
Extraction of Displacements between Mesh and Basemesh

Martin Stuchlı́k∗

Supervised by: Martin Madaras

Faculty of Mathematics Physics and Informatics
Comenius University
Bratislava / Slovakia

Abstract

This paper is devoted to the extraction of the displace-
ment between two predefined polygonal meshes. Using a
combination of GPU tessellation and vector displacement
mapping, our approach enables the original high-poly de-
tailmesh to be rendered approximately by the displaced
low-poly basemesh at various LOD in real-time. Dur-
ing the preprocessing phase, the cross-parameterization
between the meshes is obtained and locally optimized
to maximize the amount of preserved geometry detail.
Therefore, our method can store and reconstruct even more
complex non-convex surface protuberances.

Keywords: displacement mapping, parameterization,
remeshing

1 Introduction

In computer graphics, a vertex displacement mapping de-
notes a set of techniques to change 3D positions of vertices
while using information stored in a raster texture called a
displacement map. These methods enable us to easily en-
hance detail of polygonal meshes and even to reconstruct
a highly detailed mesh from a remarkably downsampled
basemesh, when both meshes have appropriate parame-
terizations. Although, originally not meant to be real-
time [4], vertex displacement mapping proved to be well
suited for modern GPUs, which have enough processing
power to combine real-time tessellation with high resolu-
tion textures.

Generally, when approximating a high-poly mesh by a
low-poly basemesh, the basemesh is either obtained by it-
erative edge-collapsing of the initial high-poly mesh [12,
15] or it is strictly predefined [11]. Such approaches lead
to good results, however the geometry of the basemesh is
limited as it has to be strongly related to the original ge-
ometry or the method itself. Therefore, our motivation for
this work was to propose and implement a solution which
enables to extract a displacement map between two input
meshes independently of their origin, as shown in Figure
1. The main advantage over existing methods is that our
method can be later combined with algorithms which pro-

∗stuchlo@gmail.com

duce their own specific basemeshes such as the skeleton
driven method by Bærentzen et al. [1].

Our approach consists of several steps. The initial in-
puts are two arbitrary meshes (the high-poly mesh and a
low-poly basemesh) with matching convex parameteriza-
tion boundaries. In the first step, parameterizations have
to be computed and optimized according to these bound-
aries. When both meshes are properly parameterized, the
displacements can be extracted and saved into the texture,
called a displacement map. After the displacement map is
obtained, it can be further used to displace the tessellated
basemesh in real-time. A special care is given to the local
parameterization optimizations, which affects the amount
of preserved geometry detail.

Figure 1: A simplified displacement extraction and con-
sequent real-time reconstruction pipeline. Parameteriza-
tions are computed and displacement map is extracted
during the preprocessing phase. Once the displacement
map is obtained, it can be used to displace the tessellated
basemesh in real-time.

2 Related work

This section is devoted to the state of the art in vector dis-
placement mapping, related parameterization techniques
and similar texture-based remeshing methods.

2.1 Tessellation and displacement mapping

Tessellation is a process of subdividing larger primitives,
named patches, into many smaller ones [13]. In modern
OpenGL versions (4 and higher) the tessellation of trian-
gle patches can be computed directly on the GPU. Chang-
ing the OpenGL tessellation level results in various LOD

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



of the mesh surface. We generally distinguish between
two main types of tessellation. Uniform tessellation subdi-
vides each patch into a number of primitives according to
a predefined subdivision level, while adaptive tessellation
adjusts the subdivision level depending on a local amount
of detail or geometry visibility [10]. After the primitives
are subdivided, the generated geometry can be easily dis-
placed using data from a displacement map.

There are two main approaches to how a geometry detail
can be stored in a texture. In most cases a simple height
map containing only one channel is used to displace ver-
tices along the surface normals [4], however this method
fails to reconstruct non-convex protuberances as shown in
Figure 2. Some authors solve this problem with two dis-
placement steps [15], however a more complex geometry
(for example the dinosaur in Figure 4) would need more
steps.

