
PKSpace: An Open-Source Solution for Parking Space
Occupancy Detection

Roman Števaňák∗ †

Adrián Matejov∗ ‡

Ondrej Jariabka§

Marek Šuppa¶

Supervised by: Marek Nagy ‖and Igor Farkaš∗∗

Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava

Abstract

Parking space management is an issue that affects any
building above certain size. While there are solutions
which rely on networks of connected sensors for each
parking space, these are usually difficult to maintain and
expensive to implement. In this work we present PKSpace
– an open source solution for detecting vacant and occu-
pied parking spaces, using only an inexpensive camera and
single-board computer. PKSpace aims to be the whole
package: by being able to obtain the images, provide
admin interfaces for specifying parking spaces, marking
them as vacant or occupied, and offering tools for training
machine learning models, which are capable of predicting
the number of vacant or occupied parking spaces in new
images, it allows the user to deploy the system in a short
amount of time while minimizing the amount of resources
necessary for its maintenance. This work also includes a
comparison of methods used for this task and their em-
pirical evaluation on the FMPH parking dataset, which is
released as part of this work.

Keywords: parking lot monitoring, machine learning,
computer vision, classification, object recognition, open
source

1 Introduction

The problem of finding a free space to park one’s car is
one that inevitably concerns residents of large metropoli-
tan areas. Since the issue is fairly pressing in many areas,
the industry provides multiple solutions. De Almeida et
al. [5] categorize them into three buckets: counter-based,
sensor-based and image-based.

∗Both authors contributed equally to this work
†rstevanak@gmail.com
‡ado.matejov@gmail.com
§o.jariabka@gmail.com
¶marek@suppa.sk
‖mnagy@ii.fmph.uniba.sk
∗∗farkas@fmph.uniba.sk

The counter-based systems usually utilize gate-arm
counters located at entrances and exits of parking lots.
They simply count the incoming and leaving vehicles and
provide their difference as the number of occupied parking
spaces. Due to their relatively low cost of deployment they
can be found in a great number of parking lots around the
globe. While a system like this does help one to get a sense
of the occupancy of a given parking lot, it does not provide
any additional information, which could for instance help
navigate an incoming vehicle to a free parking spot.

The sensor-based systems use various types of detection
sensors, such as for instance ultrasonic [12] or magnetic
field [20] sensors, which need to be installed at every park-
ing space and send gathered data to a centralized process-
ing unit. This type of system provides more information
that are of interest when dealing with parking space man-
agement, but does not scale well for bigger parking lots,
since its cost increases with every added parking space.

Finally, the image-based systems usually take a video or
image stream as their input (see Figure 1). This has mul-
tiple advantages, the biggest one being the fact that often
times no additional infrastructure is required for their de-
ployment, as many parking lots already have surveillance
cameras, which overwatch the whole space. Moreover,
with the recent improvements in the area of smart cam-
eras [3], the installation costs for such systems are usually
minimal. Since these systems use images as their input,
the availability of public datasets they could be tested on
is of great importance. Unfortunately, in the past the au-
thors have been forced to use extreme measures, such as
finding images via Google Image searches [6]. This has
improved in the past few years thanks to the introduction
of large scale (hundreds of thousands of parking spaces)
datasets, such as those introduced in [5] and [2].

In this work we present an opensource image-based so-
lution to the problem of parking space occupancy detec-
tion called PKSpace. It allows the end user to use sin-
gle web interface to perform all tasks necessary for its de-
ployment: viewing the live feed from the camera while
adjusting its position, marking the positions of respective
parking spaces in a given parking lots, creating a train-

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) (b)

Figure 1: Example of parking lot with visualized mask from PKLot dataset. Red polygons represent occupied spaces and
green ones free spaces. Note that some spaces are not labeled due to heavy occlusion

ing dataset from the data this camera gathered, using the
prepared training dataset to better align the provided pre-
trained model with the given parking lot and finally view
predictions for newly gathered image data. It was designed
to be inexpensive, easy to use, and at the same time pro-
vide Application Programming Interfaces (APIs), which
allow outside systems to consume data it gathers, and use
it for further processing. Furthermore, we also introduce
a new dataset which better approximates the situations the
models may run into in a real deployment.

This paper is structured as follows. In Section 2 the
work relevant to the proposed solution is discussed. Sec-
tion 3 describes datasets which are later used to select
the best performing methods and train models, which are
available in the PKSpace package. Section 4 describes the
architecture of the proposed solution, while Section 5 in-
troduces the tested models and Section 6 summarizes the
results of these tests. Finally, Section 7 presents our con-
clusions and discussion on possible future work.

