
Bidirectional Path Tracing

Michal Vlnas∗

Supervised by: Pavel Zemcik†

Faculty of Information Technology
Brno University of Technology

Brno / Czech Republic

Abstract

This paper discusses an experimental implementation of
the bidirectional path tracing algorithm. The mathematical
derivation of the bidirectional estimator using the Monte
Carlo method is shown. Moreover, an explanation on
how path tracing and light tracing are subsets of the bidi-
rectional approach. Furthermore, a comparison between
the bidirectional and the naive path tracing algorithm is
shown. Bidirectional path tracing is used to create images
of 3D scenes, such that the global illumination is faithful
to reality. The naive algorithm is quite inefficient, so many
optimized modifications have been developed where one
of the most efficient and important extensions is the bidi-
rectional approach. It combines the ideas of shooting and
gathering light to create a photorealistic images. Finally,
this paper shows a comparison of proposed implementa-
tion and state-of-art methods.

Keywords: bidirectional path tracing, global illumina-
tion, path tracing, light tracing, rendering equation

1 Introduction

Figure 1: Schematic representation of BDPT

The goal of global illumination algorithms is to render im-
ages faithful to reality. Many methods focusing on solving
such problems exist. One of such methods is path tracing,
which is quite popular nowadays. By shooting rays from
the eye into the scene one can compute how much light
reaches the eye. When the naive algorithm is used, some
∗xvlnas00@stud.fit.vutbr.cz
†zemcik@fit.vutbr.cz

scenes can be really slow to render, especially when they
contain caustics.

Another possibility to solve global illumination is to use
the light tracing algorithm which shoots rays directly from
light sources. As it turns out, light tracing can render caus-
tics quite efficiently, but it is quite weak in rendering other
details.

A bidirectional path tracer (BDPT) combines these two
techniques mentioned above. It shoots rays from the eye
and the light towards each other. These paths are inter-
connected with each other under certain circumstances.
The diagram is shown in Figure 1.

2 Background

In 1986, James Kajiya introduced the rendering equation
[2] and presented a new form of ray-tracing, called path
tracing, opening new solutions for light transport simula-
tion using random sampling with the Monte Carlo method.
The basic idea was to sample the flux through the pix-
els, gathering light by following paths back to the light
sources. It was shown, Monte Carlo techniques can make
the most general lighting effects but they require a lot of
effort and resources.

Later in 1993, Lafortune continued with his work and
presented a new technique – bidirectional path tracing [3]
which combines the eye path together with the light path,
which enormously reduces number of rays with zero con-
tribution. The basic idea is that rays are shot at the same
time from the viewing point and from a selected light
source. After that, all hit points on their paths are inter-
connected with a shadow ray, causing the appropriate con-
tribution.

In 1995, Erich Veach with L. J. Guibas published the
idea of multiple importance sampling [7] showing that a
proper weight function for each traced path can reduce
noise very significantly. Also they defined multiple ef-
fective weight functions such as the balance or the power
heuristic. Another extension of path tracing was presented
in 1997 by Eric Veach and L. J. Guibas as metropolis light
transport [8], which was focused on re-using already sam-
pled paths.

At the beginning of the 21st century, a new direction

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

was focused on programmable GPUs. In 2002 Timothy
Purcell introduced the first ray tracing based algorithm us-
ing the GPU [4].

3 Mathematical representation

This section describes the mathematical formulations of
the basic rendering equation, the path tracing, as well as
Monte Carlo method in solving integral equations; finally
it defines a bidirectional estimator.

3.1 Rendering equation

The rendering equation can be used to describe outgoing
radiance on any surface point. The amount of outgoing ra-
diance L(x,ω0) from point x in direction ω0 can be com-
puted as the sum of emitted radiance and reflected radiance
[2].

L(x,ωo) = Le(x,ωo)+Lr(x,ωo) (1)

Emitted radiance Le(x,ωo) from point x in direction ωo
is defined only in light sources, otherwise it is zero.

