
Extracting Sensor Noise Models – considering X / Y and Z Noise

Thomas Köppel ∗

Supervised by: Dr. Stefan Ohrhallinger †

Institute of Visual Computing and Human-Centered Technology
Technical University Vienna

Vienna / Austria

Figure 1: Conducting the Test Setup

Abstract

Depth maps or point clouds extracted by depth sensors are
prone to have errors. The goal of this work is the extraction
of these errors (the noise) and a statistical estimation using
a noise model. We have combined the sensor noise model
described in this work and the noise model described in
the work by Grossmann et al. [4], generating a single noise
model allowing a prediction of the amount of noise in spe-
cific areas of an image at a certain distance and rotation.
We have conducted two test setups and measured the noise
from 900 mm to 3.100 mm for the generation of the noise
models. The test setup of this work focuses on determin-
ing the noise in X, Y and Z direction, covering the whole
frustum of the respective depth sensor. Z noise was mea-
sured against a wall and X and Y noises were measured us-
ing a 3D chequerboard that was shifted through the room,
allowing the above-mentioned coverage of the whole frus-
tum. Along the edges of the cells of the chequerboard, the
X and Y noise was measured. The combined model was
evaluated by using a solid cube to classify the quality of
our noise model. The estimation of the noise is important
for applications like robot navigation that use data from
depth sensors [2] or when reconstructing a 3D scene cap-
tured by a depth sensor. [7]

∗e1327052@student.tuwien.ac.at
†ohrhallinger@cg.tuwien.ac.at

Keywords: noise model, surface reconstruction, sensor
noise

1 Introduction

Depth sensors are used in various areas nowadays like
computer vision, augmented reality, human computer in-
teraction, the gaming industry and many more [7]. Over
the last few years, many affordable depth sensors like the
KinectV1, KinectV2 and the Lenovo Phab2Pro arrived on
the market, offering depth sensors to a wider audience. But
the resulting captures from depth sensors (depth maps or
point clouds) suffer from noise. The identification and es-
timation of this noise is the main task of this work.

In general, our project consists of two parts focusing
on different test setups. These two setups got combined
and evaluated. The setup of Grossmann et al. [4] focused
on axial and lateral noise measurement, using a plane
placed in the centre of the captures with different rota-
tions. My setup focused on the work by Choo et al. [1].
The main contribution of this paper was to identify the be-
haviour of noise when considering the whole frustum of
the KinectV2.

Our main contributions are:

• Presenting an extraction algorithm for locating
squares of a chequerboard in depth images

• Extracting sensor noise in X, Y and Z direction cover-
ing the whole frustum of the respective depth sensor

• Generating a sensor noise model out of the noise data
and combining it with the work of Grossmann et al.
[4]

2 Previous Work

”Modeling Kinect Sensor Noise for Improved 3D Recon-
struction and Tracking”, published by Nguyen et al. [7]
(based on the work by Khoshelham et al. [5]), was one
of the first projects not only concentrating on axial noise
in Z direction but also considering the lateral component,
leading to better results especially in surface reconstruc-
tion. The main focus and contribution of their work was

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



identifying axial as well as lateral noise in the centre of
the depth maps by considering different rotation angles
and distances. The results of their measurements were in-
cluded into the KinectFusion pipeline for 3D reconstruc-
tion, leading to better results, less holes and less noise –
which increased the reconstruction accuracy. The main
findings were the linear increase of lateral noise with dis-
tance and a quadratic increase of axial noise. [7]

”Statistical Analysis-Based Error Models for the Mi-
crosoft KinectTM Depth Sensor” [1], by Choo et al., pro-
posed a new technique of acquiring noise models by con-
sidering the whole frustum of the KinectV2 depth sensor.
Their main contribution was including the position of an
object in the depth image to the noise model. The ax-
ial noise was measured against a flat surface. The lateral
part was extracted using a chequerboard made from LEGO
which covered the whole frustum of the captures, allow-
ing lateral noise calculation at the borders of the cells [1].
The generated noise model, which described their mea-
surements, showed a larger lateral noise in both X and
Y direction compared to the model of Nyguen et al. [7].
Choo et al [1] showed the importance of the pixel’s loca-
tion relative to the centre, potentially increasing the quality
of applications using the KinectV2.