2 Related Work

As Huang et al. [11] noted, most of the previous work in
the area of vision-based parking spaces occupancy detec-
tion can be roughly classified into two categories: car-
driven and space-driven. When using former approach,
the task is usually formulated as ”Given an image find ob-
jects closely resembling cars”. Parking spaces which do
not include such objects are then deemed to be empty. In
order to find these objects a number of object detection al-
gorithms can be used, such as [17] or [19]. However, this
approach falls short when the effect of perspective distor-
tion can be seen in the input images – the area of the car
progressively decreases with its distance from the camera,
and it is harder to match by an object detection algorithm.

The space-driven approaches usually make use of a sim-
ple assumption: there should be minimal variation in im-
ages of vacant parking spaces, given a short time window.
In other words, it is assumed that the background is statis-
tically static for a short amount of time [11]. In such con-
text, a viable strategy is to use background subtraction [9].
Unfortunately, while the assumption from above may hold

in controlled environments (for instance an indoor parking
lot), the outdoor scenes are usually vastly different, even
in short time spans. Consider for instance sudden weather
changes, random scene shadows or just a moving cloud
– all of these rendered background removal techniques
close to useless, as the variations in background are no
longer minimal. One possible way of dealing with this is to
model various possible types of lighting conditions. This
requires a lot of memory, so Funck et al. [8] have proposed
a memory and computationally efficient model which uses
eigen-space representation to model vast amounts of back-
grounds. A more robust approach to this problem was pro-
posed in [16] where features based on Gabor filters are
used as input to a classifier which classifies empty spaces
in different lighting conditions.

Despite the already mentioned rough classification into
two categories, a new kind of approach appeared in the
past few years. It tries to deal with the problem of light
changes by modeling the volume of a parking space in 3D
while using 2D data as input. To this end, Huang et al. [10]
propose a Bayesian hierarchical framework, which in their
experiments managed to identify shadowed regions it was
asked to model as part of its training regime. In a similar
fashion, the approach discussed in [6] estimates the proba-
bility of a vehicle being present in a specific parking space,
which helps to account for occlusions in the input image.

Some of the very first work in using Machine Learning
methods for classification of parking spaces as vacant or
occupied can be found in [4], where Dan trained an SVM
classifier for each considered parking space, using color
vector features as its input. One of the biggest problems
of this approach is that it does not take occlusions into ac-
count. To overcome this problem, Wu et al. [21] use his-
tograms extracted from three neighboring parking spaces
as features for their SVM classifier, which classifies all
three parking spaces at the same time (into one of eight
classes). This allows for better modeling of the inter-space
correlation and the Markov Field Framework then helps
to solve potential conflicts in predictions. While this ap-
proach has been shown to effectively deal with inter-space
occlusions, it is still greatly affected by variations intro-
duced by the environment.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) Sample image from UFPR04 (b) Sample image from UFPR05 (c) Sample image from PUCPR

Figure 2: Examples of each parking lot from PKLot dataset

While all of the aforementioned work provide important
contributions towards the goal of efficient vision-based
parking space classification, it still remains an open prob-
lem. Part of the reason is the lack of a well curated and
established dataset. This situation was greatly improved
by the introduction of the PKLot dataset in [5], which
subsequently generated a lot of interest for this particu-
lar task. The baseline models proposed by Almeida et
al. have already been improved using modern classifica-
tion techniques used in Computer Vision, which are based
on Convolutional Neural Networks (CNN) [2, 18]. These
models usually have a lot of free parameters which are op-
timized during training, which gives them great represen-
tation power, but at the same time requires bigger amount
of resources necessary for their training as well as actual
real-world use. Ahrnbom et al. [1] try to propose a com-
promise by using an SVM-based classification with fea-
tures which can be extracted very quickly, yielding a fast
classifier with close to state-of-the-art performance. In [2]
Amato et al. also acknowledge this problem and try to
address it by limiting their proposed CNN in size. They
further show that despite its smaller size, it achieved state
of the art results on the PKLot dataset. Moreover, they
also validate its generalization property by evaluating it
on a new dataset called CNRPark-EXT, which was made
available to the scientific community.

