Procedural Music Generation with Grammars

Lukas Eibensteiner, BSc*
Supervised by: Mag. Martin II¢ik!

Institute of Visual Computing and Human-Centered Technology
University of Technology
Vienna / Austria

Abstract

In this work we present an implementation of a genera-
tive grammar for procedural composition of music. Mu-
sic is represented as a sequence of symbols with user-
defined parameters, such as duration, pitch, harmony, vol-
ume, or active instruments. These sequences are devel-
oped by stochastic application of production rules that mu-
tate, clone, or split their input. The generated sentences are
converted to an output format (MIDI) using mapping func-
tions. We demonstrate the system’s capabilities through
the generation of various types of musical structures, in-
cluding phrase patterns, chords, melodies, and metrical hi-
erarchies.

Keywords:
duction rules

music, procedural, formal grammars, pro-

1 Introduction

Procedural composition of music comprises various tech-
niques that allow the generation of music from an abstract
set of rules without direct involvement of a human com-
poser. The efforts of the composer are shifted from manual
placing of notes to the conception of the rules guiding the
composition process. Besides being potentially cheaper to
produce on a large scale, procedural music is especially in-
teresting for interactive media such as video games, where
the algorithm can adapt to dynamic events and user inter-
action. The idea of composing music through algorithms
goes back centuries. In 1787 Wolfgang Amadeus Mozart
published instructions for writing a waltz by rolling two
dice [19]]. The rolled numbers could be matched to en-
tries in a table of musical bars that was provided with the
instructions. By repeatedly throwing the dice and select-
ing the corresponding bars, one would end up with a new
unique song.

A random shuffling of bars written by a master com-
poser will undoubtedly sound aesthetically pleasing, but
a random sequence of notes will hardly qualify as music.
It is a well-known claim that music and mathematics are
related [9} 23| 24], but formalizing the composition pro-

*.eibensteiner @ gmail.com
tilcik@cg.tuwien.ac.at

cess remains difficult. Machine learning approaches with
Markov chains [1]] or neural networks [4. 16, (7, (13} 111} [15]]
mostly rely on an existing body of music for training. The
resulting models can yield impressive results, but their out-
put is difficult to adjust and can be lacking in regards to
originality and high-level structure. Evolutionary algo-
rithms [3}[10} [14] require either a fitness function, which is
difficult to formalize, or expensive human evaluation [2].
Cellular automata [21]] provide a source of simple rhyth-
mic patterns, but the approach also offers limited control
over musical structure and style.

In A generative theory of tonal music Lerdahl and Jack-
endoff provide evidence for the appropriateness of gram-
mars for modelling music [[17]]. While they used grammars
for musical analysis, grammars can also be used for gen-
eration. Since all rules are explicit, generative grammars
offer detailed control and transparency over output. The
effects of changing rules is immediate and requires no ad-
ditional training. Further, grammars support structure at
any level due to the hierarchical nature of the derivation
and they can produce output of any length and complexity.

Recent work in this field shows how generative gram-
mars can be used to generate certain aspects of musical
structure individually. The grammar presented in this work
is generalized for symbols with arbitrary parameters. This
allows the generation of different structures within a sin-
gle grammar, such as phrase structure, melodic patterns,
and metrical hierarchies. Further, we show how stochastic
derivation can be controlled to allow for repeating parts.
For pitch selection we present a system of musical scales
that enables us to define pitch relatively without requiring
knowledge of the current harmony.

2 Related Work

Many of the technical terms used in this work come
from the definition of formal languages by Noam Chom-
sky [5]] and some familiarity with these concepts is neces-
sary to understand the following sections. Our approach
uses a context-free (Type-2) grammar, with some context-
sensitive aspects (Type-1).

Some work has been done that explores the general ap-
plicability of grammars for describing musical patterns
and composition [17, 22]. While these works are not

Proceedings of CESCG 2018: The 22" Central European Seminar on Computer Graphics (non-peer-reviewed)



primarily concerned with a concrete generative approach,
they give significant justification for the use of grammars
in composition and also offer useful input for designing
production rules.

Holtzman [12] uses a custom grammar definition lan-
guage for composition that supports all levels of the
Chomsky hierarchy. They present the generation of both
micro- and macro-structure using abstract tokens. Mc-
Cormack [18] uses L-Systems for generating sequences of
pitch letters. Rhythm, harmony, or dynamics are not sup-
ported and the generated music is rather simplistic. Quick
et al. [20] present a grammar system for generating har-
monic progressions. The symbols consist of harmonies
with associated durations. The encoding of the duration
and harmony as individual symbol parameters is very sim-
ilar to our approach.

