis

Transmission system operators in the energy sector ac-
quire time series data from different sensors on a regular
basis. These are used for power control and risk manage-

ment. The inspection and analysis of newly acquired data
is hence a frequent, recurring and important activity.

The time spent looking at the data can be shortened by
identifying the recurring tasks a user needs to fulfill. This
paper aims to focus on the following tasks:

T1 - Finding structures: A key task of a data analyst is to
get insight into the data and to validate or discard an ini-
tial hypothesis. Hypotheses often refer to structures in the
data. In contrast to the validation of expected structures,
the discovery of new structures is also a user task. Impor-
tant structures in time-dependent data are listed below and
clarified by an example:
Trends: “Is the data increasing or decreasing?”, “Does it

have recurring peaks, troughs or plateaus?”
Modalities: “Are the distributions of the underlying data

uni-or multimodal?”
Outliers: “Are some of the data not fitting the general

trend?”

T2 - Rank by feature: As described by the RBFF, a user is
interested in the dimensions that match a specific feature.
These features can be statistical properties like the median
of the dimension. An example of this user task would be
the exploration of the biggest electrical loads in the electric
grid.

T3 - Assessing the purity of groups: By merging the
data dimensions by meta-information into groups, it is
necessary to identify whether or not the grouping is suf-
ficient for the user. By characterizing the purity of these
meta-information based groups, the user is able to make
further decisions. An example for a follow-up question
is: “How much does the given grouping coincide with the
similarity of the data?”

T4 - Exploration and Tuning: After the user was able to
get an initial overview, further questions concerning the
data may arise. Those can be answered by exploring and
tuning the created groups and receiving more detailed in-
formation. An example of this would be the question:
“Is the purity of a group improving when I drill-down the
group with another partitioner?”

3.2 Design Goals

Based on the task analysis three design goals were estab-
lished. These goals guided the design process of the HDO
framework.

G1 - Visual summaries of groups: To support the user to
find structures in the data (T1), efficient visual summaries
of groups of (large numbers of) dimensions need to be dis-
played. The requirement on the summaries is that they
give a good reproduction of statistical position, variance
and distribution and also the trend of them over time or
over categories (T3).

G2 - Flexible drill-down and roll-up: With respect to T4
the overview visualizations need to be explored in depth.
The concept of drill-down and roll-up with respect to “any
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Sensor Type PV PV Dew Point Dew Point
Location A B A B
Unit kW kW C° C°

Year PV1 PV2 Dew Point 1 Dew Point 2

2010 8 7 -2 -1
2010 9 7 -1 -1
2011 64 63 1 2
2011 10 12 -1 -1
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Figure 1: The subdivision of the data table (a) by utiliz-
ing the meta-information of data dimensions (b) and data
records (c) to data chunks (d, e)

known structure of the feature space” [19] enables this fast
change of the viewing granularity. Also, the ranking by a
specific feature (T2) reduces the displayed visualizations
to a set of interest.

G3 - Scalability: Like previously mentioned the number
of data dimensions and records is rising. The framework
should not be limited by any inherent upper limit of dimen-
sions or data records. This also concerns the visual com-
plexity of the used visualization. The goal of this frame-
work is to support simple monitoring and reporting tasks
(T1, T2), but also to allow detailed exploration tasks (T3,
T4). This implies a trade-off between the simplicity and
cognitive ease of the visualizations and the preserving of
the distributions, modalities, and outliers of the underlying
data.

4 Data Model

A raw dataset is most commonly available as a table, made
up of columns and rows. In this work, a column is referred
to as a data dimension and a row is referred to as a data
record. Fig. 1 shows a data table, which is used as a guid-
ing example for the data model.

In the energy sector, the data dimensions are numerical
time series from various sensors. In Fig. 1a this time se-

ries are Production Values from photovoltaic plants (PV)
and temperature measurements from Dew Point sensors.
Further the data dimensions can contain categorical meta-
information on the data records. One common categoriza-
tion is the partitioning of the time value into time intervals,
like the year of the data record. This is shown as the Year-
column in Fig. 1c. Additionally, meta-information can be
assigned to the data dimensions themselves. This could be
the information of the location of a sensor, the measuring
unit or the type of the sensor (see top table in Fig. 1b).