Lr(x,ωo) =
∫

Ω

L(x′,−ωi) fr(x,ωi,ω0) |Nx ·ωi|dωi (2)

Reflected radiance Lr(x,ωo) is computed as all incom-
ing light in the point x, reflected in the direction ωo, where
L(x′,−ωi) represents all incoming radiance from the di-
rection ωi. To find out how much radiance is actually re-
flected, it is multiplied by the bidirectional reflectance dis-
tribution function (BRDF) fr(x,ωi,ωo). Finally it is mul-
tiplied with the dot product between the normal vector in
the point x and the direction ωi.

3.2 Path tracing

Figure 2: Path tracing schema – focused in point x

Path tracing, illustrated in Figure 2, solves the rendering
equation (1) by using Monte Carlo integration. Instead
of integrating over the whole hemisphere, this algorithm
samples the hemisphere to get the single direction ωi. The
radiance reflected from ωi is then divided by a probabil-
ity density function (PDF) of the sampling ωi, e. g. using

a uniform distribution over the hemisphere gives a PDF
equal to 1

2π
. An intuitive form of hemisphere sampling is

illustrated in Figure 3.

Figure 3: a) Illustration of hemisphere sampling. b) Uni-
form versus cosine weighted probability density function
of upper hemisphere sampling.

The rendering equation estimated with Monte Carlo in-
tegration is the following:

L(x,ωo) = Le(x,ωo)+
L(x′,−ωi) fr(x,ωi,ωo) |Nx ·ωi|

p(ωi)
(3)

Obviously, the previous equation (3) can be evaluated in
a recursive manner. A ray can be traced from the camera
eye into the nearest hit point x, then sample a new direction
ωi above x and repeat these steps until a defined maximal
path length or by using some kind of termination condi-
tion, such as Russian roulette, described in Veach thesis
[6].

The significant problem of the algorithm mentioned
above is that many paths will never hit a light source,
therefore their contribution will be zero. For example,
when a point light is used, the probability of hitting the
light source is close to zero. This can be solved by sepa-
rating the direct and the indirect component from (2), such
as Shirley et al. [5]. It gives us:

Lr(x,ωo) = Ldirect +Lindirect (4)

The first part of the right side of the previous equation,
representing direct lighting, can be computed as:

Ldirect =
∫

A
Le(x′→ x) fr(x,

−→
x′x)G(x↔ x′)dAi (5)

where Le(x′→ x) is emitted light and G(x↔ x′) is a ge-
ometric coupling term, which is described below. It is in-
tegrated over the whole area of the light. Indirect lighting

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

corresponds to (2). G(x↔ x′) is a geometric term which
is defined as:

G(x↔ x′) =V (x↔ x′)
|Nx ·
−→
x′x||Nx′ ·

−→
xx′|

||x−x′||2
(6)

where V (x↔ x′) is a visibility function, which is equal to
1 if a ray can be shot directly from point x to x′ without
hitting anything else, otherwise it is equal to 0.

3.3 Applying path integral

As it may be seen, the rendering equation (1), which is
integrated over all directions, can be transformed with
the path integral formulation of the light, as presented in
Veach thesis [6], into a finite equation which is integrated
over surface area. So the overall problem can be rewritten
as:

Lp =
∫

D
f j(p̄)dD (7)

which represents radiance Lp, that flow through a pixel,
where D are all the possible light paths in the scene, p̄ is
a single light path, an example of the path can be seen in
Figure 4, and f j is a measurement function of light contri-
bution.

Figure 4: Light path p̄: light coming from x′′ is reflected
in point x′ towards x (arrows oriented in the direction of
tracing)

Also, the previous equation (7) can be approximated us-
ing Monte Carlo integration by taking the average of N
randomly sampled paths:

Lp =
1
N

N

∑
i=0

f j(p̄i)

p(p̄i)
(8)

where p(p̄i) is the PDF of sampling path p̄i. As written
in Veach thesis [6], the PDF is usually given in respect to
the solid angle p(ω), for example, when sampling a new
direction using the BRDF. The conversion into a PDF with
respect to surface area p(x) is written as:

p(x) = p(ω)

(
|Nx′ ·

−−→
x′x′′|

||x′′−x′||2

)
(9)

Similarly, if we apply Monte Carlo integration on a con-
crete measurement (4) with conversion to the surface area,
then we get:

Lp =
1
N

N

∑
i=0

Lpi (10)

where Lp is a radiance measurement of pixel and Lpi is
the radiance of a single sample. After applying the path
integral on Lpi we get:

Lpi =
NE

∑
t=0

Ct (11)

where Ct is the contribution of a single path of length t and
NE is the maximum path length.