3 Parking Lot Datasets

Most recent works in this area utilize publicly available
datasets like PKLot or a more recent one called CNRPark-
Ext. Both of these use high-definition cameras, and feature
a top-down view, so overlays of cars parked side by side
are not that significant. Moreover, the images are taken on
parking lots with lines separating spots clearly marked on
the ground, so exact masks can be made for each parking
spot independently. The parked cars usually adhere to the
lines, and so cars parking over multiple parking spaces can
be considered an anomaly (Figure 1a).

One issue with these datasets is that they were obtained
in circumstances which cannot always be assumed in real
world usage of parking space detection systems. To this
end we also introduce the FMPH dataset, that represents a

more real-world setup. All of these datasets are described
in more detail in the following sections.

3.1 PKLot

This dataset is composed of pictures of two parking lots -
one next to the administrative building of Pontifícia Uni-
versidade Católica do Paraná (PUCPR) (Figure 2c) and the
other in front of the Federal University of Paraná (UFPR)
(Figure 2a and Figure 2b), with the latter being captured
by two cameras from fourth and fifth floor in 5 minute in-
tervals for 30 days. It consits of 12,417 pictures with res-
olution of 1280x720 pixels. In total these pictures depict
695,899 parking spaces out of which 337,780 (48,5 %) are
occupied and 358,119 (51,5%) are empty.

These photos are taken under various weather condi-
tions, such as, overcast (Figure 2c), rainy weather (Fig-
ure 2a) or sunny weather (Figure 2b) and multiple lighting
conditions throughout the day. All pixels corresponding to
parking spaces are manually marked as such, and labeled
as occupied or free by a human expert.

For each picture there exists an XML file that describes
it. For each parking space it contains whether it is occu-
pied or not, its center, rotation, height and width, so that it
can be cut out from picture and possibly rotated.

The suggested ratio of dividing the data of this dataset
into training and testing sets is 1:1. All pictures from one
day should only be included in one of them. The recom-
mended method for evaluation is overall error rate, which
is defined as follows:

OER =
FP+FN

T P+T N +FP+FN

where TP, TN, FP and FN stand for the amount of true pos-
itives, true negatives, false positives and false negatives.

PKlot is used as the standard dataset in a large body
of academic literature on this topic (see for instance [7,
13, 1, 18]). It has parking spaces with small to no over-
laps, clear lines for parking spaces and cars usually parked
within these lines (Figure 2).

3.2 CNRPark-Ext

The CNRPark-EXT dataset is composed of roughly 4,287
pictures with resolution of 2592x1944 pixels.They are

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) Snow and sunny (b) Snow (c) Fog

Figure 3: Images of various weather conditions during different seasons from FMPH dataset. Note, significant reflections
from glass pane

taken by nine high-definition cameras over the course of
23 days. Individual parking spaces are extracted by cutting
out so called patches. These are non-rotated rectangular
shapes, that do not necessarily cover the space entirely or
precisely (as can be seen in Figure 4). These are then re-
sized into 150x150 pixels in size. The dataset is composed
of 144,965 patches out of which 65,658 (45,2%) are free
and 79,307 (54,8%) are occupied.

Photos are categorized by several parameters, for exam-
ple, weather conditions observed at the time of their ac-
quisition, such as, overcast (Figure 4a), rainy (Figure 4b)
or sunny (Figure 4c). Another way is by the day and time
they were taken, or by the ID of the camera. The occupa-
tion labels for each respective patch are loaded from one
of the included text files. This dataset contains heavy oc-
clusion, but it can be compensated by the fact that it also
includes multiple views of the same parking spot. Sug-
gested division into training and testing data can be found
in the included text files.

(a) (b) (c)

Figure 4: Examples of patches from CNRPark-Ext

3.3 FMPH

FMPH dataset (Figure 3) is named after Faculty of Mathe-
matics, Physics and Informatics in Bratislava, where it was
created. It consists of 1,093 pictures that depict 25,139
parking spaces out of which 14,311 (57%) are occupied
and 10,828 (43%) are not. They are shot in 15 minute
intervals from the 31st of December 2016 to the 30th of
January 2017. Pictures are taken in various weather con-
ditions like fog (Figure 3c), sunny weather with snow (Fig-
ure 3a) or pure show (Figure 3b). Combined with different
lighting conditions throughout the day they were captured

at, they provide new setup which is lacking in the existing
datasets and closely resembles a real-world scenario.

