
A Method for Automatically Animating the Reassembly of
Arbitrary Voronoi-Fractured Objects

Stefan Sietzen∗

Supervised by: Michael Wimmer†

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Vienna / Austria

Abstract

In this paper I present a method to procedurally generate
the necessary data to animate 2 robots assembling an arbi-
trary Voronoi-fractured object without intersections. The
main problem of finding a possible assembly sequence is
tackled using various methods of geometrical calculation
and linear programming. The goal of this work is to au-
tomatically generate visually interesting animation which
can then be used for various scenarios, for example deco-
rative visuals or game scenery.

Keywords: Procedural Animation, Robotics, Part As-
sembly

1 Introduction

Animation of complex behaviours for games or visual ef-
fects is mostly done by manually setting keyframes (or
using motion capture if applicable). This is a relatively
tedious process and, while walk cycles for example are
a method of generating repetitive motion automatically,
keyframes are not efficient for repeated motion that can
be defined algorithmically.

In this paper I take the real world example of automatic
robot assembly, which is in reality a very complex prob-
lem necessitating not only geometric computations, but
also computer vision and other disciplines to accurately
map the real world to a processable data model, to the vir-
tual realm where all geometric and physical data is already
known to develop a setup that can automatically and effi-
ciently generate complex animation.

In Section 2 I introduce the reader to a few necessary
concepts to make this paper self-contained and describe
the physical simplifications I adopted to reduce the com-
plexity of the problem. In Section 3 I explain the algo-
rithms used for the generation of the animation and the
adaptations I made compared to [10] to better fit them to
my requirements. In Section 4 I briefly show how the im-
plementation in Houdini was set up and evaluate the ben-

∗stefan.sietzen@gmx.at
†wimmer@cg.tuwien.ac.at

efits and constraints of that environment. In Section 6 I
evaluate my setup and show some areas where improve-
ment is desirable as well as problematic scenarios where
the system is prone to failure.

2 Background

In the following paragraphs I briefly introduce a few key
concepts for the better understanding of the subsequent
sections.

2.1 Voronoi Fracturing

Voronoi diagrams are used in different scientific fields, for
example, as Fisher writes in [5], for modelling forest dy-
namics [7], animating lava flows [12] and neural network
design [9]. Their aesthetic potential also makes them use-
ful for architectural application.

Let P be a set of n distinct points (known as sites for the
purpose of this definition) in the plane. The Voronoi dia-
gram of P is the subdivision of the plane in n Voronoi cells,
one for each site in P, with the property that a point q lies
in the cell of site pi if and only if dist(q, pi) < dist(q, p j)
for each p j ∈ P with j 6= i [3, 6, 11].

Figure 1: Voronoi Diagram (Markus Matern, 2009, public
domain)

In Computer Graphics, Voronoi fracturing is a widely

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



used method to prepare objects for rigid body destruction
simulation. Its property of generating convex shapes is
friendly to simulation algorithms that can usually perform
much faster with convex bodies. The process of fracturing
an object with this method can be controlled by the distri-
bution of the source points. When simulating an impact
of one object hitting another, points are often distributed
more densely in the impact areas.

In our case, Voronoi fracturing is chosen as the method
of splitting the source object into parts because it provides
a good balance between visual complexity (as opposed for
example to just uniform cubes) on one side and computa-
tional complexity on the other side.

2.2 Reconstructing Voronoi fractured ob-
jects

Given the inner convexity of Voronoi fractured pieces, it is
generally impossible for two pieces to be geometrically in-
terlocked with each other, so when deconstructing the ob-
ject piece by piece it is always possible to remove at least
one piece without intersecting another piece. Therefore
there is always a sequence to take the object apart, which
in reverse implicates that there exists always a sequence to
assemble the pieces back together from a separated state.

To achieve realism, it is usually necessary to start with
the pieces that have contact with the ground the object is
placed upon. Once this constraint is introduced we lose the
ability to state that there is generally always an assembly
sequence. Object features that decrease the probability of
having a valid assembly sequence are discussed later in
this paper.

To decrease the complexity for the calculations, apart
from above prerequisite and the trivial necessity to always
attach the next piece to an existing piece, no physical con-
straints are taken into account, so, although for better vi-
sual appearance the distance to the local center of gravity
is taken into account, it is always assumed that attaching
one piece to the existing structure yields a rigid connection
without static instability.