The numerical data dimensions can be of a similar type
on a common scale (e.g.: Multiple power consumption
sensors in watt). This enables the comparison for simi-
lar distributions or sequences, or the detection of outliers
(T1). In contrast to the common scale, the dimensions can
also have different units (e.g.: Weather time series with
temperature, wind speed or wind direction) with no com-
mon scale. In Fig. 1a the kW values of the PV sensors are
on a different scale than the C◦ values of the Dew Point
time series.

The assigned meta-information can be present in a hier-
archical manner. For data record based meta-information
the categorical data dimensions can describe a level of de-
tail (e.g. For time-categories the refinement over years to
months to days). Also for data dimension based meta-
information, a hierarchy can be derived. For example, if
the location of a sensor is assigned as meta-information,
the different levels of detail of the sensor hierarchy can be
present from state to city to house to sensor type to the
data dimension.

5 Description of the Hierarchical
Data Overview

This section describes the visualization method for the
HDO framework. Its design is engineered by the defined
goals from Section 3.2 for an application to data described
in Section 4.

By utilizing the meta-information, described in the pre-
vious section, the data table can be subdivided by data di-
mensions and by data records into smaller blocks of data.
In this work, these blocks are referred to as data chunks.
Fig. 1d shows the combination of the data dimensions by
the meta-information Sensor Type to the data chunks PV
and Dew Point. Not shown but also possible subdivisions
would be the combination of the dimensions by the Loca-
tion or the Unit meta-information.

The data chunks shown in Fig. 1e are created by
the additional subdivision of the previously created data
chunks by the combination of meta-information on data
records (in this example by the Year of the time series).
The key concept of this framework is to create a hierarchi-
cal relationship between these data chunks and to visualize
a combination of them.

The overview visualization is designed using a hierar-
chical tabular layout (see Fig. 2). The design decision of
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Figure 2: The HDO framework is visualized by a tabular layout. The left-hand side defines the rows of the visualization,
which are defined by the hierarchy of the data model. The right-hand side visualizes the data chunks of the rows inside
columns. The hierarchy can be collapsed (a), expanded by the data dimensions (b), combined by the sensor type (c) or
refined by a categorical attribute (d). The refinement increases the number of visualized data chunks.

using a table-oriented display enables independent visual
encodings of different aspects of the displayed data [8].
Additional previous work showed that the users are famil-
iar with this kind of layout [1].

The tabular layout consists of two orthogonal parts:
Rows (Section 5.1) and columns (Section 5.2).

A Row defines a combination of data chunks and a Col-
umn is responsible for creating a visual summary of a de-
scriptive quantitative feature of the data chunks (G1).

5.1 Table Rows

The hierarchical structure is a key concept to ensure the
scalability (G3) of the HDO framework [2]. The system
offers the user an interactive hierarchical definition of the
rows of the tabular layout.

Visually the first part of the tabular layout of the frame-
work corresponds to the hierarchy of the data chunks. One
row of this table is a node or a leaf of this hierarchy. In
Fig. 2b the marked row shows a single data dimension Dew
Point 03 and in Fig. 2c the marked row shows all data di-
mensions with the same meta-information Gust Direction.
The table headers of the left-hand part of Fig. 2d show the
different hierarchy levels. The first column, marked with
All in the example, is the root node of the hierarchy, the
second column the sensor type, the third column the data
dimensions and the last column a partitioning by the year
of the data dimensions.

Fig. 2 visualizes the drill-down of the data table into
a hierarchy of data chunks. The displayed column Mean
plots the mean values of the underlying data chunks (see
Section 5.2). Initially, the hierarchy consists only of
one node, which contains all assigned data dimensions
(Fig. 2a).

Additional hierarchy levels refine the data table into
data chunks (G2). A usual refinement is the partition-
ing of the data table by data dimensions. Fig. 2b shows
the table with all assigned data dimensions (in the figure
called Data attributes) which displays a similar layout to
the RBFF. However, too many dimensions are assigned
to the visualization to display all of them on the limited
screen area.