Now let us apply Monte Carlo integration on the contri-
bution Ct , which gives us:

Ct =
Le(y0,

−−→y0xt)

p(y0)
fr(xt ,

−−→xty0,
−−−→xtxt−1)G(xt ↔ y0)

t−1

∏
i=1

fr(xi,
−−−→xixi+1,

−−−→xixi−1)
∣∣Nxi ·

−−−→xixi+1
∣∣

p(−−−→xixi+1)

(12)

The first part of the equation corresponds to the direct
lighting from y0 onto xt , where Le(y0,

−−→y0xt) is the amount
of radiance from point y0 going in the direction towards
xt . Then it is multiplied with the geometric term, defined
above and also with the BRDF. The rest of the equation
belongs to indirect lighting. It is computed for each point
on the path as the product of BRDF and the dot product,
divided by the PDF relative to the BRDF.

3.4 Bidirectional approach

This approach combines the strategies of gathering and
shooting rays. Gathering rays from a point on a surface
refers to path tracing, which is defined in previous equa-
tion (12). The principle of shooting rays is called light
tracing, which is necessary to be defined to finish the
BDPT relation.

As proved in Veach thesis [6], each measurement can
be written in form of equation (7) using the path integral
framework. Then light tracing, which represents a light
path from a point on the surface of a randomly selected
light, can be written as:

Lp =
NL

∑
s=0

Cs

∣∣∣∣Ppixel−Peye
∣∣∣∣2

cos(θ)2Apixel
(13)

where the sum represents path, from point y0 to the maxi-
mum path length NL, Cs is the single path contribution and
the rest of equation is the conversion from flux to radiance.
Contribution Cs can be computed as:

Cs =
Le(y0,

−−→y0y1)

p(y0,
−−→y0y1)

fr(ys,
−−−→ysys−1,

−−−→ysys+1)G(ys↔ x0)

We(x0,
−−→ytx0)

p(x0)

(
s−1

∏
i=1

fr(yi,
−−−→yiyi+1,

−−−→yiyi−1)
∣∣Nyi ·

−−−→yiyi+1
∣∣

p(−−−→yiyi+1)

)
(14)

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

The first part is the emitted light Le(y0,
−−→y0y1) from the light

source at point y0. The PDF p(y0,
−−→y0y1) is probability of

selecting a ray in the direction −−→y0y1. Considering a light
that has an uniform distribution of the emitted light, then
probability density function is:

p(y0,
−−→y0y1) =

1
Alight2π

because y0 can be sampled over the light area Alight in
all directions over the hemisphere above the point y0.
We(x0,

−−→ytx0) is the potential of the light ray going straight
from the light source to the pixel, which is equal to 1, when
the ray is in front of the camera, and when using a pinhole
camera, where only one direction exists for each point x.
Also when using a pinhole camera p(x0) is equal to 1 as
well, because only x0 can be chosen as point.

The next part fr(ys,
−−−→ysys−1,

−−−→ysys+1)G(ys ↔ x0) repre-
sents a direct ray from ys to the eye x0. The third part
of the equation is the product of: the BRDF, multiplied
with the dot product between normal and direction −−−→yiyi+1
and normalized by the PDF.

3.5 BDPT estimator

We have already defined both strategies of ray evaluation.
Bidirectional path tracing can now be defined as:

Lp =
NL

∑
s=0

NE

∑
t=0

ws,t ·Cs,t (15)

where Cs,t is the unweighted contribution of a path with
s vertices on the light path and t vertices on the eye path.
A visibility check between sth point on the eye path and
tth point on the light path is a part of the geometric term
in contribution function. And finally, ws,t is the weight
function.

As it can be seen, evaluation of Cs,t is dependent on
the eye and light path; therefore, there are four important
cases:

• s = 0, t = 0 – light is directly visible from the eye, the
evaluation can be done with direct path between eye
the point x0 and y0:

C0,0 = Le(y0,
−−→y0x0)G(y0↔ x0)

• s > 0, t = 0 – this term is the classic light tracing al-
gorithm, defined in (14)

• s = 0, t > 0 – this case corresponds to the classic path
tracing, which is defined in (12)

• s > 0, t > 0 – the final case is the evaluation of radi-
ance, from the eye path t connected with s vertices of

the light path, reaching the pixel, defined in the Equa-
tion (16).