2.3 Linear Programming

Linear programming is a method for optimizing a function
within a set of linear constraints, defined by inequalities.
Linear programming is widely used in economic optimiza-
tion but has a large field of usages in modelling properties
of various systems. One of the most popular algorithms to
solve a linear problem is the Simplex algorithm, which al-
though in the worst case can have exponential complexity,
has proven in practise to be very fast. As the application
in this paper has a very limited number of constraints, the
complexity of this component will not be taken into con-
sideration.

3 Program Description

I’ll first describe the overall structure of the system and
then explain the most important tasks in detail.

3.1 General Structure

The system consists of several modules that encapsulate
major steps of the procedure.

Fracturing Module
Inputs:

• Polygonal Object

• Piece Count

• Template Points for original Piece Position

Outputs:

• Fractured Pieces

• Template Points for original Piece Position including
lying orientation

This Module fractures the input object by evenly dis-
tributing a defined number of points in it and taking those
as cell points for a Voronoi fracturing operation. The re-
sulting pieces are then placed on the template points for the
original position and a rigid body simulation of the pieces
falling to the ground from a minimal height is performed
to get valid orientations for the pieces lying on the ground.

Piece Assembly Module
Inputs:

• Fractured Pieces

• Template Points for original Piece Position and ori-
entation

• various parameters to control animation details

Outputs:

• Animated piece geometry assembling from original
Position

• Transformation Data for 2 Robot End Effectors as-
sembling the Object

This Module contains the main calculations. It gener-
ates the assembly sequence, calculates assembly directions
and subsequently animation paths for the pieces and the
robots.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



Robot Module
Inputs:

• Transformation Data for end-effector

• Base position

• Retracted effector position

Output:

• animated robot geometry

This Module is essentially just a robot rig that attaches
onto the end effector transformation data generated by the
second module and generates transformations for various
parts of the robot via inverse kinematics and physical sim-
ulation (for the hydraulic hoses).

3.2 Generating an assembly sequence

Existing work on assembly sequence generation often con-
structs an exhaustive graph of all possible assembly se-
quences, and relies on user input to determine if a part can
be placed before another to do so ([2, 4]). These liaisons
can explode exponentially with the part number, so it is
not feasible to let a human define them when exceeding a
certain number of parts. [10] states:

”From a given set of parts P there can be many
different assembly configurations which can be
formed. Thus if one is using a forward search
algorithm to find feasible subassemblies in the
process of generating a final known assembly,
the branching factor becomes high enough to
make the algorithm inefficient. The problem of
finding how to assemble a given product can
thus be converted to an equivalent problem of
finding how the same product can be disassem-
bled.”

For these reasons, the assembly algorithm which I used
is also based on disassembly. It is in fact quite similar to
the one proposed by [10], although Nnajis algorithm con-
structs an exhaustive and/or graph of possible disassem-
blies to further evaluate their quality / cost. As the cost of
an assembly sequence does not really influence its visual
quality, I used a simplified algorithm that just finds one
disassembly sequence if one can be found.

Another simplification is, that while Nnajis algorithm
uses all disassembly directions (directions in which a piece
can be removed without collision in a given disassembly
state) as a base and reduces them by heuristics to make the
computation more efficient, I just regard one vector (the
one with the biggest minimal directional difference to all
directional constraints). In short form, my algorithm is as
follows:

Pre-calculate data before disassembly simulation:

• An adjacency graph consisting of nodes representing
pieces and edges for each pair of pieces that have
mating faces, see Figure 2

• Pieces that are in contact with the ground, their con-
nected clusters and their centroids

Figure 2: Piece adjacency structure, pieces with ground
contact are colored white

Then:

1. Take pieces within certain y-coordinate threshold and
sort them by their distance to the nearest ground cen-
troid

2. Take piece with largest distance and perform a
breadth first graph traversal originating from each
ground component and check whether each remain-
ing piece would be still connected to at least one
ground component if the candidate was removed.

3. Take piece with largest distance and calculate the re-
moval direction. This is a direction in which the piece
can be removed without violating the directional con-
straints caused by adjacent pieces.