By combining data chunks, the number of rows can be
reduced. In Fig. 2c the data dimensions are combined ac-
cording to their sensor type. One can see that the number
of displayed data chunks increases. For example, the sen-
sor type Air Pressure contains four dimensions which are
plotted in the mean column (see Section 5.2.1). In Fig. 2d
the hierarchy level Year is assigned to the table. As pre-
viously described, this level partitions the data records of
the data chunks by the categorical meta-information (see
Fig. 1). As shown in the visualization of the dimension
Dew Point 01, the number of chunks has increased.

The user is able to control the order and the level-of-
detail of the levels (see Section 6). Additionally, the visi-
ble set of rows can be defined by collapsing and expand-
ing the hierarchy nodes individually. Fig. 2d shows the
expanded node Dew Point of the hierarchy level Sensors
with an additional refinement for the dimension Dew Point
02.

The interactive refinement supports the identified G3 by
enabling a visual scalability for a high number of dimen-
sions and still allows the user to explore and tune (T4) the
data.

5.2 Table Columns
The orthogonal part of the tabular layout is the visual en-
coding of different aspects of the data chunks as columns
of the table. To maintain the scalability of the visual
complexity (G3) of the visual representations of the data
chunks the design decision for the visual encodings are
simple and commonly used visualizations. For example in
Fig. 2 the mean of a data chunk is visualized as lines inside
the cells of the column.

5.2.1 Visual Aggregation Aspect

One column is responsible for calculating and visualizing
a specific descriptive statistic for every row. These statis-
tics are used to quantitatively describe and summarize dif-
ferent features of the defined data subsets (G1) [10]. The
system differs three different classes of descriptive statis-
tics: Central tendency, dispersion, and frequency distri-
bution. Fig. 3 shows the visual encodings of these three
classes.
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Figure 3: The data chunks are visually aggregated in the
columns. A cell can visualize one leaf of the hierarchy (a,
b, c) but is also able to visualize a node by combining the
underlying leafs (d, e, f).

A simple way to visualize a statistic feature is by means
of a textual representation. However, this representation
does not give a good reproduction of the position, scat-
tering, and distribution (G1) to the other displayed values.
By plotting the features of the data chunks onto an axis a
more descriptive representation can be achieved because
one visual aggregate can be compared with another in an
intuitive way.

Central Tendency: An univariate statistic can describe a
point inside an axis. This includes the central tendency.
Examples of this class of statistics are the average, the ex-
treme values (minimum, maximum) or the percentile val-
ues (Median, Quantiles). Like other univariate statistics,
they can be used for ranking (T2) but also for other tasks
like finding outliers (T1). A textual representation of the
aggregation, as shown in Fig. 3a on the right-hand side of
the cell, enables the user to receive the actual value. To
visualize the value of the aggregation, a line is positioned
between the extents of the axis. This enables the user to
compare the value of one data chunk with another (T1).
When multiple data chunks have to be visualized within
one cell, the same visual aggregate can be used. The lo-
cation of the underlying features is plotted as gray lines,
and the combined statistic is shown as a black line (see
Fig. 3d). If more than one line is drawn at the same loca-
tion, the visualization turns into a bar chart as shown in the
mean cell of the Global Radiation row of Fig. 2d.

Dispersion: The second class of univariate statistics is the
dispersion. It describes a positive range inside the axis.
Examples for this class of descriptive statistics are the
standard deviation or the Inter-Quartile Range (IQR). Sim-
ilar to the previous encoding, an area is positioned around
a dependent first moment inside the axis of the aggregation
(e.g.: Area in the size of IQR around the median, Fig. 3b).
When the dispersion of multiple data chunks has to be vi-
sualized within one cell, the range of the underlying ranges
can be visualized in an aggregated cell by over-plotting the
areas (see Fig. 3e).

Frequency Distribution: An example of a frequency dis-
tribution is the histogram. A textual representation is no

longer suitable because multiple values are visually en-
coded. To support details on demand (T4), detailed infor-
mation of a bin value of a histogram can be displayed with
tool-tip information. In contrast to the previous classes,
it is not possible to rank the data chunks by a frequency
distribution.