Cs,t =
Le(y0,

−−→y0y1)

p(y0,
−−→y0y1)

G(ys↔ xt)

fr(xt ,
−−→xtys,

−−−→xtxt−1) fr(ys,
−−−→ysys+1,

−−→ysxt)(
t−1

∏
i=1

fr(xi,
−−−→xixi+1,

−−−→xixi−1)
∣∣Nxi ·

−−−→xixi+1
∣∣

p(−−−→xixi+1)

)
(

s−1

∏
i=1

fr(yi,
−−−→yiyi+1,

−−−→yiyi−1)
∣∣Nyi ·

−−−→yiyi+1
∣∣

p(−−−→yiyi+1)

)
(16)

3.6 Weight function

Many ways to create a weight function ws,t are possible.
One approach could be to define such a weight function
that strictly uses only eye/light paths, however this way is
quite wasteful, since it throws away many already sampled
paths. A better approach is to use multiple importance
sampling.

It is obvious that each path with s+ t points can be sam-
pled in s+ t − 1 different ways. Each path should have
such weight, that together all weights sum to 1. In E.
Veach work [6, 7] it is described, that the most effective
way to use multiple importance sampling, in order to cre-
ate a weight function is with the power heuristic:

ws,t =
pβ

s

∑
s+t−1
i=0 pβ

i

(17)

where recommended value is β = 2, according to E. Veach
[6].

ws,t =
p2

s

∑
s+t−1
i=0 p2

i
=

1

∑
s+t−1
i=0 (pi/ps)2

(18)

where pi is defined as the density for generating path xs,t
using i sub light path vertices and s+ t − i eye sub path
vertices:

pi = pi,s+t−i(xs,t)

and ps is the actual probability with which the path was
generated. According to Veach [6], the current value can
be set to ps = 1 and the values of the other pi relative to ps
can be computed using ratio:

pi+1

pi
=
←−pi (x)
−→pi (x)

(19)

According to Gerogiev [1], the power heuristic equation
(18) can be split into two parts, determining camera and
light weight independently.

ws,t =
1

∑
s−1
i=0 (pi,s+t−i/ps,t)2 +1+∑

s+t
i=s+1(pi,s+t−i/ps,t)2

=
1

wlight,s−1 +1+wcamera,t−1
(20)

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

The camera and light weights are defined as:

wcamera,i =
←−pi (x)
−→pi (x)

(wcamera,i−1 +1)

wlight,i =
←−pi (x)
−→pi (x)

(wlight,i−1 +1)
(21)

where these weights can be evaluated progressively during
ray tracing from their own perspective.

4 Implementation

The implementation is focused on light and eye path gen-
eration, direct illumination, vertex connections, and also a
basic implementation of multiple importance sampling is
shown in form of weight functions.

4.1 BDPT algorithm

First, we define the main algorithm, which is the crucial
part of the implementation.

Algorithm 1 BDPT

1: function RUN(Scene)
2: define number of light and eye paths to be proceed

3: for all light paths do . light path processing
4: GenerateLightSample()
5: while tracing do
6: if !Trace then
7: break
8: BRDF ← initialize BRDF on hit point
9: if BRDF is not delta then

10: vertex← fill light vertex
11: store vertex into light path storage
12: JoinWithCamera()
13: if path is too long then
14: break
15: Sample()← sample new point or end path
16: store light path length

17: for all eye paths do . eye path processing
18: GenerateEyeSample()
19: color← fill with zero
20: while tracing do
21: if !Trace then
22: break
23: BRDF ← initialize BRDF on hit point
24: if BRDF is not delta then
25: color += DirectIllumination()
26: for all corresponding light paths do
27: color += ConnectVertices()
28: if path is too long then
29: break
30: Sample()← sample new point or end path
31: store color in frame buffer

Figure 5: Schematic representation of Algorithm 1

In Algorithm 1, at first, the path count to be processed
is defined, which is the same for light and eye paths, be-
cause it is important to have only one corresponding path
for the eye path. Then in the iteration over all light paths,
it is important to sample the first point on the path, from a
random light source in the scene. From this point the algo-
rithm traces the path till the end, which can be defined by a
hard limit or for example by Russian roulette, or both. The
vertices are then joined into the camera, unless the BRDF
is a delta function, which is typical for purely specular sur-
faces, which would create a lot of variance. Sampling of
the new point on the light path depends on the hit points
BRDF. Different sampling optimization techniques can be
used, the importance sampling is used in this implementa-
tion. More about this is discussed in Section 4.2.