Figure 2: A comparison of displacements between a de-
tailed mesh (blue) and a basemesh (red) using a height
map (left) and a vector displacement map (right). As can
be seen, the problematic protuberance between the dotted
lines cannot be reconstructed using a simple height map.

Unlike the height maps, vector displacement maps
(sometimes referred as ”non-linear displacement
maps” [16]) store the whole 3D displacement vector
in red, green and blue texture channels. Vector displace-
ment maps are often saved as high dynamic range floating
point data rather then common RGB format [7, 8]. Such
approach consumes more space but enable displacements
between more complex surfaces.

2.2 Local parameterization

A suitable parameterization, assigning texture coordinates
to vertices, plays the key role in displacement mapping,
as it directly determines the amount of stored detail. Pro-
viding exact one-to-one mapping between meshes and a
displacement map, only bijective parameterizations are ro-
bust enough, as parameterization fold-overs would cause
loss of detail on overlapping faces. Naturally, bijective
texture mapping can be obtained only if a mesh has a
planar topology, so a parameterization of more complex
meshes has to be cut into planar regions.

One of the most basic local parameterization methods
is Tutte’s barycentric mapping [2]. Based on advanced
graph theory, this technique works on triangular polygo-
nal meshes homeomorphic to a disk, where boundary uv
coordinates form a convex polygon. To obtain a bijective

parameterization, each inner vertex must be a convex com-
bination of its neighbours. This is acquirable by iteratively
moving the inner vertices coordinates into a barycentre of
their neighbours or can be calculated by solving the fol-
lowing linear system [2]:

−ai,i

(
ui
vi

)
= ∑

j 6=i
ai, j

(
u j
v j

)
, (1)

where,
ai,i =−∑ j 6=i ai, j,

ai, j = ei, j, if vertices vi and v j

are connected by an edge,
ai, j = 0, otherwise,

(2)

and ei, j = 1.
The method itself does not preserve any shape met-

rics, but it can be easily extended by weighting vertices as
Floater [5] did. It is proven that if the weights are positive
and the matrix is symmetric, the resulting parameteriza-
tion is bijective [14].

The next important group of parameterization tech-
niques is based on analysing gradients of local linear
mapping functions which transform vertices of a trian-
gle between 3D space and 2D texture space. Espe-
cially for remeshing, stretch-minimizing parameteriztions
showed to be the most suitable choice [6, 18], as min-
imizing stretch metric, introduced by Sander et al. [12]
reduces under-sampling, while preventing texture distor-
tions. Based on this metrics, Sander et al. proposed their
stretch minimizing parameterization, which remarkably
reduces texture under-sampling. Another notable method
is the stretch minimizing parameterization by Yoshizawa
et al. [17], which solves some unwanted texture artefacts
caused by the method of Sander et al., while being very
fast.

2.3 Vector displacement mapping
and geometry images

Vector displacement mapping is used mainly in 3D mod-
elling applications specialized in sculpting methods. The
good examples of such software is the Autodesk Mud-
box [7] and the Pixologic ZBrush [8], which are both
widely used professional tools, producing excellent re-
sults. However, their goal is a bit different from ours as
they are designed primarily to build vector displacement
maps from user interactions and not to extract them from
a pair of distinct polygonal surfaces.