4. If there exists such a direction, intersect rays originat-
ing at each vertex of the candidate and going in this
direction, with the remaining pieces to check whether
the piece can be removed all the way.

5. If any of those criteria fail, take the next candidate
from the sorted array.

6. If all candidates within a given y-threshold have
failed, increase the threshold. This leads to an assem-
bly that is less layered, but we have more potential
candidates to remove.

Ground-pieces are ignored while there are still other
pieces left.

3.2.1 Calculating a disassembly direction

Nnaji [10] describes the set of directions, in which a piece
can be disassembled as an open convex polyhedral cone

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



defined by spanning vectors, that are created by intersect-
ing all halfspaces defined by the geometric planes of mat-
ing faces.

As mentioned earlier, [10] uses heuristics to reduce the
set of possible directions. In my algorithm, I further re-
duced the directions, only regarding one vector which is
calculated by maximizing the minimal distance to any
mating face. This results in a visually centered placement
of the piece when assembling. To find this direction, I used
a linear programming method taken from [1, 8] for find-
ing the interior point in a convex polyhedron. The mating
faces each define a halfspace that can be written as

a j ∗ x1+b j ∗ x2+ c j ∗ x3−d j <= 0, j = 1..n

We can extend them by one dimension to

a j ∗ x1+b j ∗ x2+ c j ∗ x3−d j+ x4 <= 0, j = 1..n

with d being always 0 as we construct the polyhedral
cone with its top located on the origin. As the cone is
by definition open if the piece can be disassembled, we
have to close the polyhedron to find a point inside, where
the position coordinates can be interpreted as our wanted
directional vector.

This is done by adding the equations.

x j < 1,x j >−1, j = 1...3

Now we maximize x4 with a linear program. If we get a
non-zero-length solution we have (x1, x2, x3) as our ideal
direction. If, on the other hand, we get (0, 0, 0) as a solu-
tion, we know that the polyhedron defined by the normal
vectors of the mating faces is not a convex open cone but
a closed space. This means that there is no valid disas-
sembly direction for the current piece in the current as-
sembly state so we have to look for another piece that can
be removed. Not getting a valid solution from the linear
program also means that the normal vectors of the mating
faces span the R3 with positive linear combinations, while
a valid solution means this is not the case. This is shown
in Figure 3, where the scenario is shown simplified in 2
dimensional space.

3.3 The robot setup

When designing a robot configuration for our purpose, we
have to consider mainly two key aspects:

• How many robots do we need to achieve the task?

• What kind of gripper do we need?

As the piece has to be picked up from an arbitrary start-
ing position lying on the ground, it cannot be assumed that
the faces that can be used to pick it up can be also used
to place the piece into the assembly. Therefore for many
pieces a regripping operation has to occur at some point
which necessitates a second robot arm.

Figure 3: Lower section: disassembly direction exists,
normal vectors don not span R2. Upper section: normal
vectors span R2, disassembly direction does not exist.)

The gripper choice is a bit more complicated. The me-
chanics of grasping are rather complex, but simplified, a
grasp that achieves force closure needs 4 fingers with fric-
tion, which have to attach to faces which normal vectors
together positively span the 3 dimensional space (among
other criteria) [13]. Unluckily it is impossible to have on
the one hand a set of mating faces (Here defined as Fm)
for a piece that have normal vectors together spanning an
open polyhedral cone and on the other hand a set of four
faces not containing any of Fm but together spanning the
R3.

It is also intuitively obvious, that for example placing
a last missing piece to a sphere is not possible when the
piece is grasped by four fingers. See Figure 4. As a
friction-based grasp can not be relied on to work for ev-
ery piece, we’ll take the physically less realistic approach
of using a one finger gripper with a universal suction cup.

Figure 4: Impossible insertion with four finger gripper

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



3.4 Finding attachment faces

In general we need two faces per piece where the robot fin-
ger can attach onto. One for the first robot picking up the
piece, one for the second robot placing it into the assembly
(I will call this docking in the following descriptions). The
two faces have to meet certain criteria. If one face meets
the criteria for both, it is not necessary to regrasp and the
piece is only manipulated by one robot.