There is a JSON file created for each picture. It holds
information about each parking space – a set of points
defining its area, the angle and binary value whether it is
occupied or vacant. The position of center is calculated
by averaging defining points. The image is firstly rotated
around this center by the specified angle. Then, minimal
bounding rectangle of space defining points is cut out.

This dataset presents a more real-world setup a park-
ing space vacancy detector may encounter. The camera is
placed behind a window pane, so reflection artifacts can
sometimes be seen on included images. It is also posi-
tioned not too high above the ground, so parking spaces
have big overlays from the camera’s point of view. It also
means that at a certain time there is sun shining directly
into the lens, so nothing can be seen. These pictures were
removed from the dataset, as it is expected that such im-
ages will be ignored by the pre-processing steps.

This dataset was shot by low cost camera, meaning that
the included pictures have lower resolution of 640x480.
In this dataset there can be different masks for same park-
ing space in different pictures, in order to remedy the lack
of parking lines on the ground and subsequently unpre-
dictable parking of cars.

4 PKSpace Architecture

The architecture of PKSpace is based on a standard ap-
proach utilized in the Internet of Things paradigm: a set
of cameras monitor parking lots, each one with its own
processing unit which is connected to a server in a local
network (Figure 5).

All of the data gathering, processing, analysis and pre-
diction procedures take place independently on each pro-
cessing unit. Results prepared by separate processing units
can be later aggregated by the central server. The only re-
quirement the proposed architecture has on this server is
that it needs to run an instance of an SSH server. This
allows for creation of secure SSH tunnels via this central
server, thanks to which processing units can be accessed
from outside of the internal network, as well as simple

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 5: Separate processing units with their own cam-
eras. Server is gathering results which are accessible from
the internet

maintenance and administrative access.
The processing unit is structured into three separate

modules – Capturer, Predictor and the Admin Interface
(Figure 6). These are described in more detail in the fol-
lowing sections.

4.1 Capturer

The purpose of this module is to gather images from any
suitable source, most probably a camera connected to the
processing unit. It is also expected that the images pro-
duced by this module are suitable for further processing
(i.e. there are parking spaces to be recognized).

Figure 6: Deeper look at modules our processing unit con-
sists of. The figure shows the flow of data and results (18
out of 24 spaces occupied) which are sent to the server.

To this end the presented version of the PKSpace pack-
age utilizes a simple script which decides whether picture
is worth saving or not by comparing the amount of black
pixels to a predefined threshold. Furthermore, the script
is able to perform simple operations with the obtained im-
age, such as translations, which may be required, given
the specific requirements of a particular deployment. This
script is intended to be executed in specific time intervals
using standard time-based job schedulers, such as Cron in
Unix-like operating systems.

4.2 Predictor

The predictor uses a trained model to predict whether a
given parking space is vacant or occupied. In order to do

that, it uses the mask of the parking space to extract re-
spective parking spaces from the big image, according to
the specification of the chosen model.

The user can choose either one of our pre-trained mod-
els, or retrain the model on new data, which can be created
in the Admin Interface discussed in the following section.

As a result of the prediction, each image of a parking
space is labeled with either 0 (vacant) or 1 (occupied), and
results are sent to Admin Interface where they are summa-
rized and a visualization (Figure 1b) is also created.

4.3 Admin Interface

In the Admin Interface, the user is capable of managing
all settings regarding Capturer and Predictor, see a visu-
alization of a predicted image and more. This is the only
module the end user is intended to interact with.

In case the user wants to train a model on their own
dataset, the Admin Interface provides tools for creating
masks and labeling the gathered data. These are described
in subsections below.

4.3.1 Mask Creator

Mask Creator is a tool for marking boundaries of parking
spaces on the image. Due to various camera positions, the
user is able to create multiple masks. The user is provided
with a simple interface, which lets him choose an image
from previously specified folder and mark regions of all of
the parking spaces which will be predicted. Moreover, it is
possible to specify the angle of a given parking space with
regards to the whole image, which in turn makes sure that
all images are rotated in the same way when they are used
for training, testing or prediction.

Figure 7: Red polygon represents currently marked park-
ing space. Its mask is shown in canvas on the right side
and can be rotated using slider above. When the area and
rotation of particular parking space is set user can save it
and the color changes to green

We chose well-known JSON format as the output. It
contains information about boundaries of each parking
space along with its rotation. When the user is done with
creating the mask, the Admin Interface will store it in a
JSON file which can later be used in Labeler.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 8: Left box shows available masks. After choosing
one, parking spaces are displayed on canvas and user can
mark those which are being occupied with red color

Figure 9: Live prediction

4.3.2 Labeler

For training the model one needs to have a good dataset.
It is quite time-consuming to create one, so we decided to
build a tool called Labeler to speed up the process.