Closely related to vector displacement mapping are ge-
ometry images introduced by Gu et al. [6] which enable
to store whole geometry in a raster. The major advantage
of this representation is a simplification of some remesh-
ing methods. A good example is mesh morphing, which
can be obtained as a simple interpolation between tex-
tures. This was used by Yu et al. [18] who combined ge-

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 3: A comparison of local parameterization optimization methods: (A) Tutte’s barycentric mapping [2], (B)
our linear barycentric correction, (C) our non-linear barycentric correction, (D) stretch-minimizing parameterization by
Yoshizawa et al. [17]. Each mannequin head model has been reconstructed from two triangles only, using 128× 128
vector displacement map at OpenGL tessellation level 64. Normals are computed directly from displacement maps. Note
that our non-linear method is better in reconstruction of some smaller geometry details at cost of texture distortions.

ometry images with consistent parameterization, which re-
sulted in impressive morphing between considerably dis-
tinct meshes. Praun et al. [11] used geometry images to
reconstruct genus-0 meshes from tetrahedral, octahedral
and cubic basemeshes.

However, the idea of geometry image is slightly differ-
ent from the vector displacement mapping as the texture
stores surface positions directly rather than the difference
between the surfaces.

3 Parameterization

Before displacements can be extracted, both the mesh
and the basemesh must have a corresponding cross-
parameterization, which means that boundaries of the
mesh and the basemesh parameterizations must form the
same convex polygon. Ideally, this should be a rectangle,
because the displacement mapping is extremely vulnera-
ble to boundary rasterization problems and even the small-
est inaccuracy may cause a significant crack in the recon-
struction. An initial boundary can either be set manually
by a user or it can be acquired by an advanced algorithm.
A good example of such algorithm is the STM (Skeleton
texture mapping) introduced by Madaras et al. [9], which
cuts the mesh parameterization into several rectangle re-
gions according to the object skeleton. After correspond-
ing boundaries are obtained, the cross-parameterization

has to be locally refined to prevent fold-overs and further
optimized to minimize under-sampling problems.

3.1 Linear barycentric correction

Our first experiments with Tutte’s barycentric mapping [2]
have shown that if mesh shapes a relatively regular grid
(inner vertices have the same valence), even the sim-
ple barycentric mapping can provide a sufficient recon-
struction of non-convex protuberances. Significant prob-
lems may appear on topologies consisting of multiple in-
scribed rings (for example mushroom-like objects), which
barycentric mapping tends to shrink badly, so even with
high tessellation levels, it is almost impossible to sam-
ple some necessary details. To stretch the coordinates
”shrunk” by the barycentric mapping, we have experi-
mented with extending the barycentric mapping by ”cor-
recting” weights. Unlike other authors, our goal is in-
dependent of texture visual qualities, so we tried to fight
under-sampling in a rather different way. Instead of min-
imizing the stretch, we decided balancing triangle area to
increase the probability of sampling all important details.

Our approach consists of two steps, first the original
barycentric mapping is obtained to prevent fold-overs and
then the parameterization is refined according to the ear-
lier stated equations 1 and 2, where energy ei, j = At

i, j and
At

i, j equals the sum of the texture space area of the trian-
gles incident with the edge. We can imagine these energies

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



as some ”springs” between the vertex coordinates. Edges
with higher energy tend to shrink, while edges with lower
energy conform to their neighbours. In our approach,
edges incident to triangles with larger texture space area
are rated with higher energy. Therefore, the area of over-
sampled triangles in the initial mapping is directly reduced
to get more texture space for the under-sampled triangles,
as can be seen in Figure 3.

Since solving such linear systems on high-poly meshes
can consume a lot of time, both initial and corrective step
are implemented by iteratively moving the vertex coordi-
nates, until the changes in the solution are smaller then a
user set threshold.

3.2 Non-linear barycentric correction

Our linear weighting correction leads to significantly bet-
ter visual results than the original barycentric mapping.
However, it does not reach the sampling qualities of stretch
minimizing parameterizations, so we decided to try a more
complex non-linear optimization. To reduce the time com-
plexity we use a similar concept to Yoshizawa et al. [17],
where the non-linear problem is solved as a number of
simple linear corrections, until the solution converges to
the method optimum.