3 Axial and Lateral Noise

The main focus of this work is the generation of a noise
model that describes the noise of the KinectV2 and the
Phab2Pro depth sensors considering the axial part in Z di-
rection and the lateral part in X and Y direction. The noise
is calculated as the standard deviation in mm based on dif-
ferences between the ground truth and the measurements.
Figure 2 shows the difference between axial and lateral
noise.

Z x

y

Figure 2: Explanation – Axial and Lateral Noise

Axial noise is measured along the viewing direction of
the respective depth sensor. Deviations along this axis are
considered being axial in Z direction. It describes the dif-
ference between the measured depth and the actual depth.
We used a plane modelled according to the data and mea-
sured the deviations of each pixel to that plane for the noise
calculation.

Lateral noise is measured at the axes perpendicular to
the Z axis. The lateral noise in X direction is measured
at the left and right edges of a rectangle, while the lat-
eral noise in Y direction is measured at the top and bottom
edges.

4 Our Setup

Our test setup used the method explained by Choo et al.
[1] using a flat plane and a 3D chequerboard for the noise
extraction. The depth sensors were placed onto a table in
the respective distance, facing a wall. The chequerboard
had a size of 76x76 cm. In order to allow a coverage of the
whole frustum of the sensors, this board had to be moved
along the wall. Therefore, a grid of masking tape was at-
tached to the wall to avoid irregularities while measuring.

Figure 3: Chequerboard

Figure 3 shows the chequerboard. It consists of
32 heightened squares allowing measurements along the
edges. The basis consists of a plywood plane with 4 LEGO
baseplates. The blue carton squares with a width of 9.2 cm
were elevated using LEGO bricks plugged on top of each
other. The squares were fixed using double faced adhesive
tape (see Figure 4). Metallic handles were attached to the
sides in order to allow proper holding of the board when
moving it across the wall.

In order to handle different cameras, we split the ap-
plication into two parts, a depth sensor specific applica-
tion for the data extraction and a Matlab application for
the noise calculation and noise model generation. The
two sensors were produced by two different companies al-
lowing data extraction over their own APIs. We created
two applications that use the respective APIs to extract the
depth information needed for our calculations.

5 Axial Noise Calculation

The axial noise is the deviation in the direction of the Z
axis. To achieve the extraction, point clouds were used. In

Carton
Adhesive Tape

LEGO Bricks

Figure 4: Single Square from the Side

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



our setup, the point clouds showing only the wall, covering
the whole frustum were used. These point clouds were
extracted at the distances from 900 mm to 3100 mm each
200 mm – captured 10 times. For the actual calculation of
the axial noise, a plane got fitted through each of the point
clouds. This plane was used as a ground truth of the wall.
Afterwards, the deviation from the distance of the plane
to the distance of the respecting points of the point clouds
was calculated for each of the 10 captures. Considering
these 10 point clouds, the standard deviation of each of
these 10 captures was calculated for each pixel coordinate
(X, Y). The standard deviation for each pixel is the axial
noise in Z direction.

Figure 5 shows a point cloud of the KinectV2 where the
sensor was placed at a distance of 900 mm away from the
wall. The black surface is the fitted plane – the ground
truth of the wall.

Figure 5: Point cloud of the KinectV2 at 900 mm distance
with the fitted plane

5.1 Ground Truth Estimation using Plane
Fitting

Our implementation used the Matlab function fit for the
plane fitting estimating the ground truth of the wall. This
function fits a plane trough the point cloud with minimal
distances over all points. The result of the fit function
is an equation that calculates Z dependent on the X and Y
values.

z = a∗ x+b∗ y+ c (1)

The function above is a linear function in dependence of
the variables X and Y. The Matlab function fit calculates
the best coefficients for the variables a, b and c. This fitted
plane was used as a ground truth for the noise calculation.

5.2 Noise Calculation

For calculating the axial noise, we used the Matlab func-
tion feval. This function used the fitted plane that was
extracted before. For each data point with X and Y pixel
coordinates, the distance from the plane was calculated,
resulting in a distance value for each pixel coordinate (X,
Y) for each distance for each of the 10 captures. The ax-
ial noise was the calculated standard deviation of all the
distance values.