3 Methodology

In this section we present the particularities of our ap-
proach. We represent music as a sequence of symbols.
Each symbol holds information related to the musical do-
main, such as length, pitch, tempo, volume, or active in-
struments. When generating the sequence we repeatedly
replace symbols with new symbols. An example of such a
replacement is illustrated in Figure ]

ST x0e0 32

| Pix—vyz |

? ‘ Y=(%G,.) | Z=(%E.) | §

Figure 1: Production rule P that replaces a symbol X of
length 1 and pitch C with two symbols Y Z of length % and
a G pitch and E pitch respectively. In this case X is purely
symbolic, a placeholder for YZ, and will not occur in the
output sequence.

The symbols X, Y, and Z in Figure E] come from a set
that is called the alphabet. The fact that X is replaced
with YZ is encoded as a production rule. The process of
generating a sequence of symbols through the application
of production rules is called derivation. It starts with a
single dedicated symbol, the axiom, and continues until
the sequence contains only terminal symbols. The termi-
nal symbols are a subset of the alphabet and in our gram-
mar exactly those symbols not accepted by any production
rule. Our grammar generally corresponds to a context-free
(Type-2) grammar [3]].

3.1 Alphabet

For a grammar operating in the musical domain an alpha-
bet ¥ must be used that can be interpreted as music in
some way, for example as notes, chords, or percussion

beats. A simple option is to represent pitches using let-
ter notation [18]], so for melodies using the C major scale
we could define it as ¥ := {C,D,E,F,G,A,B}. A gram-
mar with this alphabet would generate strings consisting
of these seven pitches. Usually, a melody is not just a se-
quence of pitches; it has a rhythmical component as well,
with notes of various lengths. Instead, we define the alpha-
bet as the Cartesian product of multiple sets, for example
Y. = Pitch X Length X Volume. The sets that make up this
product can be freely defined, e.g. Pitch as pitch letters,
Length as fractions, and Volume as an interval. Under this
definition the symbols are n-tuples. Their entries will be
referred to as attributes from here on.

3.2 Matching

In the formal definition of a context-free grammar, a pro-
duction rule accepts a specific symbol and replaces it with
a specific output sequence. Since the alphabet is defined
as the Cartesian product of multiple, possibly non-discrete
sets, defining production rules in this way is inefficient.
Instead of a single symbol, each rule can match a subset of
symbols, which we define using a Boolean-valued func-
tion on the alphabet, called a predicate. A rule accepts a
symbol, iff its predicate returns frue for that symbol. As a
consequence, we define the output sequence as a function
of the input symbol.

The predicate can be constructed using any of the sym-
bol’s attributes, which means the matching criteria can be-
come arbitrarily complex. In practice, it is useful that one
can quickly infer possible derivation paths from the gram-
mar definition. Simple matching criteria should be pre-
ferred where possible. A useful method is having a string-
valued name attribute and matching directly on its value,
for example all symbols named 'measure’.

3.3 Randomness

The grammar is stochastic, which means there can be mul-
tiple rules that match a certain non-terminal. In such a case
the derivation path is chosen randomly, weighted by a rel-
ative ratio associated with each rule. This allows us to vary
the number of generated measures, the path of melodies,
or rhythmic patterns in a controlled manner.

There is a tendency in music to repeat parts, phrases,
and motives. A consequence of stochastic rule selection
is that symbols that should represent repeating parts will
be randomly matched by different rules during derivation,
breaking their intended similarity. To solve this problem
we define a numeric seed attribute for each symbol. Every
time a rule needs to be picked randomly, the derivation
algorithm initializes a random number generator using the
seed of the current symbol. By using the same seed for two
or more symbols we can guarantee a common derivation
path, even if it contains random branches.

Proceedings of CESCG 2018: The 22" Central European Seminar on Computer Graphics (non-peer-reviewed)



3.4 Commands

As mentioned above, a production rule is expressed as a
function that maps a subset of the alphabet to a sequence
of output symbols. These functions are defined through
commands. The following list contains examples of basic
command types:

mutator changes an individual attribute of the input sym-
bol. Special cases of this type are resize for changing
the length, or rename for changing the name.

repeat generates a specified number of copies of the input
symbol.

split interprets a symbol as a 1D segment and divides it at
specified offsets into two or more symbols. It must be
specified how attributes are computed for the output
symbols. For example, length can be shared propor-
tionally and volume or pitch can be interpolated.