Labeler loads all the images provided by Capturer. The
user is then able to choose one of the masks that were cre-
ated in Mask Creator, choose the image for labeling and
click on those parking spaces which are occupied in the
image. Labeler then generates a JSON file for this partic-
ular image, with information regarding which mask was
used and which parking spaces are occupied. This way
user creates a dataset which can be used for training and
testing of their own model.

4.3.3 Live feed

The Admin Interface also provides a live feed of the last
predicted image with a visualization of vacant and occu-
pied parking spaces. The user is able to see for which
parking spaces the mask has to be changed or if it seems
that the model needs to be re-trained.

4.4 Sample Implementation

While the architecture of PKSpace is designed for general
use on any suitable embedded architecture, in the experi-
ments discussed in this work a specific instance is used:
Raspberry PI 2 – a well known single-board computer

used mainly in hobby and educational settings, but also
for industrial applications – and a PlayStation Eye camera,
known for its good performance to cost ratio, when used
for Computer Vision-related applications, such as [14].
The hardware components used in this implementation are
by far not the best in terms of quality or performance, but
represent some of the most inexpensive choices in their re-
spective categories. Since the whole package could be at
the time of writing of this document under $50, it presents
an affordable option for most use cases.

The Admin Interface is developed using Flask, which is
a lightweight Python web framework based on Werkzeug
and Jinja 2. Thanks to its minimality user doesn’t have to
install bunch of packages necessary to run a Flask applica-
tion. The fron-end functionality is managed by JavaScript
with jQuery library and design is done using widely known
Bootstrap. Therefore, it is required to have JavaScript en-
abled in user’s browser.

5 Models

Encouraged by recent work in this area, described in more
detail in Section 2, especially by the use of Integral Chan-
nel Features in combination with an SVM and Logistic
Regression classifier [1], which the Ahrnbom et al. sug-
gest are well suited for running on low performance plat-
forms, we sought to create an opensource implementation
of this model, while replicating results are provided in the
aforementioned paper on the PKLot dataset.

Our results Ahrnbom et. al.
Training Evaluation LR SVM LR SVM
UFPR04 UFPR04 0.9925 0.9917 0.9994 0.9996
UFPR04 UFPR05 0.8824 0.9109 0.9928 0.9772
UFPR05 UFPR04 0.8098 0.8410 0.9963 0.9943
UFPR05 UFPR05 0.9658 0.9720 0.9987 0.9988

Table 1: Comparison of results of our implementation of
Integral Channel Features and results reported in Ahrnbom
et al. [1]

Since we introduce a new FMPH dataset as part of this
work, a set of baseline methods along with their perfor-
mance is also reported to give researchers and practitioners
a well defined starting point. As such we chose a kNN, Lo-
gistic Regression (LR) and Multi Layer Perceptron (MLP)
classifiers, since they are well studied models and often
times serve as baselines for new Computer Vision datasets
(such as for instance [5]). All of the models received the
RGB values of the parking space patch resized to 80x80 as
their input. Given our memory constrain and mostly em-
bedded setting, kNN is not of practical use, since it needs
to load and keep all training data in memory to make a
prediction. For MLP was used the L-BFGS solver, since
we do not have large training datasets.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

model accuracy F1 score AUC
kNN k=1 0.82253 0.80996 0.76133
kNN k=3 0.82346 0.80962 0.75921
Log. Re. 0.74761 0.73643 0.69163
MLP (15, 15) 0.88219 0.88155 0.86550
ICF LR 0.86100 0.86300 0.86950
ICF SVM 0.87680 0.88690 0.87680

Table 2: Results of baseline models trained and evaluated
on the FMPH dataset

kNN parameter for how many neighbours are consid-
ered in evaluation were selected by comparison of only F1
scores. For Logistic Regression we set λ1 = 1, tolerance
for stopping to 0.0001 and used the liblinear solver,
for we have small datasets. These are sane defaults sug-
gested by a well regarded scikit-learn library [15]. Results
can be seen in Table 2.