6 Lateral Noise Calculation

Like mentioned beforehand, our test setup also calculated
the lateral noise in both X and Y direction. To achieve
this, a 3D chequerboard was used. The chequerboard was
measured, covering the whole frustum of the sensor at the
respective distance. The board had to be moved across the
wall and several captures had to be taken in each cell of
the grid. Noise was extracted at the edges of each che-
querboard field. Depending on how far the depth sensor
was away from the wall, the chequerboard needed to be
placed in a 3x3 up to a 5x4 grid. In each cell of the grid,
10 measurements were taken be the respective depth sen-
sor.

6.1 Step 1 - Thresholding and Area Selec-
tion

Firstly, the depth maps needed to be transformed into a
binary image to allow proper noise calculation along the
edges. Figure 6 shows the obtained depth maps at a dis-
tance of 1100 mm normalized between 800 mm and 1200
mm. All of these depth maps cover the whole frustum
of the sensor. In order to transform the depth maps into
binary images, a threshold needed to be selected leading
through the LEGO pillars. Using this threshold, objects
closer to the camera – especially the blue carton on top of
the LEGO pillars – were assigned 0 and all values behind
– like the wall – 1. This threshold needed to be slightly
adjusted for each distance and capture. Figure 6 shows the
resulting binary images after thresholding at a distance of
1100 mm.

In order to improve the automatic detection of the rect-
angles of the chequerboard, a preprocessing step needed to
be done because the structures of my colleague’s and my
body were disturbing the detection, leading to false posi-
tives. Therefore, a manual rectangle selection via a Matlab
script was added. For each image, a rectangle was selected
covering the position of the chequerboard in the respective
image.

6.2 Step 2 - Square Detection

In order to detect the squares for the lateral noise calcula-
tion, we used the previously selected rectangular areas of
the chequerboard and applied a Scale-Invariant Blob De-
tection in form of a Laplacian blob detector [6]. These de-
tected blobs could be transformed into the desired squares.

The scale (σ ) – the level where the blobs were found
according to the Scale-Invariant Blob Detection – repre-
sents the radius of the blob, which was considered half the
width of the square. The left upper corner of the squares
was calculated via subtraction of the radius from the centre
in x and y direction. From this left upper point, a square
with a side length of 2*radius was constructed to represent
a detected square of the chequerboard. Figure 7 shows
this transformation. Figure 8 shows the detected squares

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 6: Depth Maps of the KinectV2, Distance = 1100
mm, Binary Images after Thresholding are beneath

at a distance of 1100 mm of the respective location of the
chequerboard. These squares were used for further calcu-
lations.

Figure 7: Transformation of the detected blobs to squares

6.3 Step 3 - Region of Interest Selection for
X and Y Noise

The previously detected squares were used to select the
Regions of Interest where the lateral noise can be calcu-
lated for the X and Y direction. Lateral noise in X di-
rection was measured at the vertical edges of the detected
squares and lateral noise in Y direction at the horizontal
ones. Along these edges, rectangles were constructed with
an extended width or height in both directions orthogo-
nal to the detected edges, surrounding the edges. Figure
9 shows the constructed rectangles along the edges. They
covered a part of the black coloured chequerboard’s square
and a part outside in the white background region. Blue
rectangles mark the area for X noise while green rectan-
gles mark the area for the Y noise calculation. Blue rect-
angles had been decreased in height and green rectangles

Figure 8: Detected Squares after the Laplacian Operator at
a distance of 1100 mm

in width to minimize overflowing to other parts of the im-
age. Along the edges in the blue and green rectangles, a
standard deviation was calculated and noise extracted.

Figure 9: Detected Square with Rectangles for X and Y
Lateral Noise Calculation

Figure 10: Detected Squares with Rectangles for X and Y
Lateral Noise Calculation

6.4 Step 4 - Noise Calculation for X and Y
Noise

Noise could be calculated in the before mentioned rectan-
gles along the edges of the detected areas. The basic idea
was to reduce the selected area to a white line with a width
of one pixel. Using this row, the standard deviation was
calculated and the noise in X and Y direction extracted.