Additionally, there are meta commands that control the
application of other commands. They can be used to ex-
press fixed derivation paths without the need for additional
production rules:

chain takes a sequence of commands. The first command
is applied to the input. All following commands are
applied to the outputs of the previous one. This com-
mand allows the application of multiple commands
within a single rule.

if applies a command to a symbol only if it matches an
additional predicate.

branch applies an initial command and feeds each result-
ing symbol into a different sub-command. For exam-
ple, one can split a symbol, and then apply different
commands to the first and second output symbol.

3.5 Context-Sensitivity

Music seems to be context-sensitive to a certain degree.
For example, in harmonic progressions the occurrence
of a harmony is sometimes implied by previous har-
monies [16]. For that reason we allow rules to access
the previous and next neighbor of a symbol, both during
matching and inside commands. More often than not, it
is necessary to access the ferminal neighbors of a sym-
bol. We achieve this by allowing recursive derivation of
symbols from within production rules. If a rule needs to
know the terminal neighbor of a symbol it must first initi-
ate and wait for the derivation of that neighbor. This can
lead to deadlocks when a rule tries to recursively derive a
symbol that is already waiting for the current symbol to
be derived, but such circular dependencies can be detected
automatically.

4 Implementation

Based on the theory in the previous section we developed
a console application that compiles and executes musical
grammar scripts. Each such script must declare the alpha-
bet, initialize an axiom, define production rules, and spec-
ify a mapping from terminals to MIDI events. Both the
application and scripts are written in C#, version 6.0 and
4.0 respectively.

4.1 Symbol Type

The system provides a basic symbol class with the most es-
sential accessors, including the Seed for stochastic deriva-
tion, and Name for matching. Users can extend the basic
symbol type and add custom attributes.

Generally, the user can declare attributes of any type.
Most of the time using primitive types is sufficient, e.g.
float, int, bool, string. The system also provides
a handful of types specific to the musical domain, such
as the Pitch type that can be constructed from scientific
pitch notation (e.g. C4, G5, F#5) and allows easy conver-
sion to MIDI numbers. Another example is the Gesture
enumeration, which is used to specify whether a key was
struck, held, or released. In Section [3] it was mentioned
that some attributes should behave in certain ways during
splitting. The system provides the following behaviors:

Seed provides a random number generator based on its
current value. During a repeat or split command the new
symbols receive a seed that is generated by the current
seeds random number generator.

Quantity gets shared between the results of a split. An
important use-case is the length of a symbol.

Point represents a value that exists only at a single
point on the timeline. This type can be used to mark the
position of beats, analogous to the click of a metronome.

Interpolation represents attributes that should be in-
terpolated during a split. Possible applications include vol-
ume or pitch.

Path interpolates between two values by traversing a
path between them in a weighted graph. This can be used
for constructing harmonic progressions.

4.2 Domain Specific Language

Since C# does not have global functions, the bulk of script-
ing related functionality is contained in a single class. An
instance of this class is accessible through the Do getter
within the main method of each script. Wherever Do. *
appears in any of the examples, it is a call on that instance.
This removes the need for specifying the custom symbol
type as a generic parameter for every single command, re-
ducing visual noise. Users can easily add their own con-
venience methods to the Do object via extension methods.

Proceedings of CESCG 2018: The 22" Central European Seminar on Computer Graphics (non-peer-reviewed)



4.3 |Initializing the Axiom

The axiom is the starting symbol. When the grammar
script is invoked, the program automatically creates an ax-
iom by instantiating the user-defined symbol type with de-
fault values for all attributes. To initialize the axiom the
user must call the Axiom method. Listing [I| shows a sim-
ple example of the axiom initialization.

Axiom (
Do.Rename(”song”) ,
Do.Resize (78")

)

Listing 1: Code defining a chain of commands, which will
be applied to the axiom before the grammar is invoked. In
this case the name and length are initialized.

4.4 Defining the Grammar

The grammar is defined by passing a Grammar instance
created by Do.Grammar to the script’s Apply method.
Listing 2] shows how a simple non-deterministic grammar
with the axiom A and three production rules Fy, Pj, P> can
be constructed.

Apply (Do.Grammar (
// PO: A—> t (weight = 1.0)
Do.Rule(”A”, 1.0,
Do.Rename(”t”)
)
// Pl: A—> BB (weight = 3.0)
Do.Rule(”A”, 3.0,
Do.Rename(”B”) ,
Do. Repeat(2)

// P2: B—>t
Do.Rule(”B”,
Do.Rename (7 t”)

))s

Listing 2: Definition of a grammar that consists of three
production rules.