With the eye path, it is really similar with the light path,
with the difference, that for non-delta surfaces it is nec-
essary to compute direction illumination on the hit points
and create connections between corresponding light path
vertices and the current point. More about this is shown in
section 4.5. Also, the eye path sample has its origin on the
camera point in direction towards the scene. Each part of
the algorithm is illustrated in Figure 5.

From this algorithm, it is obvious that it creates only
a single sample per pixel, In practice, it is recommended
to run it more times and divide the frame buffer by the
number of iterations, to create a less noisy image.

4.2 Light path sampling

Algorithm 2 Generating light sample

1: function GENERATELIGHTSAMPLE
2: light← choose random light in the scene
3: prob← compute probability of light picking
4: prob← scale prob with sampling probability
5: cast ray in random direction from sampled point

As shown in Algorithm 2, at first, one needs to choose a
random light and then sample a point on its surface. It
is substantially important to compute the correct proba-
bilities, in respect to the light count and the light surface
probability density function.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

4.3 Eye path sampling

The origin of the ray is in the camera, when using a pinhole
camera, it is always the same point. The ray is then cast
into the selected pixel direction. The count of all eye paths
is strictly equal to the pixel count on the image plane.

Algorithm 3 Generating eye sample

1: function GENERATEEYESAMPLE
2: xy← get XY coords for current path
3: cast ray from camera into point xy

4.4 Direct illumination

As shown in Algorithm 1, direct illumination is computed
only when the surface BRDF is no delta function, so it is
not evaluated for purely specular surfaces, which must be
strictly omitted.

Algorithm 4 Direct illumination

1: function DIRECTILLUMINATION
2: light← pick a light
3: occlude test
4: compute light intensity illuminating shaded point

Therefore, the implementation consists only of shadow
ray casting, which directly transports light from the source
to the point of interest.

4.5 Vertex connections

The connection between vertices is a straightforward im-
plementation of the equation (16), which basically is the
product between eye and light path BRDF scaled with ge-
ometric coupling term. Also the occlusion test is required
to be done, to prevent connecting vertices which are invis-
ible to each other.

4.6 Multiple importance sampling

Obviously, the implementation of (21) still cannot be done
with the algorithm defined above. As partly shown by
Georgiev [1], one can rewrite this equation into the form:

wi =
←−pi (x)(vci + vcmi)

vci =
1
−→pi

vcmi =
←−−gi−1
−→pi

(vcmi−1 +
←−−−pσ ,i−2vci−1)

(22)

where←−−gi−1 is the conversion factor from solid angle to area
surface measure. In that form it can now be implemented,
it is just necessary to store probabilities during the ray trac-
ing iterations.

5 Results

The described algorithm was written in standard C++11.
Based on this implementation, tests were divided into two
parts. The first tests (see Figure 6) have shown a compar-
ison between BDPT and naive PT/LT, also a difference of
using BDPT with and without multiple importance sam-
pling. The test scene consist of the simple cornell box
cube with a glossy floor and three spheres – a perfect mir-
ror, a textured diffuse and a smooth dielectric; and the light
source is an area light. From the results can be seen the big
impact of the light source size which increases number of
PT zero contribution rays (about 35 percent, see Table 1).
For the obvious reasons, LT is totally ineffective for such
scene.

A quite considerable difference is also between the
BDPT with uniform weighted paths and the BDPT with
multiple importance sampling, using the power heuristic
(Figure 6d and Figure 6e).