6 Results

Let us first discuss the comparison between the results ob-
tained by our implementation of Integral Channel Features
and the results reported in [1]. As we can see in Table 1,
when training and testing on the same dataset subset of
the data the results are comparable. They differ to much
greater extent when the training is done on a different sub-
set of the data than testing. We suspect that this may be due
to different distribution of days that are used in the training
and testing sets, which is unfortunately not reported in [1].
Another explanation may be that there is an issue with our
implementation, which seems less likely, given quite close
results in the first considered case.

In Table 3 we also report results of the cross-validation
of the Integral Channel Features method described above
on the FMPH dataset and the previously mentioned UFPR
subset of the PKLot dataset described in Section 3.1. As
we can see, models trained on FMPH dataset did well on
UFPR04 and UFPR05 dataset, while models which were
trained on the UFPR subsets were not able to generalize
well enough to the FMPH dataset. This can be mostly con-
tributed to the fact that the FMPH dataset is more complex
and therefore arguably harder to classify correctly, given
all the issues mentioned in Section 3.3.

As we can see in Table 2, despite their success on other
datasets, the ICF-based models were outperformed by an
MLP with a configuration of two hidden layers with 15
neurons on each of them. This parameter was chosen
from a pool of architectures with one hidden layer and l ∈
{5,10,15,20,25} neurons and two hidden layers, where
every combination of numbers l1, l2 ∈ {5,10,15,20,25}.
The aforementioned combination was chosen because it
gave the best performance on the validation set.

Since the ICF-based and MLP models perform well on
separate types of datasets, they are both implemented in

Training Evaluation LR SVM
FMPH FMPH 0.8695 0.8768
FMPH UFPR04 0.8721 0.8793
FMPH UFPR05 0.8236 0.7828
UFPR04 FMPH 0.7449 0.7355
UFPR05 FMPH 0.7652 0.7775

Table 3: Results of cross-validation of the Integral Chan-
nel Features method on the FMPH dataset and the UFPR
subsets of the PKLot dataset. The numbers in the table
represent the AUC score.

PKSpace and the user can choose any of them depending
on their particular use case.

To summarize, results on conventional datasets (UFPR)
were on par with the ones reported in paper from Ahrnbom
et al. [1]. On FMPH dataset, while results are worse by
considerable amount due to numerous factors discussed in
Section 3.3, they are still good enough for our cause.

7 Conclusions and Future Work

In this work we present an opensource solution for the
problem of parking space occupancy detection called
PKSpace. It utilizes a vision-based approach using a ma-
chine learning model to classify images of parking spaces
as either occupied or vacant. It further provides its user
with the ability to choose either a pre-trained model which
is part of the provided solution, or to make their own
dataset for a specific parking lot and train the model on
it. Furthermore, the user can choose one of many models
which were benchmarked as part of this paper.

Since most of the published work in this area base their
results on datasets that are of high quality and can be con-
sidered ”too sterile” to resemble real-world use cases, we
introduce a new parking lot dataset called FMPH, which
was created using a low cost camera and better approxi-
mates the environment an opensource system like this may
find itself in. In order to give a good starting point for fu-
ture research using this dataset, we also provide baseline
performance that can be further improved in the future.

In the future we would like to propose models that can
achieve better classification results on the dataset we in-
troduced. Moreover, we believe that, given the abundance
of data in publicly available datasets and numerous good
results when formulated as a classification problem, it may
be time to deal with the whole problem more holistically
and predicting the number of parking spaces directly from
the input image as opposed to from a set of pre-defined
parking space patches.

We would like to also extend the Admin Interface by
a Model Trainer tool, for simplifying and automating the
process of training (or re-training) a model on new data.

An implementation of the PKSpace package is available
under the terms of the GNU GPL 3 license from https:

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

https://github.com/NaiveNeuron/PKSpace

//github.com/NaiveNeuron/PKSpace.

References

[1] Martin Ahrnbom, Kalle Astrom, and Mikael Nilsson.
Fast classification of empty and occupied parking
spaces using integral channel features. In Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 9–15, 2016.

[2] Giuseppe Amato, Fabio Carrara, Fabrizio Falchi,
Claudio Gennaro, Carlo Meghini, and Claudio Vairo.
Deep learning for decentralized parking lot occu-
pancy detection. Expert Systems with Applications,
72:327–334, 2017.

[3] Ahmed Nabil Belbachir. Smart cameras, volume 2.
Springer, 2010.

[4] Noah Dan. Parking management system and method,
January 31 2002. US Patent App. 10/066,215.