Do.Rule creates a new production rule that uses the
first string argument to match to the name of a symbol.
The numeric weight is optional and set to 1.0 if unspeci-
fied. As a final input the method accepts a variable length
list of individual commands. In this example only rule
Py applies more than one command, since besides being
renamed the symbol is also replaced with two clones of
itself. In practice we would usually perform many more
commands inside a single rule.

4.5 Relative Pitch

The system also provides a model for musical scales for
working with relative pitches and intervals. A scale is
represented by a function that maps an index i € Z to a
frequency. The frequency that is returned for index 0 is
called the tonic. For example, in a chromatic scale (black
and white keys on a piano) there are twelve semitones per
octave. Assuming the tonic is A4 (440 Hz) it would map
0to A4, 1 to A#4, 2 to B4, and so forth.

Scales can be built on top of each other. For example,
the C-major scale uses only the white keys of the piano.
It can be built on top of the chromatic scale, by skipping
all indices that correspond to the black keys. The chro-
matic scale itself can be built upon the cent scale, with
cents being a logarithmic unit of frequency (100 cent = 1
semitone) [§]]. Figure 2] shows how a major scale with a
tonic pitch of C4 is constructed.

2694 27748 31143 34023 39200 4400 49388
‘ 233.08 | 26163 ‘ 203.66 | 32963 ‘ 369.99 | 41530 ‘ 48616 | 52325
| 1 | 1 | 1 | 1

hertz

-200 o 200 400 600 800 1000 1200

cent scale

chromalic scale

C-major scale
A3 H3 C4 D4 E4  Fa G4 Ad H4  C4

Figure 2: A C-major scale is created by only using pitches
corresponding to white piano keys in the chromatic scale,
which in turn only uses every hundredth pitch in the cent
scale. The cent scale represents the top-level and its in-
dices are directly converted to hertz. The tonic is defined
as 261.63 Hz (C4).

Once the scale has been created, we can use integers
relative to the tonic to produce melodies and chords. By
adding an integer offset to all indices of a scale we can
move the tonic. For example, adding an offset of 4 to the
C-major scale would center the scale on its fifth pitch. It
will still be comprised of the same pitches as before, but
the index 0 now yields G4 rather than C4 and the mode
will change from Ionian to Lydian. Doing that allows us
to define production rules which are independent of the un-
derlying harmonic progression. Moving the tonic enables
us to achieve arbitrary levels of relativity when defining
key, harmonic progressions, chords, and melodies.

4.6 Mapping Terminals

Length: double
il i

‘ Sound | ‘ Control ‘
‘Vmume double | ‘Temuu double ‘

Beat Tone

Instrument: Percussion Instrument: Instrument
Hit: bool Gesture: Gesture

[ chod | [ mNote ]
‘F‘ilches. int ‘ ‘F’\tch. int |

Figure 3: Simple class diagram of the four event types
and their common base types. Note and Chord are used
for monophonic and polyphonic instrument sounds. Beat
represents a hit on a percussion instrument.
is used for controlling meta parameters, such as overall
tempo.

Control

Proceedings of CESCG 2018: The 22" Central European Seminar on Computer Graphics (non-peer-reviewed)



The last missing piece is how music is generated from
the terminals. Since the terminals are all instances of a
custom symbol type, the user must specify how they are
mapped to a musical event. There are four types of such
events which are shown in Figure [3] Once the derivation
is complete, the mappings are applied to each symbol in
the terminal sequence. In a final step the generated event
sequences are written to individual tracks of a MIDI file.

Listing [3] shows how a symbol can be mapped to a
monophonic piano melody and a bass drum beat.

/! Piano melody
Map(x => new Note ()

Length = x.Length,
Gesture = Gesture. Strike ,
Pitch = x.MelodyPitch,

Instrument =
0.5

Instrument. AcousticGrandPiano ,
Volume =

s
// Bass drum beat

Map(x => new Beat()

Length = x.Length,

Hit = x.BassDrumHit,

Instrument = Percussion.BassDruml ,
Volume = 0.5

IO

Listing 3: Code that specifies two mapping functions,
which map a terminal x to a piano note (first statement)
and a bass drum hit (second statement). Users can choose
which event properties are based on symbol attributes (e.g.
Length) and which are hardcoded (e.g. Volume).