The binning of the histogram depends on all data chunks
inside the axis (see Fig. 3c). When the frequency distribu-
tion of multiple data chunks has to be visualized within
one cell, the histograms of the underlying data chunks are
plotted over each other. The darker a part of a bin the more
histograms overlap at this position (as shown in Fig. 3f).

5.2.2 Partitioning Aspect

a b c

Figure 4: Central tendencies are shown as line graphs (a).
Dispersions are shown as areas graphs (b). Frequency dis-
tributions are shown as heat maps (c).

Another important information is the trend of a descrip-
tive statistic over time (T1). The system supports the par-
titioning of a column into sub-columns. Then the descrip-
tive statistics for the data chunks are calculated for every
partition of the column. This provides a global overview
over local relationships of the statistic features (G1) [11].

Fig. 4 shows a partitioning of the column into time in-
tervals (in this example thirds of months). For every row
and every partition, the values from the three classes that
were proposed in the previous section are computed and
visualized:

Central Tendency: The calculated descriptive statistic of
every partition is connected with a line, resulting in a line
chart for every data chunk. Multiple lines are drawn inside
one cell if multiple data chunks belong to one row (see
Fig. 4a). This representation can be used to analyze the
trend of the data or to find outliers (T1).

Dispersion: Similar to the simple visual aggregate, an
area is drawn which is positioned around the dependent
first moment for every partition. Its upper and lower
boundaries are defined by the value of the dispersion.
The upper and lower boundaries for all partitions are con-
nected, and the area between them is filled (see Fig. 4b).
This representation can be used to characterize the purity
of the underlying data (T3).

Frequency Distribution: The frequency distribution of
all data chunks inside a sub-column is calculated. A vi-
sualization called Curve Density Estimates [7] is used to
encode the distributions of all sub-columns (see Fig. 4c).
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Figure 5: The axis of the visualized data chunks can be configured by the hierarchy levels. To compare the position of
the data chunks, the nodes of the level are visualized on a common scale ( ) (a, b). To compare the shape of the data
chunks, every node receives an own scale ( ) (c, d). If the nodes of levels are not combinable ( ) no visualization can
be plotted. The rows (f, g, h) show the data chunks of two sensor types (e) for the scales , and

This representation can be used to analyze the modalities
of the underlying data chunks (T1).

5.2.3 Combination Aspect

All shown examples have used the same axis for creating
the visual aggregate. A precondition is, however, that not
all data chunks share a common scale or are combinable.

Combination: The created hierarchy levels, as described
in Section 5.1, can have the property that they separate the
data into distinctive nodes, in which the combination of the
data chunks has no useful meaning. In the visualization,
this is indicated by displaying the icon in the header of
the hierarchy level (see Fig. 5). An example of not com-
binable nodes is the partitioning of the data by the sensor
type of the underlying dimension, in which it makes no
sense to plot a temperature and a voltage value in the same
coordinate frame (see Fig. 5f).

However, a level can also separate the data into chunks
that are comparable with each other (for example the par-
titioning of power consumption time series by their loca-
tion). This is indicated with the icon in the header (see
Fig. 5a).

Scaling: If two nodes of a hierarchy are set to not compa-
rable ( ), they cannot share a common axis. The com-
mon idiom “comparing apples and oranges” states that
a non suitable comparison would indicate a false anal-
ogy (see Fig. 5f).

In contrast to this idiom, if two nodes are visualized that
are set to be comparable, the scaling of the visualizations
needs to be defined. One possibility is that the two nodes
can share a common scale, which is indicated with .
Another option is that every node may use its own scale
and the visualizations are only displayed overlayed or in
juxtaposition ( ).

If the hierarchy level Data attributes is set to a common
scale ( ), it is possible to compare the position of the
underlying data chunks (see Figs. 5a, 5b and 5h). As op-
posed to this, it is not as easy to compare the shape of the
frequency distributions of the different data chunks (T1).
The level can be set to no common scale ( ), to be able

to compare the shape. Thereby, each node of the level re-
ceives its own axis. Figs. 5c and 5d show that the shapes
of the frequency distributions of the different data chunks
can be compared.