Therefore, our non-linear optimization consists of the
initial mapping obtained by the previously mentioned lin-
ear correction and a series of additional corrective steps,
where in each, the solution is refined with energy:

ei, j =

√
e′i, j

2 ·At
i, j

2 ·1/Ao
i, j, (3)

where e
′
i, j represents the energy from the previous step

and Ao
i, j is the sum of the object space area of the trian-

gles incident with the edge, to prevent extreme texture dis-
tortions, which could cause problems with normal recon-
struction. The initial mapping is being refined, until the
changes in solution are smaller then a threshold.

This method appears good in stretching shrunk areas
and thus provides better reconstruction of some small de-
tails at cost of texture distortions, compared to stretch min-
imizing parameterizations, as can be seen in Figure 3.

4 Displacement extraction

After the sufficient cross-parameterization is obtained, the
displacements between the two planar meshes can be ex-
tracted and rendered to the vector displacement map, even
if planar topologies of the rectangle-shaped regions are
mutually incomparable.

To avoid a high time complexity of analytic geometry
based algorithms, we decided for a much more elegant
and lightweight raster-based solution. The idea is to ren-
der both surfaces into the geometry images [6], where red,
green and blue texture channels represent the 3D position

on the surface. Then, the whole displacement map extrac-
tion is reduced to a simple per-texel subtraction of these
images as can be seen in Figure 4. This method proved
to be very efficient, as the displacement map is bijective
and can be easily rendered in real-time on modern graphic
cards.

The 16 and 32 bit float data texture formats proved bet-
ter then common RGB, in preserving the geometry detail,
since low precision can cause some strange surface arte-
facts resembling voxelized volumes.

Figure 4: The displacement extraction pipeline: (A)
basemesh, (B) detailmesh, (C-D) geometry images, (E) fi-
nal displacement map. Texture colors were tone-mapped
for illustrative purposes from an original 32 bit EXR float
format.

4.1 Avoiding cracks

The major weakness of the above described method is the
region boundary. When boundary data from a polygon is
written into a texture, the OpenGL rasterizer samples value
in the middle of the processed texel which often does not
correspond to the exact edge value, which is therefore lost.
Such data loss may appear negligible, however in the dis-
placement mapping it is crucial, as it causes major geome-
try cracks in a displaced geometry. Fortunately this can be
easily solved by re-rendering the boundary using line seg-
ments, which ensure that proper outline values are written,
as can be seen in Figure 5.

Figure 5: Reconstructions of a dinosaur without (left) and
with (right) the boundary correction, using a 128× 128
displacement map in a combination with a normal map,
both with a linear texture filtering.

Naturally, this solution works only in a combination
with the nearest texture filtering. To use more advanced

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 6: Normal reconstruction: (A) original mesh with smooth shading, (B) raw reconstruction with flat shading,
(C) reconstruction with approximated normals, (D) reconstruction with normal mapping. The dinosaur head has been
reconstructed from one triangle only, using a 128×128 texture at OpenGL tessellation level 64.

interpolation methods, both the boundary of mesh param-
eterization has to be fitted to the texels of the vector dis-
placement map and a thickness of the rendered boundary
should be two texels, to prevent boundary interpolation in-
accuracies. Of course, redundant boundary data reduces
the storage capacity of the displacement map, however us-
ing advanced interpolation methods is still rewarding as
the reconstructed geometry is much smoother.

5 Real-time reconstruction

Once the displacement map is obtained, vertices of the
tessellated basemesh can be displaced by simply adding
vectors from the texture. The displaced surface approxi-
mate the original detailmesh and the tessellation level de-
termines the reconstruction LOD. However, the surface re-
construction is not only about displaced geometry but also
about reconstructed shading.

There are two major ways, how to reconstruct the origi-
nal shading. Probably the most simple and precise method
is the normal mapping, where the surface normals of the
original mesh are stored in an additional texture. The
second method, where normals are approximated directly
from the displacement map as a cross product of partial
derivations, does not need any additional data. However,
this can cause some unexpected side effects, since approx-
imated normals correspond to the real geometry and have
nothing to do with per-vertex normals, which are interpo-
lated all over the surface of the original detailmesh. There-
fore, approximated normals often resemble flat shading
and in some extreme cases, reconstruction may look even
more detailed than the original. For a comparison see Fig-
ure 6.