Before the actual reduction, the rectangles needed to
be transformed to an equal layout. The basic layout fol-
lowed the structure of the green rectangle at the top of the
squares. The matrix of the green rectangle on the bottom

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



simply needed to be flipped, the matrix of the blue rect-
angle on the right needed to be transposed and the blue
rectangle on the left needed to be flipped and transposed.

The next step was the above-mentioned reduction to a 1
px line of white pixels (value = 1) for the calculation of the
standard deviation. This algorithm works after following
scheme:

Data: Binary values of a rectangular area
Result: Reduced 1 px line
start at first column;
while currentColumn != lastColumn do

traverse from top to bottom;
if Value from current position == 1 then

if Value[row + 1] == 1 then
set value at current position = 0;

end
if Value[row + 1] == 0 and Value[row + 2]

== 1 then
set value at current position = 0;

end
end
switch to next column;

end
Algorithm 1: Reduction to a 1 px row

The function traverses each column of the detected rect-
angles around the edges. If the value in the next row is 1
and the current value is 1, then the current value gets as-
signed 0. This removes the white areas above the black
ones and leaves a 1 px – white line. The second if is nec-
essary for eliminating black interfering pixels. Figure 11
shows an example of the reduction algorithm.

Figure 11: Reduction of the binary values to a 1 px line

After the reduction, the standard deviation was calcu-
lated using the Matlab function std over the positions of
the white pixels. The returned standard deviation got mul-
tiplied by the distance and a constant, sensor specific fac-
tor.

σ[mm] = σ[pixel] ∗distance∗0.0028...KinectV2 (2)

σ[mm] = σ[pixel] ∗distance∗0.0057...Phab2Pro (3)

The returned noise is the actual lateral noise in either X
or Y direction, depending on the selected rectangle. The
noise corresponds to the real-world noise in mm. This
noise got saved with the current X and Y coordinates of
the centre of the selected rectangle.

7 Noise Model Hypothesis

We used a splitting into regions. The noises of the X, Y
and Z direction were handled independently. The previ-
ously calculated noise over the whole frustum was used
as input data. This area got split up into 8 rows and 8
columns (like Choo et al. [1] suggested). In each of these
cells, a mean value of the deviations was calculated. This
average noise was then taken as a representative value for
the respective cell. Figure 12 shows an example of the re-
gion splitting for the KinectV2 sensor in Z direction (axial
noise), starting at a distance of 900 mm at the top left and
ending at 3100 mm at the bottom right. The colouring em-
phasizes the average noise in the respective area. In the
dark blue cells, the average error is near 0 mm and at the
yellow areas about 12 mm. The farther away the measure-
ments were conducted, the higher the average error got
in these areas. Especially at the values measured above
2500 mm, the high noise produced by the depth sensor in
the corners is visible. These average noise values for each
region/cell are input values for RANSAC [3]. The noise
model is fitted in the first step. RANSAC [3] was then ex-
ecuted 1000 times to remove gross outliers. Considering
the KinectV2 in Z direction, 3.77% of the data values got
classified as gross outliers, leading to an average estima-
tion error of 0.6131 mm – meaning that the noise model
in average deviates with 0.6131 mm. To compare, simply
using a quadratic function for the fitting process without
the splitting into regions and RANSAC would have led to
an estimation error of about 3 mm.

Figure 12: 8 x 8 regions of Z Noise in mm

While modelling the axial noise, we decided to fur-
ther improve the results by using a cubic function. The
KinectV2 Z noise model using a cubic function achieved
an RMSE of 0.4852 mm and the Phab2Pro 1.0668 mm,
enhancing the results. Using a cubic function also led to
the best results at our evaluation. Table 2 shows the 30 co-
efficients for the functions for both depth sensors for the Z
noise (see equation 4).

The lateral noise was modelled by using a 0.9 per-
centile overestimation. We considered each slice of mea-

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



KinectV2 X KinectV2 Y
α[1] 6.6987e-09 3.9018e-09
α[2] -3.1781e-05 -1.3349e-05
α[3] 0.0518 0.013148
α[4] -23.4839 1.8268
RMSE(mm) 0.1465 0.0959

Phab2Pro X Phab2Pro Y
α[1] 4.3031∗10−9 1.9045∗10−9

α[2] −1.8169∗10−5 −5.0756∗10−6

α[3] 0.0284 0.0066
α[4] -11.4981 -0.6622
RMSE(mm) 0.3031 0.5689

Table 1: Results of the X and Y Noise Models (Equation
5) using the Regions Approach with Quantiles

surements – like seen in Figure 12 – and computed the 0.9
percentile. Equation 5 was used during the fitting leading
to the coefficients seen in Table 1.