The criteria are

• accessibility: a face that, when extruded infinitely, in-
tersects the piece, will be discarded as a candidate

• feasible direction: the normal has to be within a cer-
tain angular distance to the direction from which the
robot finger should attach. This angular constraint
can be set by the user to fit better the specific robot
geometry.

After discarding any faces that don not meet these crite-
ria, a heuristic is used to determine the final choice. To
achieve mechanical stability, we search for the face that is
closest in distance to the docking respectively pickup di-
rection extended from the centroid of the piece. I will call
these two faces docking and pickup face, see Figure 5 for
visualization.

Figure 5: The normal of the pickup face in green, the nor-
mal of the dock face in orange. In case the two are within
a certain threshold of directional similarity, the dock vec-
tor becomes obsolete as the first robot completes the entire
operation.

3.5 Generating the motion paths

When the assembly sequence has been generated, we not
only have an order in which the pieces can be assembled,
but also a vector for each piece that defines the assembly
direction. As we already know the rest transformation (po-
sition and orientation) and the final transformation in the

assembly, we only need a few more keyframes for each
piece that can then be used to interpolate a continuous mo-
tion.

The final assembly position of a piece is approached in
the assembly direction, so one obvious keyframe can be
defined by translating the final position backwards along
the assembly direction. As it is guaranteed by the assem-
bly sequence algorithm that this direction is collision free
for the to-be assembled piece, we can move the piece in
this direction as far as we want (or as far as the robot is
capable of moving it).

Another important keyframe is right after the start po-
sition. Picking up the piece should happen in a vertical
direction, as only this will guarantee that no other piece
is intersected in the process. So we define the second po-
sition to be at some height above the start position. This
point is also a convenient choice for the regrasping step,
so we orient the piece along the y axis with the docking
face towards the second robot arm, to guarantee collision
free accessibility when the regrasping occurs. Addition-
ally, to avoid potential collision with the assembled ge-
ometry when moving from the regrasp to the approach
point, we introduce one more point that is located verti-
cally above the approach point, so the piece is guaranteed
to move above the object geometry. This leads us to our
main steps of the per piece motion, also shown in Figures 6
and 7:

1. rest

2. picked up/regrasp

3. intermediate step for collision avoidance

4. approach

5. assembled

3.6 Generating Robot Motion

As we want to keep our system modular and decoupled,
we want to define the least amount of necessary data to
define the robot motion. The defining data is therefore
limited to the transformation frame of the of the gripper
directly attaching to the pieces. All other transformations
for various robot parts have to be adapted to follow this
transformation, requiring inverse kinematics.

Obviously when attached to a piece, a robot has to fol-
low its motion exactly. Other than that, we just have to
plan the motion in a way that there will not be any col-
lision with the object geometry or with the other robot.
To achieve the latter, we introduce a retracted position, to
which the gripper of each robot moves when not manipu-
lating the piece to allow the other robot to move freely.

Following on these prerequesites, a high level interface
has been created to construct the exact per piece animation
based on those key steps. The user can set the exact timing
of each step and can create additional steps using the main

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 6: The key stages of the animation

Figure 7: The motion paths for each piece

steps as reference. The interface for the piece animation
allows the user to choose for each keyframe:

• The reference position (Start, End and From Previous
keyframe)

• The offset direction to the reference position (along
dock face normal, pickup face normal, disassembly
vector) and the offset length

• An additional absolute offset vector

• The orientation chosen from start, regrasping, end or
previous keyframe.

• A relative time from 0 to one, representing a normal-
ized interval of the time required to move one piece
from its start- to its end position including robot ap-
proach/retraction.

The keyframe system for the robot, as the robots do, at-
taches to the animation of the pieces. So a keyframe is ei-
ther referencing the retracted position without further op-
tions, or one of the piece keyframes. In the latter case, an
offset along the normal of the attachment face or along the
assembly vector can be specified in addition to an absolute
offset vector. This enables the user to specify additional
approach/retraction points relative to the piece position.

With this setup it is then possible to interpolate a trans-
formation for the piece and the two robotic grippers for
any intermediate state between rest position and end po-
sition. Positional interpolation is trivial, orientation in-
terpolation is done using quaternions to ensure a smooth
SLERP motion. By sequencing each 0 to 1 animation for
the individual pieces according to the pre-calculated as-
sembly sequence we get the necessary data for the com-
plete assembly animation.