5 Results

We demonstrate the system’s capabilities by means of
multiple application examples. Each example in this sec-
tion is focused on a specific musical idea or aspect, but
they can be combined for more interesting results. For the
sake of reproducibility all examples are deterministic. In
practice many parameters can and should be randomized
to achieve varying output.

5.1 Grouping Structure

In this example we generate a possible overall structure for
a piece, what Lerdahl refers to as grouping structure [[17]].
It is a hierarchical division into groups of events that are
perceived as belonging together. The example is based on
a Minuet in G Major, BWV Anh. 114 by Johann Sebastian
Bach. By analyzing the piano score we can deduce a struc-
ture such as the one shown in Figure ] The grammar for
this example generates a sequence of eight phrases, each
with a length of 8, and seed values that represent our struc-
ture. Based on this structure we could further define rules
that split the phrases into measures, assign harmonies, and
build a melody. By basing any randomization on the gen-
erated seeds, all phrases with the same seed will end up the
same. The result is visualized in table [l The seed values

show the intended pattern.

J. 8. Bach - Minuet in G Major, BWY Anh. 114

section A

section A

section B

section B

phrase A phrase B

phrase A

phrase B

phrase C

phrase D

phrase C phrase D

0 8

16

24

32

40 48

56

64

Figure 4: High-level grouping structure of a Minuet in G
Major, BWV Anh. 114 by Johann Sebastian Bach. The
horizontal axis shows the offset in measures.

Name Length Seed

phrase 8 212140088
phrase 8 715172577
phrase 8 212140088
phrase 8 715172577
phrase 8 266780409
phrase 8 335640345
phrase 8 266780409
phrase 8 335640345

Table 1: This table represents the symbols in the output
sequence. The seeds show the intended phrase pattern
ABABCDCD.

5.2 Melody with Pitch Interpolation

In this example we generate a melody similar to that of a
Minuet in G Major, BWV Anh. 114 by Johann Sebastian
Bach. The section of interest is shown in Figure 5]

Figure 5: Right hand melody of measures 8 to 15 from
Bach’s Minuet in G Major, BWV Anh. 114.

We first need to analyze the melody to find possible gen-
eralizations. Measures 1, 3, 5, 6, and 7 all contain a quar-
ter note followed by four eighth notes, a pattern which we
name the primary motive. The four eighth notes will be
referred to as eighth-group from here on. Listing [ shows
how we can split a measure into the quarter and the eight-
group and is visualized in Step 2 of Figure 6]

Do. Rule (”primary—motive”,
Do.Resize (3.0 / 4),
Do. Branch (
Do. SplitLength (1.0 / 4),
Do.Rename(”note™) ,
Do.Rename(”eighth—group™)

)

Listing 4: Rule generating the base pattern of our primary
motive, which is a three-quarter measure that starts with
a quarter note. It produces a note and an eighth-group
symbol, the latter of which will be split further.

After the first quarter is split off, we need to apply a
rule that generates our eighth-group. With attribute inter-
polation we only need to set the start and end pitch of the

Proceedings of CESCG 2018: The 22" Central European Seminar on Computer Graphics (non-peer-reviewed)



symbol. The pitches inbetween will be interpolated when
the symbol is split. This is shown in Step 3 and Step 4 of
Figure [6] We still need to decide how the start and end
pitches are determined.

measure 1 measure 3 measure 5 measure & measure 7
7 -
——
I
Step 1 —
—
I—
-
T -
——
—
Step 2 e —
——
———
-
T -
— R .3
Stepd 2 — .3
— *
—
.3 * -
»l
.
7 -
-
— - -
Step 4 - - — -
-- | -- — ---

nterpolatad pitch M baginning of next measure

4 start/ end pitch of segment

Figure 6: Generation of the primary motive.

Do.Rule(”eighth—sequence”,
Do.Rename(”note”) ,
// Use pitch of next symbol if no end is specified.
Do. If(x => !x.Pitch.UseEnd,
Do.Apply(x => x.Pitch.UseEnd = true),
Do. Apply (x => x.Pitch.End = x.Pitch.Value),
Do.If(x = x.Next != null,
Do. Apply (x => x.Pitch.End =
x.Next.Pitch . Value)
)

Do. If (x => x.Pitch.Descending,

Do. If (x => x.Smooth &&
Math.Abs(x.Pitch . Gradient) < 4,
// End group on one tone below next note.
Do. Apply (x => x.Pitch.End —= 2)

)

// Set start to be four notes above end.