σ(x,y,z) =α[1]+α[2]z
1 +α[3]z

2 +α[4]y
1 +α[5]y

1z1+

α[6]y
1z2 +α[7]y

2 +α[8]y
2z1 +α[9]y

2z2 +α[10]x
1+

α[11]x
1z1 +α[12]x

1z2 +α[13]x
1y1 +α[14]x

1y1z1+

α[15]x
1y1z2 +α[16]x

1y2 +α[17]x
1y2z1+

α[18]x
1y2z2 +α[19]x

2 +α[20]x
2z1 +α[21]x

2z2+

α[22]x
2y1 +α[23]x

2y1z1 +α[24]x
2y1z2 +α[25]x

2y2+

α[26]x
2y2z1 +α[27]x

2y2z2+

α[28]x
3 +α[29]y

3 +α[30]z
3

(4)

σ(z) = α[1]z
3 +α[2]z

2 +α[3]z+α[4] (5)

The noise model described in this work and the noise
model of Grossmann et al. [4] were combined into a sin-
gle noise model describing the axial and lateral noise for
both the KinectV2 and the Phab2Pro, taking the X and
Y pixel coordinates, the distance and the rotation into ac-
count. For the axial noise calculation, we decided to use
a weight function for the combination of our two noise
models. The model described in this work does not take
rotation into account, therefore, the more rotated the sur-
face is, the less influence does the noise model of this work
have. The model of Grossmann et al. [4] is entitled Model
1 and the model of this work Model 2 in the following
section.

Due to consistency, we used the 0.9 percentile for both
depth sensors for the two noise models, overestimating the
lateral noise so that 90% of the measured noise should be
below the estimated lateral noise for the X and Y direction
from our combined noise model. This procedure of taking
the 0.9 percentile is oriented at the work by Fankhauser et
al. [2].

KinectV2 Z Phab2Pro Z
α[1] 6.569 -20.2165
α[2] -0.0063664 0.025415
α[3] 4.5605e-06 -1.7253e-06
α[4] -3.2304 11.28
α[5] 0.0029717 -0.01511
α[6] -1.6241e-06 3.0272e-06
α[7] 0.46318 -1.5463
α[8] -0.00042755 0.0019859
α[9] 2.088e-07 -4.2756e-07
α[10] -2.9137 11.0018
α[11] 0.0027723 -0.01431
α[12] -1.6192e-06 2.6006e-06
α[13] 2.0513 -4.9918
α[14] -0.0021142 0.0070606
α[15] 8.908e-07 -1.5391e-06
α[16] -0.27216 0.6874
α[17] 0.00028939 -0.00097463
α[18] -1.1505e-07 2.2922e-07
α[19] 0.30466 -1.2972
α[20] -0.00025628 0.0015642
α[21] 1.6642e-07 -2.8225e-07
α[22] -0.20004 0.54637
α[23] 0.00020537 -0.00078213
α[24] -9.2035e-08 1.7218e-07
α[25] 0.026884 -0.076423
α[26] -2.8628e-05 0.00010955
α[27] 1.1963e-08 -2.6047e-08
α[28] -0.0037752 0.013358
α[29] -0.0029981 0.0101
α[30] -1.9996e-10 -5.6216e-10
RMSE(mm) 0.4852 1.0668

Table 2: Resulting coefficients for the Noise Model (Equa-
tion 4) using the Regions/Ransac Approach – Cubic Func-
tion

8 Evaluation

The combined noise model was evaluated through a real-
world scenario using a solid pressboard cube measured
with the KinectV2 and the Phab2Pro sensors. The cube
size is 300 x 300 x 300 mm. The cube got placed at differ-
ent positions covering the whole frustum in a 3 x 3 grid. At
each of these positions, the distance and the rotation of the
cube was altered. At a distance of approximately 1 m and 2
m, measurements were conducted, representing a near and
a far distance. A 0 and 45 degree rotation was used in order
to measure the cube, showing one and two faces. Through
tilting the depth sensors, depth images highlighting 3 faces
were measured. The noise calculation of the X, Y and Z
direction is similar to the described method, but only 1 im-
age was used per distance/rotation/position. These mea-
sured noises got compared to the combined noise model
afterwards. The rotation and distance could be extracted
manually due to the simplicity of the evaluation setup.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