6 Exploring the Hierarchy

a b

Figure 6: The HDO-framework visualizes the time curves
(a) and the distributions (b) of 163 data dimensions com-
bined by their sensor type.

This section describes how users are able to interact
with the framework to be able to address their explorative
overview tasks. As a precondition, it is assumed that the
domain expert knows what data types, sensors, and meta-
information one can expect from the data. Typically a user
does not start his exploration task with no initial hierarchy
like shown in Fig. 2a. A pre-defined set of hierarchy levels
that are relevant in the domain is assigned. Fig. 6 visual-
izes 163 data dimensions of the sensor data set from the
guiding example. The initial hierarchy is the sensor type,
and the underlying data dimensions, which are collapsed
so that the user is able to get an overview of the data.

To address the G1 the user is able to find structures by
looking at the visual summaries (T1). Example structures
that can be observed in Fig. 6 are: The yearly trend of me-
teorological quantities like the Temperature and the related
Production Values. The modality of the Gust Direction
which is different for every sensor. The outliers of the data

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



for example the null value in the Air Pressure distribution
and the purity of some groups like the Global Radiation
(T3).

The exploration process supports the extension of the
complexity of the displayed visual representations to pro-
vide the user more information to get insight into the data.
First, it is possible to increase the visual aggregation aspect
of the data. This concept is described in Section 5.2.1 and
shown in Fig. 3 where complexity increases from the cen-
tral tendency (median values) to the dispersion (interquar-
tile ranges) to the frequency distribution (histograms) of
the data chunks. This increases the visual complexity but
also enables the user to find structures, like the modality
of the data chunks or outliers. The second complexity in-
crease is the partitioning of the columns into sub-columns
as described in Section 5.2.2 and shown in Fig. 4. This
enables the user to analyze the trend and the modality of
the data chunks.

To address the G2, the framework supports the drill-
down and roll-up of the hierarchy nodes as described in
Section 5.1 and shown in Fig. 2. Whilest exploring the vi-
sualizations, a user may observe that the variance in some
displayed nodes is very high, and one wants to drill-down
the node to see if the purity of the underlying nodes in the
next hierarchy level increases (T3). This is achieved by
clicking on the arrow inside of the hierarchy node. Fig. 2d
shows this drill-down of multiple hierarchy nodes to a de-
tailed representation.

Furthermore the user is able to refine the hierarchy fur-
ther, by adding more hierarchy levels, by clicking on the
plus sign in the lower left corner (Fig. 6). The further refin-
ing of the hierarchy may increase the purity of the newly
partitioned data chunks.

Additionally the user may change the order of the hi-
erarchy levels, by dragging the headers to another posi-
tion. Fig. 7 shows the rearrangement of the hierarchy lev-
els. The comparison of the individual Temperature sen-
sors does not reveal specific structures in the data chunks
(Fig. 7a). By dragging the columns Sensors and Data
attributes to the end of the hierarchy, the comparison of
Years of the underlying sensor data is possible and a new
structure in the data is revealed (Fig. 7b).

To address the T4 further, every column can be config-
ured individually. Possible interactions include the filter-
ing of specific categories, the restriction of the displayed
partitions of sub-columns, and further parameterizations
of the visualizations of the data chunks.

7 Implementation Aspects

This framework has been implemented in C++ and uses
OpenGL for rendering. The visual feedback of the vi-
sualization is in real-time to help the user to explore the
data faster and thereby support him to make decisions
faster. However, the computational costs of measurements
on high-dimensional data are high. Several possibilities

a

b

Figure 7: The rearrangement of the order of the hierarchy
levels from the comparison of the Data attributes (a) to
the comparison of the Years (b) enables the user to analyze
different data chunks in the cells of the data columns.

to achieve real-time capability can be utilized: The hier-
archy is used to compute the results of the measurements
on higher levels of the hierarchy by a bottom-up approach.
This is, for example, possible for the statistic means of val-
ues. Unfortunately, not all statistics can be calculated by
reusing intermediate results of lower levels. For example,
the quantiles of multiple chunks in an intermediate node
of the hierarchy needs to be recalculated by using the data
of the combined chunks.