Do.Apply(x => x.Pitch.Value = x.Pitch.End + 4)

Do.If(x => !x.Pitch.Descending,
Do. If (x = x.Smooth &&
Math . Abs(x.Pitch . Gradient) < 4,
// End group on one tone above next note.
Do. Apply (x = x.Pitch.End += 2)
)
// Set start to be four pitches below end.
Do. Apply (x => x.Pitch.Value = x.Pitch.End — 4)
).
// Split into four notes.
Do. Apply (x => x.Pitch.Interpolator = new Linear()),
Do. SplitEven (4)
)

Listing 5: Rule generating a sequence of four notes of
equal duration. Their pitches are each one step apart and
lead right into the pitch of the next note.

The eighth-group is sometimes ascending, sometimes
descending. We could deduce that if the first note of the
measure is lower than or equal to that of the next mea-
sure, the sequence ascends (measures 1 and 3), otherwise
it descends (measures 5, 6, and 7). Depending on that re-
lationship we can start the sequence four pitches above or
below the end pitch.

Further we can see that the eighth-group always leads
into the following note. For the implementation of this
rule we need to access the successor of the eighth sequence
to see where it has to end. In measures 1 and 3 the first

note before the eighth-group is not smoothly connected,
but is followed by a jump in pitch. We use the custom
boolean smooth attribute as a flag to differentiate between
the two cases. The implementation of all this can be found
in Listing 3]

It is interesting that the rule in Listing [5] not only repli-
cates, but also generalizes the primary motive. Depending
on the initial and the following pitch our rule will try to
find a sequence of four ascending or descending notes that
connects the two pitches as smoothly as possible. Since all
offsets are relative, the rule works for any pitch.

5.3 Chords and Arpeggios

In this example we generate chords and arpeggios from a
harmonic progression and show how to use scales. First,
the axiom is split into a chord and arpeggio half. Then,
each half is split into four measures with individual har-
monies, as seen in Figurem The harmonies are stored in
the Harmony attribute as instances of our musical scale
model. Listing[6]shows how chords can be generated.

Song

Chords Arpeggios

1(0) ‘ V(4) | VI(5) ‘ IV(3) | I(0) ‘ V(4) ‘VI(S) ‘ IV (3)

Figure 7: Structure of the song generated in this example.
The bottom row shows the individual measures and their
harmonies.

// Use tonic (0), third (2
Do.Apply (x = x.Pitches =

), and fifth (4) for chord
x .Harmony . Pitches (0, 2, 4))

Listing 6: Command that generates a triad in a diatonic
scale.

The arpeggios are generated in listing [/| Since arpeg-
gios consists of multiple notes, the measure needs to be
split further. The pattern is generated by branching on the
results of the split and assigning a different pitch index
to each part. Here the pattern is fixed, but it can be ran-
domized by selecting from a set of pitches or using pitch
interpolation. The result is shown in Figure|[§]

// Two repetitions of the pattern per measure

Do. SplitEven (2) ,

// Pattern for arpeggio

Do. Branch (
Do. SplitEven (4), // four notes
Do. Apply (x => x.Arpeggiolndex
Do. Apply (x => x.Arpeggiolndex
Do. Apply (x => x.Arpeggiolndex
Do. Apply (x = x.Arpeggiolndex

0), // first note
2), // second note
4), // third note
2) // fourth note

).
Do. Apply (x = x.Pitches =
x.Harmony . Pitches (x. Arpeggiolndex))

Listing 7: Sequence of commands that generates an
arpeggio of a diatonic triad.

Proceedings of CESCG 2018: The 22" Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 8: Generated chords and arpeggios.

5.4 Drum Set

In this example we generate a beat pattern with multi-
ple instruments controlled by a single Density attribute.
A low density should result in a slow pattern with fewer
events, while a high value should generate more events
and a pattern that feels more intense. Lerdahl found that
metrical patterns contain strong and weak beats depend-
ing on their position in a hierarchy [17]. The first beat
in a measure usually has the strongest accent. The next
levels can be constructed by recursively splitting the mea-
sure into two or three equal parts. The positions of the
splits mark the beats of each level. Listing [8]shows a re-
cursive rule for generating these levels and storing them in
the BeatLevel attribute.

Do.Rule(”measure”,
Do.Apply(x => x.BeatLevel += 1),
Do.Apply(x => x.BeatLevelCounter —= 1),

// Since BeatLevel is a Point<int> the second
split result

// has a level of zero.

Do. SplitEven (2),

// Final depth of hierarchy is reached.
Do.If(x => x.BeatLevelCounter <= 0,
Do.Rename(”beat”),
// Make sure the level is at least | for every
symbol .
Do. Apply (x = x.BeatLevel += 1)

)

Listing 8: Rule that generates a metrical hierarchy for a
measure. The BeatLevel attribute stores the symbols level,
with strong beats having the highest index.