The axial noise was measured at the captured surfaces
of the cube. At different orientations either 1, 2 or 3 faces
were visible that were selected manually during the evalu-
ation. In the next step, a plane was fitted through the cap-
tured data points and the noise was extracted – similar to
the test setup – by calculating the standard deviation from
the plane to the data points. The average distance value of
each plane was taken as the Z parameter for the evaluation.
Considering the rotation, the normal vectors between the
plane and the camera were used, allowing the calculation
of the angle.

The lateral noise was measured at the borders of the
cube similar to the extraction process in the test setup de-
scribed in this work. Due to the evaluation setup using a
rotated cube, the Y noise had to be extracted with an ad-
dition because of the tilted borders in the captures. Figure
13 shows an example. The red square in the left image
shows an explanatory area for the Y noise extraction of
the cube. In this area the reduction algorithm – explained
in 1 – was used, leading to a line with a width of 1 px, as
seen on the right side of Figure 13. In contrast to the test
setup, this line is tilted. Simply calculating the standard
deviation of the white pixels did not lead to the correct re-
sult. Therefore, we fitted a line (red) through the diagonal
line and calculated the standard deviation from that line.
The borders of the square were selected manually during
the evaluation process. The X and Y pixel coordinates of
the centres of the red squares and the distance of the cube
were used for the evaluation.

Figure 13: Y Noise Extraction during the Evaluation

8.1 Results

We decided to use the RMSE as a quality measure showing
the deviation from the measured noise of the evaluation
setup compared to the estimation of our combined noise
model. Because we used the 0.9 percentile, overestimating
the lateral noise component, we checked, how many of the
measured lateral noises of the evaluation setup were under
the specified threshold of the combined noise model.

Figure 14 shows the results of the axial evaluation on the
top of the KinectV2 and on the bottom of the Phab2Pro.
Each point in this scatter-plot represents a measured sur-
face of the cube at the rotation given by the X axis and the
distance given by the Y axis. Each point was coloured in a
divergent colour scheme showing colours from red to blue.
The bars on the right side of the scatter-plots show the dif-
ferent deviations from the estimated model, highlighted by

KinectV2 Phab2Pro
Model 1 0.8947 2.5146
Model 2 1.5197 4.1739
Combined (averaged) 1.1780 2.0438
Combined (weighted) 0.8926 1.7856

Table 3: RMSE for the Axial Evaluation [4]

KinectV2 Phab2Pro
X – Combined (averaged) 94.4 93.4
Y – Combined (averaged) 94.4 94.8

Table 4: Resulting percentages of our estimated 0.9 per-
centiles

a colour. If a point in the scatter-plot is white, the RMSE
is between -0.7 mm and 0.7 mm. The red colour shows
a higher positive deviation and the blue colour shows a
higher negative deviation.

Model 2 generally underestimated the axial noise when
the object got rotated because rotation was not measured
during this test setup. Table 3 shows the RMSE values
of the different models. The general underestimation of
Model 2 is visible in the scatter-plots of Figure 14. The
RMSE values of Model 2 are, therefore, generally higher
than Model 1. Simply averaging the two models led to
worse results than taking only Model 2. Therefore, we
decided to introduce a weight function to our combined
noise model. The more rotated the object is, the less in-
fluence does Model 2 have. In case of the KinectV2, the
resulting combined noise model shows a slightly smaller
RMSE, while the RMSE of the combined model for the
Phab2Pro shows a significantly smaller error.

Figure 15 shows the evaluation of the lateral compo-
nents X and Y, while Table 4 shows the percentage values
of how many values at the borders of the cube were under
our estimated threshold. As mentioned above, we used
the 0.9 percentile for the lateral noises. The circles in the
scatter-plots 15 show the X-deviations while the rhombi
show the Y-deviations of the KinectV2 on the top and the
Phab2Pro on the bottom. The X and Y axes describe the
pixel coordinates of the measured border of the cube. The
distances of the measurements are not shown in the scatter-
plots, but they all lie between 1 m and 2 m. The percentage
values of 4 show a sophisticating result, therefore, simply
averaging the two noise models was sufficient for the lat-
eral case.