To support these expensive tasks, the joint computation
of results for multiple dimensions is considered. For ex-
ample, a data dimension is sorted only once for all mea-
sures that need a sorting of subsets of the dimension.

8 Conclusion and Future Work

This work describes a Hierarchical Data Overview (HDO)
framework to efficiently inspect and compare high-
dimensional data. Motivated by the tasks of domain ex-
perts in the energy domain, three design goals are defined
for this framework: Visual summaries, flexible interaction
and the scalability for high dimensional data.

Based on these goals the HDO framework is described,
which utilizes meta-information of the assigned data di-
mensions to partition the dimensions into data chunks.
In a tabular layout, multiple descriptive statistics of these
chunks can be visualized. The interactive refinement of
the displayed rows and the flexible configuration of the
columns of the tabular layout supports the interactive ex-
ploration tasks of domain experts.

The presented results show that this approach is able to
address the identified goals. Future work could include
hierarchy levels that partition the underlying data chunks
automatically by a model or including columns that com-
pute a bi-variate analysis that compares data chunks with
another dimension.
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[11] Thomas Mühlbacher and Harald Piringer. A
partition-based framework for building and validat-
ing regression models. IEEE Transactions on Visual-
ization and Computer Graphics, 19(12):1962–1971,
2013.

[12] Tamara Munzner. Visualization Analysis and Design.
CRC Press, 2014.

[13] Council of European Union. Council regulation
(EU) no 189/2014, 2014.
http://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=SWD:
2014:189:FIN.

[14] Harald Piringer. Large data scalability in interac-
tive visual analysis. PhD thesis, Institute of Com-
puter Graphics and Algorithms, Vienna University of
Technology, 2011.

[15] Harald Piringer, Wolfgang Berger, and Helwig
Hauser. Quantifying and comparing features in high-
dimensional datasets. In 2008 12th International
Conference Information Visualisation, pages 240–
245. IEEE, 2008.

[16] Jinwook Seo and Ben Shneiderman. A rank-
by-feature framework for interactive exploration of
multidimensional data. Information Visualization,
4(2):96–113, 2005.

[17] Ben Shneiderman. The eyes have it: A task by data
type taxonomy for information visualizations. In Vi-
sual Languages, 1996. Proceedings., IEEE Sympo-
sium on, pages 336–343. IEEE, 1996.

[18] Chris Stolte, Diane Tang, and Pat Hanrahan. Po-
laris: A system for query, analysis, and visualiza-
tion of multidimensional relational databases. IEEE
Transactions on Visualization and Computer Graph-
ics, 8(1):52–65, 2002.

[19] Cagatay Turkay, Arvid Lundervold, Astri Johansen
Lundervold, and Helwig Hauser. Representative fac-
tor generation for the interactive visual analysis of
high-dimensional data. IEEE Transactions on Vi-
sualization and Computer Graphics, 18(12):2621–
2630, 2012.

[20] Jing Yang, Wei Peng, Matthew O Ward, and Elke A
Rundensteiner. Interactive hierarchical dimension
ordering, spacing and filtering for exploration of high
dimensional datasets. In Information Visualization,
2003. INFOVIS 2003. IEEE Symposium on, pages
105–112. IEEE, 2003.

[21] Jing Yang, Matthew O Ward, and Elke A Runden-
steiner. Visual hierarchical dimension reduction for
exploration of high dimensional datasets. 2002.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=SWD:2014:189:FIN
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=SWD:2014:189:FIN
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=SWD:2014:189:FIN

	Introduction
	Related Work
	Tasks and Goals
	Task Analysis
	Design Goals

	Data Model
	Description of the Hierarchical Data Overview
	Table Rows
	Table Columns
	Visual Aggregation Aspect
	Partitioning Aspect
	Combination Aspect


	Exploring the Hierarchy
	Implementation Aspects
	Conclusion and Future Work