3.7 Constructing the robots

The robots have to meet a set of criteria to be able to real-
istically assemble the object:

• They need to be, in their most extended state, long
enough reach every piece from its start to its end po-
sition

• They need to be positioned so that they don not inter-
sect each others retracted state in any animation state

• They need to be able to transform the end effector
(single finger gripper) with 6 degrees of freedom in
relation to the next segment of the arm.

• The end effector needs to be long enough for ap-
proaching even piece end positions inside a narrow
corridor with no guarantee that the next arm segment
has an aligning orientation.

This has to be done manually, but a robot design can be
chosen in a way that optimizes for a wide range of assem-
bled objects. For example a long arm (compared to the
object size) with a long and thin end effector can be con-
structed so that it fits every object size, although the size
relations would lead to an unrealistic appearance. Figure 8
shows an example robot configuration, meeting the neces-
sary properties.

Figure 8: Example robot configuration

4 Implementation in Houdini

Houdini is a commercial 3D application that has a great
focus on proceduralism and data transparency. The heart
of it is its nodegraph paradigm, where each operation is
represented non-destructively. It also allows the user to
very naturally work with custom geometry attributes and

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



custom geometry manipulation and was therefore chosen
as the framework in which to implement and develop the
program described in this paper.

The advantage of using this application was clearly its
vast amount of existing features and procedures, which are
implemented in a very robust way and allow for rapid ex-
perimentation and the ability to quickly visualize and ma-
nipulate each state and its data interactively.

On the other hand, although programming custom code
is easy for simple operations, there is no advanced debug-
ging that goes beyond logging or inspecting resulting data
in a spreadsheet. Never the less the ability to quickly in-
spect various stages or branches in the complex nodegraph
representing the data flow of the program is very helpful.

4.1 Digital Assets

”Digital Assets” in Houdini are subcomponents com-
piled into a separate file and therefore reusable in various
scenes. They usually have custom interfaces exposing im-
portant parameters and references to other scene objects
as input. Output is, as it is generally in Houdini, realized
by referencing either the asset itself or nodes in its subnet-
work.

4.2 Implementation of Modules as Digital
Assets

The Modules of the program have already been described
in 3.1, here I will explain some implementation specifics.

Fracturing Module
This asset takes a geometry reference for the object to frac-
ture and for the geometry to take its reference points from.
There is also an option to specify the duration of the pre-
simulation calculating the stable rest transform and if the
pieces should be repositioned to their original x and z co-
ordinates after the y coordinate and the orientation for the
rest transform have been calculated.

Piece assembly Module
This asset, in addition to the inputs described in 3.1, ex-
poses the parameters to control details of the assembly
motion paths as described in 3.5 and 3.6 and parameters to
control the timing of the animation and directional thresh-
olds for choosing dock- and pickup faces.

A lot of the logic in this modules is not realized us-
ing a pre-existing node, but the ”VEX-Wrangle” node,
which lets you write code in Houdini’s own VEX lan-
guage, that is then compiled and runs, depending on the
context, highly parallelized. For solving the linear pro-
grams described in 3.2.1, the lp solve was wrapped with
Houdini’s API, called HDK (Houdini Development Kit).

Object Pieces Fracture Time Sequence Time
bull 45 4.7 7.3
bull 100 5.3 27.3
bull 150 6 65.4
bridge 45 5.5 3.7
bridge 100 6.0 37.7
bridge 150 6.7 259
box 45 11.5 3
box 100 13.7 67.3
box 150 13.8 644.9

Table 1: Performance test results, in seconds

5 Performance

The Performance was tested on the test objects in Figure 9
using a piece count of 45, 100 and 150. The processor on
the test system was an Intel i7-5820K Hexacore (The per-
formance relevant parts of my implementation are single
threaded). The bull was chosen because it is a fairly com-
plex real-world object with a lot of concave areas and four
independent ground-contacting components. The ”bridge”
was used early on to test concavity and multiple ground
contacts. The box is was used because of its geometric
simplicity. The results are shown in Table 1. The ”Frac-
ture Time” is the time taken to initially prepare the object
by the first module, ”Sequence Time” is the time spent cal-
culating the assembly sequence. The ”Sequence Time” is
also plotted in Figure 5, as it is much more linked with the
work described in this paper.