9 Conclusion

We have created a combined noise model consisting of two
different test setups, estimating axial and lateral noise for
the KinectV2 and the Phab2Pro. Others have already de-
veloped noise models for the KinectV2, but we investi-
gated the noise of the Phab2Pro for the first time.

The first setup was described by the work of Grossmann

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)



0 20 40 60
θ [°]

1000

1500

2000

z 
[m

m
]

KinectV2 - Axial Evaluation: Combined

-3

-2

-1

0

1

2

3

E
rr

or
 [m

m
]

0 20 40 60
θ [°]

1000

1500

2000

z 
[m

m
]

Phab2Pro - Axial Evaluation: Combined

-3

-2

-1

0

1

2

3
E

rr
or

 [m
m

]

Figure 14: Results of the final Axial Model for both sen-
sors [4]

et al. [4] – measuring noise, using a plane placed at differ-
ent distances, rotated to different orientations. The axial
noise was measured at the surface of the plane, while the
sensor was aligned horizontally and rotated by 90 degrees,
in order to extract both the lateral noises in X and Y direc-
tion.

The second setup, described in this work, covers the
whole frustum, taking the position in pixel coordinates and
the distance into account. A 3D chequerboard was used to
extract both lateral noises in X and Y direction at the edges
of each field of the chequerboard.

Using the measurements of the two test setups, two em-
pirically derived noise models were created and combined
into a single one by using a weight function. The com-
bined model was evaluated using a solid cube placed at
different locations and orientations, leading to sophisticat-
ing results underlining the quality of our resulting noise
model.

The model could further be improved by experimenting
with different fitting functions and developing other im-
provements and techniques specifically aimed at a better
coverage of the data, resulting in a smaller RMSE.

References

[1] Benjamin Choo, Michael J. Landau, Michael D. De-
Vore, and Peter A. Beling. Statistical analysis-based
error models for the microsoft kinect depth sensor. In
Sensors, 2014.

0 200 400
x [px]

0

100

200

300

400

y 
[p

x]

KinectV2 - Lateral Evaluation: Combined

-3

-2

-1

0

1

2

3

E
rr

or
 [m

m
]

X-Deviation
Y-Deviation

0 50 100 150 200
x [px]

0

50

100

150

y 
[p

x]

Phab2Pro - Lateral Evaluation: Combined

-3

-2

-1

0

1

2

3

E
rr

or
 [m

m
]

X-Deviation
Y-Deviation

Figure 15: Results of the Lateral Evaluation

[2] Péter Fankhauser, Michael Bloesch, Diego Rodriguez,
Ralf Kaestner, Marco Hutter, and Roland Siegwart.
Kinect v2 for mobile robot navigation: Evaluation and
modeling. In Advanced Robotics (ICAR), 2015 Inter-
national Conference on, pages 388–394. IEEE, 2015.

[3] Martin A Fischler and Robert C Bolles. Random sam-
ple consensus: a paradigm for model fitting with ap-
plications to image analysis and automated cartogra-
phy. Communications of the ACM, 24(6):381–395,
1981.

[4] Nicolas Grossmann. Extracting Sensor Specific Noise
Models. Bachelor’s thesis, TU Wien, Austria, 2017.

[5] Kourosh Khoshelham and Sander Oude Elberink. Ac-
curacy and resolution of kinect depth data for indoor
mapping applications. Sensors, 12(2):1437–1454,
2012.

[6] David G Lowe. Object recognition from local scale-
invariant features. In Computer vision, 1999. The pro-
ceedings of the seventh IEEE international conference
on, volume 2, pages 1150–1157. Ieee, 1999.

[7] Chuong V Nguyen, Shahram Izadi, and David Lovell.
Modeling kinect sensor noise for improved 3d recon-
struction and tracking. In 2012 Second International
Conference on 3D Imaging, Modeling, Processing, Vi-
sualization & Transmission, pages 524–530. IEEE,
2012.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)