6 Results

Our results consist of a reconstruction quality evaluation
using various settings and a comparison between our non-
linear barycentric correction and a stretch-minimizing pa-

rameterization, to test its suitability for remeshing algo-
rithms.

Testing on various models has shown, that generally
our method produces fairly good, real-time reconstruc-
tions with very small mean error. To measure errors, we
use a MeshLab [3] implementation of Hausdorff distance
between the original mesh and a reconstructed surface,
normalized by diagonal of the mesh bounding box. The
overall quality of the final reconstruction depends mainly
on a displacement map resolution and the LOD determined
by the tessellation factor, as can be seen in Figure 8.

Figure 7: Example comparison between the reconstruc-
tion using the stretch-minimizing parameterization by
Yoshizawa et al. [17] using a 256x256 displacement map
(left) and the reconstruction using our non-linear barycen-
tric correction using a 128×128 displacement map (right).
Both mannequin head models have been reconstructed
from two triangles at OpenGL tessellation level 64. The
right-hand reconstruction has 14.3% higher mean error,
while using only 25% of an original texture space. De-
spite the overall error increase, our method is still slightly
visually better in preservation of facial details.

Comparisons between our local parameterization op-
timization method and stretch-minimizing parameteriza-
tions have shown different error distributions. The regu-
lar sampling of stretch-minimizing parameterizations ac-
cumulates error in areas with higher detail, while our non-
linear barycentric correction spreads error regularly along
the surface. Therefore, our method is often visually bet-

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 8: Evaluation graphs show dependence of texture resolution (left) and tessellation level (right) on normalized
error. The tessellation level was evaluated using a 256x256 displacement map. The texture resolution was evaluated using
tessellation level 30. The notable gap between the maximum and mean error is caused by high-frequency details, which
are very difficult to sample. However, the low mean error reveals that such errors are relatively rare.

ter in storing geometry details, which enables the usage of
smaller displacement and normal maps as shown in Fig-
ure 7. However, considering the texture distortions, our
method is not suitable for colour texturing (except some
special cases, when geometry details correspond to colour
details) and in some cases it may even complicate the nor-
mal reconstruction.

Although our displacement map cannot be efficiently
modified using simple graphics editor, stored displace-
ments can be easily edited procedurally, as can be seen in
Figure 9. Using combinations of trigonometric functions
proved sufficient, since generated geometry is smooth and,
therefore, normals can be restored effectively using partial
derivations.

Figure 9: Example of procedural modifications: recon-
struction of a bunny model using original displacement
map (left), reconstruction using a modified dispalcement
map (right). All surface modifications are composed by
trigonometric functions.

7 Conclusion and future work

We have proposed and implemented an algorithm, which
enables to extract a displacement map between two prede-
fined meshes independently of their visual similarity and

origin. This has many possible future utilizations, since
it can be effectively used by techniques with a limited
basemesh generation.

Another contribution of our work is the new local pa-
rameterization optimization, specially designed to pre-
serve small geometry details. Although our parameteri-
zation is not suitable for colour texturing, generally it en-
ables to use smaller displacement and normal maps, which
saves memory and disk space.

However, some of the problems remain open as our
method needs high tessellation factors to reconstruct sharp
edges or spikes, and approximated normals often cause
various stains, since normal approximation is prone to
some texture distortions.

For the future work we would like to experiment with
tangent space and adaptive tessellation. We plan to im-
prove the normal approximation, to avoid usage of a nor-
mal map completely and develop a more complex local pa-
rameterization optimization, which may enhance preserva-
tion of sharp geometry details by fitting some considerable
vertices and edges between the mesh and the basemesh.
We would also like to experiment with mesh deformations
driven by user interactions with the basemesh.