We can compute a per-beat importance as a mixture of
the normalized beat level and a global density value for
the whole measure. By matching on different ranges of
this importance value we can assign different instruments
to different beats, for example a bass drum to the most
important beats, and a hi-hat to beats with lower impor-
tance. The result is visualized in Table[2] The first measure
only has beats on every quarter note, while the last mea-
sure shows an extremely dense beat pattern, so it seems to
work just as intended. By randomly offsetting the beat im-
portance by small values one can create a great variety of
different patterns. This concept can be applied to all rhyth-
mic aspects of music, such as harmony changes or notes in
melodies.

5.5 Listening Samples

The previous examples in this section have a very narrow
scope and are not interesting from a listener’s perspec-
tive. The following files were all generated from a single
grammar with five percussion mappings, one instrument

mapping for chords, and one instrument mapping for the
melody. The overall structure is ABAB with varying den-
sity values for each phrase as explained in Section[5.4] The
chord and melody instruments are assigned randomly from
a selection of options.

e Sample 1 =|::|

MIDI: https://zenodo.org/record/
1213678/files/620179078.mid
Sheet music: https://zenodo.org/record/
1213678/f11es/620179078.pdf

e Sample 2 -|::]

MIDI: https://zenodo.org/record/
1213678/files/711202203.mid
Sheet music: https://zenodo.org/record/
1213678/files/711202203.pdf

e Sample 3 -E:I

MIDI: https://zenodo.org/record/
1213678/files/711256687 .mid
Sheet music: https://zenodo.org/record/
1213678/files/711256687.pdf

6 Conclusion

We presented a generative grammar that can produce a
wide range of musical structures. The use of custom sym-
bols and mapping functions enables users to implement di-
verse musical ideas. The quality of the music depends on
the quality of the rules, so one needs a firm grasp on music
theory to define these grammars. Extending the built-in
musical abstractions might open up the system to users
with limited musical knowledge.

In the future we want to improve the symbol definition.
The various different behaviors that attributes should ex-
pose during splitting could indicate some deeper issues
with the current method. We also want to explore tech-
niques to better encapsulate symbol attributes. Currently,
attributes are declared globally, even though most rules
only depend on a specific subset. Finally, defining har-
monies and chord progressions using our scale model is
often too rigid. Lerdahl provides a more flexible model in
the form of pitch hierarchies [16], which could be incor-
porated in a future version.

References

[1] Charles Ames. The markov process as a composi-
tional model: a survey and tutorial. Leonardo, pages
175-187, 1989.

[2] John Biles. Genjam: A genetic algorithm for gener-
ating jazz solos. In Proceedings of the International
Computer Music Conference, pages 131-137. Inter-
national Computer Music Association, 1994.

Proceedings of CESCG 2018: The 22" Central European Seminar on Computer Graphics (non-peer-reviewed)















































https://zenodo.org/record/1213678/files/620179078.mid
https://zenodo.org/record/1213678/files/620179078.mid
https://zenodo.org/record/1213678/files/620179078.pdf
https://zenodo.org/record/1213678/files/620179078.pdf
https://zenodo.org/record/1213678/files/711202203.mid
https://zenodo.org/record/1213678/files/711202203.mid
https://zenodo.org/record/1213678/files/711202203.pdf
https://zenodo.org/record/1213678/files/711202203.pdf
https://zenodo.org/record/1213678/files/711256687.mid
https://zenodo.org/record/1213678/files/711256687.mid
https://zenodo.org/record/1213678/files/711256687.pdf
https://zenodo.org/record/1213678/files/711256687.pdf

Measure 1 Measure 2

Measure 3 Measure 4

Density 0.4 0.6 0.8 1.0

Level 5121312141213121 5121312141213121 5121312141213121 5121312141213121
Bass Drum  ........... ..., D Xewewwnn Kewueuunn Xoo.Xoo X Xouo
Snare Xeweunonn Xuevwwwon  aunn XoooXo. X X.X.X X.X.X LXXX XXX . XXX XXX
Hi-Hat Koo Xoo X X LLX.X.X.X. X XX, L XXXXXXX . XXXXXXX XXX XXX XXX XXX
Crash Kt tii et i e Xuevwwwene  ounn Xuvwunnn X R I S S
Tom N SIS SUAS SN X.X.X.. . X. LXXX XXX XXX XXX LXLXUXUXUXUXUXWX

Table 2: The Density and the 1-digit Level are combined to compute overall beat importance. The strings inside the cells
of the bottom rows visualize the generated beat patterns for each instrument. x indicates that the instrument is struck,

while .