[5] Paulo RL De Almeida, Luiz S Oliveira, Alceu S
Britto, Eunelson J Silva, and Alessandro L Koerich.
Pklot–a robust dataset for parking lot classification.
Expert Systems with Applications, 42(11):4937–
4949, 2015.

[6] Diana Delibaltov, Wencheng Wu, Robert P Loce, and
Edgar A Bernal. Parking lot occupancy determina-
tion from lamp-post camera images. In Intelligent
Transportation Systems-(ITSC), 2013 16th Interna-
tional IEEE Conference on, pages 2387–2392. IEEE,
2013.

[7] Daniele Di Mauro, Sebastiano Battiato, Giuseppe
Patanè, Marco Leotta, Daniele Maio, and Gio-
vanni M Farinella. Learning approaches for park-
ing lots classification. In International Conference
on Advanced Concepts for Intelligent Vision Systems,
pages 410–418. Springer, 2016.

[8] Stefan Funck, Nikolaus Mohler, and Wolfgang Oer-
tel. Determining car-park occupancy from single im-
ages. In Intelligent Vehicles Symposium, 2004 IEEE,
pages 325–328. IEEE, 2004.

[9] Thanarat Horprasert, David Harwood, and Larry S
Davis. A statistical approach for real-time robust
background subtraction and shadow detection. In
IEEE ICCV, volume 99, pages 1–19, 1999.

[10] Ching-Chun Huang, Yu-Shu Tai, and Sheng-Jyh
Wang. Vacant parking space detection based on
plane-based bayesian hierarchical framework. IEEE
Trans. Circuits Syst. Video Technol., 23(9):1598–
1610, 2013.

[11] Ching-Chun Huang and Sheng-Jyh Wang. A hier-
archical bayesian generation framework for vacant
parking space detection. IEEE Trans. Circuits Syst.
Video Technol., 20(12):1770–1785, 2010.

[12] Amin Kianpisheh, Norlia Mustaffa, Pakapan Lim-
trairut, and Pantea Keikhosrokiani. Smart parking
system (sps) architecture using ultrasonic detector.
International Journal of Software Engineering and
Its Applications, 6(3):55–58, 2012.

[13] Elena Màrmol and Xavier Sevillano. Quickspot: a
video analytics solution for on-street vacant parking
spot detection. Multimedia Tools and Applications,
75(24):17711–17743, 2016.

[14] Charles Martin, Benjamin Forster, Hanna Cormick,
et al. Cross-artform performance using networked
interfaces: Last man to die’s vital lmtd. In NIME,
pages 204–207, 2010.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–
2830, 2011.

[16] RJ López Sastre, P Gil Jimenez, Francisco J
Acevedo, and S Maldonado Bascon. Computer alge-
bra algorithms applied to computer vision in a park-
ing management system. In Industrial Electronics,
2007. ISIE 2007. IEEE International Symposium on,
pages 1675–1680. IEEE, 2007.

[17] Henry Schneiderman and Takeo Kanade. Object de-
tection using the statistics of parts. International
Journal of Computer Vision, 56(3):151–177, 2004.

[18] Sepehr Valipour, Mennatullah Siam, Eleni Stroulia,
and Martin Jagersand. Parking stall vacancy indica-
tor system based on deep convolutional neural net-
works. arXiv preprint arXiv:1606.09367, 2016.

[19] Paul Viola and Michael J Jones. Robust real-time
face detection. International journal of computer vi-
sion, 57(2):137–154, 2004.

[20] Joerg Wolff, Thomas Heuer, Haibin Gao, Michael
Weinmann, Stefan Voit, and Uwe Hartmann. Parking
monitor system based on magnetic field senso. In In-
telligent Transportation Systems Conference, 2006.
ITSC’06. IEEE, pages 1275–1279. IEEE, 2006.

[21] Qi Wu, Chingchun Huang, Shih-yu Wang, Wei-chen
Chiu, and Tsuhan Chen. Robust parking space detec-
tion considering inter-space correlation. In Multime-
dia and Expo, 2007 IEEE International Conference
on, pages 659–662. IEEE, 2007.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)

https://github.com/NaiveNeuron/PKSpace

	Introduction
	Related Work
	Parking Lot Datasets
	PKLot
	CNRPark-Ext
	FMPH

	PKSpace Architecture
	Capturer
	Predictor
	Admin Interface
	Mask Creator
	Labeler
	Live feed

	Sample Implementation

	Models
	Results
	Conclusions and Future Work