The second part of the test if focused on comparing the
proposed implementation with existing state-of-art meth-
ods, using the Mitsuba renderer. The scene in Figure 7
is the cornell box with a textured diffuse, a perfect mir-
ror and a smooth dielectric glass sphere, illuminated with
the directional sun light. It shows that the proposed imple-
mentation achieves a little bit better quality in the whole
image measured with mean-square-error against Mitsuba,
see Table 2, and in a scene with detailed caustics stays a
little behind, according to MSE, see Table 3. All these
measures are also quite burdened with the inaccuracy of
MSE measurement. In the most cases proposed impl. was
faster than Mitsuba, or equally fast.

6 Conclusions

An experimental implementation of bidirectional path
tracing is presented in this article, showing comparison of
the naive methods with the BDPT and with Mitsuba ren-
derer. Even though the BDPT algorithm uses more rays
during the processing than PT, so that it takes longer to
render final image, for still the most computational time is
spent by ray intersection, it is more effective for compli-
cated scenes with any type of the light source, as it signif-
icantly reduces the number of the rays with zero contribu-
tion. It reduces variance at all in less samples per pixel.
Also with using the effective weight function, it converges
even faster. In comparison with the other state-of-art meth-
ods such as Mitsuba BDPT module, the proposed imple-
mentation provides a similar quality of the final image and
it is slightly faster.

Further research can be focused on techniques of effi-
cient sampling such as an adaptive importance sampling.
Another way is making a real-time path tracer, accelerated
on the GPU. The third way is the integration of denoising
filters during processing.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) Light tracing (b) Path tracing (c) PT with DI (d) BDPT (e) BDPT with MIS

Figure 6: DI stands for the direct illumination. All images were rendered with 60 samples per pixel

(a) Mitsuba test scene (b) Proposed impl. test scene (c) Mitsuba caustics (d) Proposed alg. caustics

Figure 7: Comparison between the proposed implementation and Mitsuba; a), b) 64 s. p. pixel; c), d) 128 s. p. pixel

PT MIS-BDPT
rays 65 mil. 251 mil.
zero contrib. 22 mil. 15 mil.
time 12s 30s

Table 1: PT and BDPT comparison

Cornell box scene
MSE time

Mitsuba 99.57 32.4s
Proposed impl. 64.15 27.6s

Table 2: Proposed impl. and
Mitsuba MSE comparison in

cornell box scene

Caustic detail
MSE time

Mitsuba 59.94 58.1s
Proposed impl. 80.27 56.4s

Table 3: Proposed impl. and
Mitsuba MSE comparison in scene

focused on caustic details

References

[1] Iliyan Georgiev. Implementing vertex connection and
merging. Technical report, Saarland University, 2012.

[2] James T. Kajiya. The rendering equation. In Pro-
ceedings of the 13th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH
’86, pages 143–150, New York, NY, USA, 1986.
ACM.

[3] Eric P. Lafortune and Yves D. Willems. Bi-directional
path tracing. In Proceedings of Third International
Conference on Computational Graphics and Visual-
ization Techniques (Compugraphics ’93), pages 145–
153, Alvor, Portugal, December 1993.

[4] Timothy J. Purcell, Ian Buck, William R. Mark, and
Pat Hanrahan. Ray tracing on programmable graphics
hardware. ACM Trans. Graph., 21(3):703–712, July
2002.

[5] Peter Shirley, Changyaw Wang, and Kurt Zimmer-
man. Monte carlo techniques for direct lighting cal-
culations. ACM Trans. Graph., 15(1):1–36, January
1996.

[6] Eric Veach. Robust Monte Carlo Methods for Light
Transport Simulation. PhD thesis, Stanford, CA,
USA, 1998. AAI9837162.

[7] Eric Veach and Leonidas J. Guibas. Optimally com-
bining sampling techniques for monte carlo render-
ing. In Proceedings of the 22Nd Annual Conference on
Computer Graphics and Interactive Techniques, SIG-
GRAPH ’95, pages 419–428, New York, NY, USA,
1995. ACM.

[8] Eric Veach and Leonidas J. Guibas. Metropolis light
transport. In Proceedings of the 24th Annual Con-
ference on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’97, pages 65–76, New York, NY,
USA, 1997. ACM Press/Addison-Wesley Publishing
Co.

Proceedings of CESCG 2018: The 22nd Central European Seminar on Computer Graphics (non-peer-reviewed)