(3]

[4]

[5]

(8]

[9]
[10]

[11]

[12]

[13]

[14]

Anthony R Burton and Tanya Vladimirova. Gener-
ation of musical sequences with genetic techniques.
Computer Music Journal, 23(4):59-73, 1999.

Chun-Chi J Chen and Risto Miikkulainen. Creating
melodies with evolving recurrent neural networks.
In Proceedings of the 2001 International Joint Con-
ference on Neural Networks (IJCNN-2001), pages
2241-2246. IEEE, 2001.

Noam Chomsky. Three models for the description of
language. IRE Transactions on information theory,
2(3):113-124, 1956.

Hang Chu, Raquel Urtasun, and Sanja Fidler. Song
from pi: A musically plausible network for pop mu-
sic generation. arXiv preprint arXiv:1611.03477,
2016.

Douglas Eck and Juergen Schmidhuber. A first look
at music composition using Istm recurrent neural net-
works. Istituto Dalle Molle Di Studi Sull Intelligenza
Artificiale, 103, 2002.

Alexander J Ellis. On the musical scales of various
nations. Journal of the Society of arts, 1885.

Thomas M Fiore. Music and mathematics, 2007.

Andrew Gartland-Jones and Peter Copley. The suit-
ability of genetic algorithms for musical composi-
tion. Contemporary Music Review, 22(3):43-55,
2003.

Gaétan Hadjeres and Frangois Pachet. Deepbach: a
steerable model for bach chorales generation. arXiv
preprint arXiv:1612.01010, 2016.

SR Holtzman. Using generative grammars for music
composition. Computer Music Journal, 5(1):51-64,
1981.

Allen Huang and Raymond Wu. Deep learning for
music. arXiv preprint arXiv:1606.04930, 2016.

Bruce Jacob. Composing with genetic algorithms.
In Proc. International Computer Music Conference
(ICMC ’95), pages 452—455. International Computer
Music Association, September 1995.

indicates that the instrument remains silent during that beat.

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

Vasanth Kalingeri and Srikanth Grandhe. Mu-
sic generation with deep learning. arXiv preprint
arXiv:1612.04928, 2016.

Fred Lerdahl. Tonal pitch space. Oxford University
Press, 2004.

Fred Lerdahl and Ray Jackendoff. A generative the-
ory of tonal music. 1983.

Jon McCormack. Grammar based music composi-
tion. Complex systems, 96:321-336, 1996.

Wolfgang A Mozart. Musikalisches wiirfelspiel: An-
leitung so viel walzer oder schleifer mit zwei wiirfeln
zu componieren ohne musikalisch zu seyn noch von
der composition etwas zu verstehen. Kochel Catalog
of Mozarts Work KVI Appendix 294d or KV6 516f,
1787.

Donya Quick and Paul Hudak. Grammar-based auto-
mated music composition in haskell. In Proceedings
of the first ACM SIGPLAN workshop on Functional
art, music, modeling & design, pages 59-70. ACM,
2013.

Paul Reiners. Cellular automata and music: Using
the java language for algorithmic music composition.
https://www.1bm.com/developerworks/
java/library/j—camusic/| (accessed Octo-
ber 19, 2016), 2004.

Curtis Roads and Paul Wieneke. Grammars as rep-
resentations for music. Computer Music Journal,
3(1):48-55, 1979.

Kathryn Vaughn. Music and mathematics: Modest
support for the oft-claimed relationship. Journal of
Aesthetic Education, 34(3/4):149-166, 2000.

Guy Warrack. Music and mathematics. Music &
Letters, 26(1):21-27, 1945.

Proceedings of CESCG 2018: The 22" Central European Seminar on Computer Graphics (non-peer-reviewed)


https://www.ibm.com/developerworks/java/library/j-camusic/
https://www.ibm.com/developerworks/java/library/j-camusic/

	Introduction
	Related Work
	Methodology
	Alphabet
	Matching
	Randomness
	Commands
	Context-Sensitivity

	Implementation
	Symbol Type
	Domain Specific Language
	Initializing the Axiom
	Defining the Grammar
	Relative Pitch
	Mapping Terminals

	Results
	Grouping Structure
	Melody with Pitch Interpolation
	Chords and Arpeggios
	Drum Set
	Listening Samples

	Conclusion

