An Algorithm Recreating 3D Triangle Mesh Faces from Its Edges

Marek Zabran*
Supervised by: Libor Vasa'

Department of Computer Science and Engineering
University of West Bohemia
Pilsen / Czechia

Abstract

3D triangle meshes are usually represented by a set of
points with geometrical coordinates and a set of faces rep-
resented by triplets of these points. Multiple algorithms
reconstructing a set of faces from a set of points and a set
of edges were proposed in the literature, however, none of
these can effectively reconstruct the set of faces using only
the set of edges.

In this paper, such an algorithm is presented, which
recreates a set of non-oriented triangle faces from only the
set of its edges. The input is expected to be a closed 3D
edge-manifold triangle mesh of any genus. The algorithm
is simple, purely topological and runs in O(n).

We present several practical examples demonstrating
that it is capable of reconstructing faces even from fairly
large input data, as well as input data that is prone to er-
rors in reconstruction due to a high occurrence of possible
inner faces.

Keywords: Graph Processing, Topological Mesh, Inner
Face Removal

1 Introduction

A conventional triangle mesh [2] is a type of polygon mesh
[2]. It comprises of a set of points given by geometric co-
ordinates and a set of triangle faces represented by triplets
of these points.

However, should these faces not be clearly specified,
for example should they be represented by only a sketch
(wireframe), a problem arises. In such case, it is possi-
ble to detect individual edges, but it is generally not clear
which edges form a face. To find these faces using only the
set of edges requires an algorithm which uses only topo-
logic information, for geometric information might not be
available.

1.1 Inner face

This may sound like a trivial problem that is solvable by
generating all possible triangles. Unfortunately, the num-

*zabran @students.zcu.cz
Tlvasa@kiv.zcu.cz

Figure 1: Two connected tetrahedra forming a hexahedron.
Gray triangle indicates the inner face. DE edge is only for
illustration. Double Tetrahedron mesh.

ber of these triangles is generally bigger than the num-
ber of actual faces, due to the possible presence of the so-
called inner faces.

An inner face (fig. 1), also called internal face, interior
face or pseudo face, is a special false face which can be
created, but which does not exist physically and therefore
should not be included in the set of faces. It may only be
formed by more than trihedral vertices [8], i.e. vertices of
degree higher than 3.

1.2 Contribution

The algorithm presented in this paper should be able to
exactly reconstruct all faces from a set of edges of any
closed 3D edge-manifold triangle mesh, albeit with loss
of face orientation. It may be also used to solve the dual
problem, which is inner face removal. Many algorithms
to solve inner face removal problem does exist, but their
time complexities are mostly O(n?) or higher, whereas the
complexity of the presented algorithm is O(n).

Possible applications of this algorithm include mesh
compression, damaged mesh reconstruction, inner face re-

Proceedings of CESCG 2018: The 22" Central European Seminar on Computer Graphics (non-peer-reviewed)

moval and possibly mesh generation from line drawing.

1.3 Structure

In Section 1, the tackled problem and terminology is spec-
ified. In Section 2, known algorithms solving similar prob-
lems are discussed and an alternative algorithm based on
planarization is detailed. In Section 3, a new algorithm is
proposed, fully described and a simple example of its us-
age is provided. In Section 4, testing of the new algorithm
and results of these tests are presented.

1.4 Terminology

A vertex is a point in 3D space. Throughout this paper, its
geometrical information is ignored and only it’s topologi-
cal information is relevant.

An edge always connects two vertices and represents a
border between two faces.

A triangle is a cycle of three edges and three vertices. It
may also be considered a face loop [8].

A mesh in this paper means a closed 3D edge-manifold
triangle mesh, or simply any triangle mesh where every
edge is incident with exactly two of its triangles. Note
that this requirement is slightly less strict than the usual
definition of a 2-manifold, which commonly also requires
each vertex to be only incident with a single fan of trian-
gles. For the purposes of our algorithm, this condition is
not necessary.

A (proper) face is a specific triangle which is part of a
mesh, i. e. part of the surface.

An inner face is a specific triangle which cannot be
part of a correct mesh due to the rule encompassing our
meshes that is stated two paragraphs above. Note that all
proper faces are triangles, yet not all triangles are neces-
sarily proper faces, since some triangles might be inner
faces.

A vertex is trihedral when it connects three edges and
thus also three faces. The count of edges it connects is its
degree (hedrality).

2 Related work

A common case of mesh reconstruction is reconstruction
from a 2D line drawing. In such case, geometric infor-
mation, which involves mainly vertex coordinates and the
slope between edges, may be obtained (either 2D or 3D
through the process of inflation) and used for face detec-
tion [8]. As a polygon mesh is generally not a triangle
mesh, faces in such case consist of more vertices and are
detected as shortest planar cycles.