References

[1] Jakob Andreas Bærentzen, Marek Krzysztof Misz-
tal, and K WełNicka. Converting skeletal structures
to quad dominant meshes. Computers & Graphics,
36(5):555–561, Elsevier, 2012.

[2] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Al-
liez, and Bruno Lévy. Polygon mesh processing.
CRC press, 2010.

[3] Paolo Cignoni, Marco Callieri, Massimiliano
Corsini, Matteo Dellepiane, Fabio Ganovelli, and

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)



Guido Ranzuglia. Meshlab: an open-source mesh
processing tool. In Eurographics Italian Chapter
Conference 2008, pages 129–136, The Eurographics
Association, 2008.

[4] Robert L Cook. Shade trees. ACM Siggraph Com-
puter Graphics, 18(3):223–231, ACM, 1984.

[5] Michael S Floater. Mean value coordinates. Com-
puter aided geometric design, 20(1):19–27, Elsevier,
2003.

[6] Xianfeng Gu, Steven J Gortler, and Hugues Hoppe.
Geometry images. ACM Transactions on Graphics
(TOG), 21(3):355–361, 2002.

[7] Autodesk Inc. Vector displacement maps.
https://knowledge.autodesk.com/
support/3ds-max/learn-explore/
caas/CloudHelp/cloudhelp/2015/ENU/
3DSMax/files/. [Online; accessed 6-December-
2016].

[8] Pixologic Inc. Vector displacement maps. http:
//docs.pixologic.com/user-guide/
3d-modeling/exporting-your-model/
vector-displacement-maps/. [Online;
accessed 6-December-2016].

[9] Martin Madaras and Roman Ďurikovič. Skeleton tex-
ture mapping. In Proceedings of the 28th Spring
Conference on computer Graphics, pages 121–127.
ACM, 2013.

[10] Matt Pharr and Randima Fernando. Gpu gems 2:
programming techniques for high-performance
graphics and general-purpose computation.
Addison-Wesley Professional, 2005.

[11] Emil Praun and Hugues Hoppe. Spherical
parametrization and remeshing. In ACM Transac-
tions on Graphics (TOG), volume 22, pages 340–
349. ACM, 2003.

[12] Pedro V Sander, John Snyder, Steven J Gortler,
and Hugues Hoppe. Texture mapping progressive
meshes. In Proceedings of the 28th annual con-
ference on Computer graphics and interactive tech-
niques, pages 409–416. ACM, 2001.

[13] Graham Sellers, Richard S Wright Jr, and Nicholas
Haemel. OpenGL SuperBible: Comprehensive Tuto-
rial and Reference. Addison-Wesley, 2013.

[14] Alla Sheffer, Emil Praun, and Kenneth Rose. Mesh
parameterization methods and their applications.
Foundations and Trends R© in Computer Graphics
and Vision, 2(2):105–171, 2006.

[15] Ilya Tisevich and Alexey Ignatenko. Displace-
ment and normal map creation for pairs of arbitrary
polygonal models using gpu and subsequent model
restoration. pages 61–68, Citeseer, 2007.

[16] Neil West. Investigation of surface mapping tech-
niques & development of non-linear displacement.
Student Project. Bournemouth University, 2007.

[17] Shin Yoshizawa, Alexander Belyaev, and Hans-Peter
Seidel. A fast and simple stretch-minimizing mesh
parameterization. In Shape Modeling Applications,
2004. Proceedings, pages 200–208. IEEE, 2004.

[18] Jin-Bey Yu and Jung-Hong Chuang. Consistent mesh
parameterizations and its application in mesh morph-
ing. In Computer Graphics Workshop, 2003.

Proceedings of CESCG 2017: The 21st Central European Seminar on Computer Graphics (non-peer-reviewed)