Interestingly the bull is by far the fastest for higher piece
numbers and the box the slowest. As Houdini’s VEX lan-
guage does not offer access to the system time and there-
fore does not allow measuring time inside of nodes, I can
only guess that this is caused by a higher degree of inter-
connectivity. It is planned to circumvent this restriction
by writing a custom function with the API and then doing
further measurements.

Figure 9: Test objects: bull, bridge, box

6 Conclusions and Outlook

The presented work achieves good results for simple ob-
jects but is not perfect by any means. In this section I
describe scenarios that are likely to break the algorithm
and future improvements to tackle these problems are pro-
posed.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



0 45 100 150
0

200

400

600

Pieces

Ti
m

e
in

se
co

nd
s

Bull
Bridge

Box

Figure 10: Performance test results diagram

6.1 Problematic object characteristics

As the assembly direction for each piece is calculated only
once per piece and then checked for intersections in its di-
rection, objects with a high concavity are prone to failure.
See Figure 11 for two examples where the algorithm fails
to generate a valid sequence, although there exists one.
The left object has a lot of pieces that could be approached
from the side, e.g. the camera direction, but as the normals
of the mating faces between the pieces don not face either
side, but lie on the plane of the object, the assembly vec-
tors are generated in a way that they intersect.

The torus is similar, the assembly vector for some of
the inner pieces intersect with other pieces. (Note that a
higher number of pieces lead in this case to the successful
generation of an assembly sequence)

6.2 Potential improvement

The assembly algorithm should be adapted to include more
disassembly directions in its search for a removable piece.
This would greatly reduce the probability of running into a
situation like explained in 6.1. Also the heuristic of choos-
ing the next piece to disassemble described by [10], which
suggests choosing the piece with the lowest count of mat-
ing neighbours, should be explored and compared to the
current approach.

References

[1] Various authors. qhull. http://www.qhull.
org/html/qhalf.htm, 1995.

[2] L. S. Homem de Mello and A. C. Sanderson. And/or
graph representation of assembly plans. IEEE Trans-
actions on Robotics and Automation, 6(2):188–199,
1990.

Figure 11: Problematic objects

[3] M. I. Shamos F. P. Preparata. Computational Geom-
etry: An Introduction. Springer, 1985.

[4] T. De Fazio and D. Whitney. Simplified generation
of all mechanical assembly sequences. IEEE Journal
on Robotics and Automation, 3(6):640–658, 1987.

[5] J. Fisher. Visualizing the connection among con-
vex hull, voronoi diagram and delaunay triangula-
tion. In 37th Midwest Instruction and Computing
Symposium, 2004.

[6] M. Overmars M. de Berg, M. van Kreveld and
O. Schwarzkopf. Computational Geometry: Algo-
rithms and Applications. Springer, 2000.

[7] F. Mercier. and O. Baujard. Voronoi diagrams to
model forest dynamics in french guiana. In Proceed-
ings of GeoComputation, volume 97, pages 161–171,
1997.

[8] J. Meyron and P. Alliez. Cgal. http://bit.ly/
2nefC2u, 2014.

[9] A.K. Garga N.K. Bose. Neural network design us-
ing voronoi diagrams. IEEE Transactions on Neural
Networks, 4(5):778–787, 1993.

[10] B. Nnaji. Theory of Automatic Robot Assembly and
Programming. Chapman and Halll, 1993.

[11] J. O’Rourke and J. E. Goodman. Handbook of Dis-
crete and Computational Geometry. CRC Press,
1997.

[12] D. Stora, P.-O. Agliati, M.-P. Cani, F. Neyret, and J.-
D. Gascuel. Animating lava flows. In Graphics Inter-
face (GI’99) Proceedings, pages 203–210. Kingston,
(1999).

[13] A. Sudsang and J. Ponce. New techniques for com-
puting four-finger force-closure grasps of polyhedral
objects. In Proc. IEEE International Conference on
Robotics and Automation, volume 1, pages 1355–
1360, 1992.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)