A good example of such reconstruction algorithm is a
popular approach based on Dijkstra’s algorithm, or a more
refined algorithm proposed by Varley and Company [8],
[7]. In these algorithms, each non-oriented edge is divided

into two oriented edges and all of them are to be concate-
nated to make faces. Unlike other similar algorithms, these
are simpler and are not of exponential complexity, but fail
in some more complex cases by merging faces together or
being unable to build a face if two of its different edges of
opposite orientation have already been used. It also does
not possess any effective mechanism protecting it from in-
ner faces and runs in O(n>).

In our case, the mesh consists of triangles and a trian-
gle is always planar. This makes the problem considerably
easier, simplifying it to the inner face removal problem,
but it also makes using the above mentioned algorithms
completely unnecessary. Not only are they slow, meant
for a different kind of mesh and using geometrical infor-
mation we do not want to use, but they also provide no
solution to avoid creation of inner faces other than prior-
itizing trihedral vertices. Surely, triangles surrounding a
trihedral vertex have to be faces!, but a mesh may not con-
tain any trihedral vertex at all in the first place.

Proper faces of a mesh could also be found using graph
planarization. Planarization [5] is a process in which a
general graph is equipped with 2D coordinates associated
with graph vertices, such that no edges cross. Tutte’s al-
gorithm or any other algorithm in [10] may be used to find
such planarization if it exists by ad hoc generating geomet-
rical coordinates of each vertex. In the planarized gener-
ated graph, all elemental triangles® are faces, which means
the mesh can be generated using this approach in O(n?) at
worst or about O(n - log(n)) at best.

3 The proposed algorithm

This above mentioned planarization algorithm certainly
works, yet it actually transforms a purely topological prob-
lem to a geometric one and then solves it to obtain a
topological result. From this point of view, the planariza-
tion based algorithm seems unnecessarily complicated and
makes one wonder, whether it is really necessary to use
such complicated approach and whether it would not be
possible to find an algorithm solving the problem purely
topologically. Due to many observations and experiments,
such an algorithm has been found.

In the Section 1.4, simple rules for vertices, edges and
faces have been defined. The most important elements
of this new algorithm originate from these rules. Other
than that, the main philosophy of [8], the growing crystal
theme, has been adapted in a form of a dynamic creation of
faces and elimination of inner faces at the same time. This
ensures successive elimination of triangles from simpler
to harder cases, similar to solving certain puzzles, such as
sudoku.

There are three rules our algorithm is based on:

Note: Proof in Section 3.1.

ZNote: Examples provided in section 4.1.

3Triangles which contain no other vertex inside and the border trian-
gle.

Proceedings of CESCG 2018: The 22" Central European Seminar on Computer Graphics (non-peer-reviewed)

3.1 Rule1

A triangle with at least one trihedral vertex is always a
face.

This rule has been already used in the sketch based al-
gorithms. Sadly, same as in the case of these algorithms,
should the mesh contain no trihedral vertex (which can and
does happen often), this rule does not help at all.

Evidence: In (our) mesh the least number of faces a ver-
tex can connect is three*. So, should there be only three tri-
angles connected to a vertex, all of them have to be faces.
However, this does not mean there can be only three faces
connected to a vertex, there can be arbitrarily many.

3.2 Rule2

Should an edge be present in exactly two triangles, both
of these triangles are faces.

This is so far the most capable and important rule we
have found, as it can be used repeatedly every time the set
of triangles is reduced. Benefits of this rule are so signifi-
cant that the other rules can be completely ignored and the
algorithm will not be affected”.

Evidence: Each edge separates exactly two faces.
Therefore, should an edge appear in exactly two triangles,
both of them have to be faces. Should an edge appear in
less than two triangles, it indicates that the algorithm has
failed.

This rule allows marking some triangles as inner faces
(triangles incident with edges where two other triangles
were already marked as proper faces) and removing them
from further processing. Subsequently, the rule can be
used as long as at least one edge appearing in exactly two
triangles exists in the mesh. For such situation not to hap-
pen, every edge would have to be part of an inner face.

Such mesh can be created e. g. from mesh in Fig. 1 by
adding new edge between vertices D and E, but it would
not be manifold. Manifold triangle mesh where all edges
are part of an inner face should not exist, for to add a new
inner face to a mesh with maximal inner faces, adding a
new vertex is necessary, and to add this vertex, three new
edges must be added as well, which will not be part of an
inner face. Unfortunately, it is hard to find rigorous proof
for this.

3.3 Rule3

The fewer edges of a triangle appear in other triangles,
the lower is the chance of this triangle being an inner
face.

This is only a backup rule proposed for the eventuality
of the second rule failing. So far, this never happened and
it is likely impossible. Also, as shown in Section 3.4, Rule
3 can be only used in sequence with Rule 2.

4Otherwise it would not be a closed 3D edge-manifold triangle mesh.
SWithout Rule 1, algorithm appears to be about 3-5 % slower. Rule 3
is only a backup rule and, so far, was not used.

Initially, we assumed that the edges appearing in proper
faces always have to appear in fewer other triangles, than
edges of an inner face, because edges of an inner face have
to appear in more triangles, as they appear in both inner
and proper faces. This is, however, not true in very dense
meshes, such as Monster type meshes (fig. 9), where, in
central areas, triangles appear such that all of their edges
are in at least one inner face and thus in these areas proper
faces and some inner faces may have the same degree®.
This rule would not fail, should the mesh be not recon-
structed randomly, but sequentially from the periphery to
the center, which would require a more complex imple-
mentation’ .

Should the existence of a mesh, where degreef’ of every
edge is higher then 2, be proven negative®, the third rule
should be completely ignored as the second rule is suffi-
cient. Otherwise, the third rule can by used together with
the second rule to make such meshes solvable?, but in such
case, the mesh able to make the algorithm fail could defi-
nitely still exist.

3.4 Examples

Let us show an example of using these rules on (fig. 1):

The set of edges contains: AB, BC, CA, AD, BD, CD,
AE, BE, CE.

The set of triangles contains: ABC (inner face), ABD,
BCD, CAD, ABE, BCE, CAE.

The set of vertices!? contains: A(4), B(4), C(4), D(3),
E@3).

Now, using only one of the rules for this example:

Using Rule 1:

ABC is not generated, because it contains no trihedral
vortex (A, B and C are all tetrahedral).

Other faces are generated, because D and E are trihe-
dral.

Using Rule 2:

AB appears in ABC, ABD and ABE.

BC appears in ABC, BCD and BCE.

CA appears in ABC, CAD and CAE.

AD appears only in ABD and CAD: ABD and CAD are
newly generated.

BD appears only in ABD and BCD: BCD is newly gen-
erated.

CD appears only in BCD and CAD.

AE appears only in ABE and CAE: ABE and CAE are
newly generated.

BE appears only in ABE and BCE: BCE is newly gen-
erated.

CE appears only in BCE and CAE.

Using Rule 3 step by step:

Note: Explained in Section 3.5.

7Luckily, second rule does this automatically without other imple-
mentation requirements.

8Discussed in last paragraph of Section 3.2.

91t creates one face, so that second rule can be used once more.

10Note: The attached number is vertex degree.

Proceedings of CESCG 2018: The 22" Central European Seminar on Computer Graphics (non-peer-reviewed)

Edge set'!: AB(3, 2), BC(3, 2), CA(3, 2), AD(2, 2),
BD(2,2), CD(2, 2), AE(2, 2), BE(2, 2), CE(2, 2).

Triangle set'>: ABC(9), ABD(7), BCD(7), CAD(7),
ABE(7), BCE(7), CAE(7).

ABD has the lowest degree and is generated, edges are
used.

Edge set: AB(2, 1), BC(3, 2), CA(3, 2), AD(, 1),
BD(1, 1), CD(2, 2), AE(2, 2), BE(2, 2), CE(2, 2).

Triangle set: ABC(8), BCD(6), CAD(6), ABE(6),
BCE(7), CAE(7).

BCD has the lowest degree and is generated, edges are
used. BD has been used twice and is removed.

Edge set: AB(2, 1), BC(2, 1), CA(3, 2), AD(1, 1),
CD(1, 1), AE(2, 2), BE(2, 2), CE(2, 2).

Triangle set: ABC(7), CAD(5), ABE(6), BCE(6),
CAE(7).

CAD has the lowest degree and is generated, edges are
used. AD and CD has been used twice and are removed.

Edge set: AB(2, 1), BC(2, 1), CA(2, 1), AE(2, 2), BE(2,
2), CE(2, 2).

Triangle set: ABC(6), ABE(6), BCE(6), CAE(6).

ABC (inner face) has the lowest degree and is generated,
edges are used. AB, BC and CA has been used twice and
are removed.

Edge set: AE(2, 2), BE(2, 2), CE(2, 2).

Triangle set: (ABE(6), BCE(6), CAE(6)).

ABE, BCE and CAE cannot be generated because their
edges AB, BC and CA have already been used. However,
edges AE, BE and CE still remain. Algorithm fails. This
shows why the third rule cannot be applied alone and only
as a complement of the second rule.

3.5 Algorithm details

A vertex is defined by its ID and contains a list of edges it
connects. Its degree is equal to the number of edges in its
list.

An edge is defined by two vertices it connects in any
order and contains a list of triangles it is part of, and the
information, whether it has been already used once. Its
degree is equal to the number of triangles in its list.

A triangle is defined by three vertices (or edges) it con-
tains in any order. Its degree is equal to sum of its edge’s
degrees.

During the face generation from a triangle: All its edges
are marked as used and if they have already been used be-
fore, all remaining triangles they are part of are removed,
since they must be inner faces. The triangle is then re-
moved from the triangle set and added to the set of proper
faces.

1Note: The first number is edge degree®, second is remaining number
of uses.
12Note: The number refers to triangle degree®.

During the triangle removal: Degree of all its edges is
decremented. After that, it can be checked, whether the
degrees of its edges are still bigger or equal to how many
times the edges should be used. If it is not, the algorithm
failed.

The algorithm proceeds as follows:

1. The set of edges is loaded (it is the required input).

2. The set of all triangles is generated. It means a search
from every edge is made to the depth of three edges
and should a new cycle be obtained in this way, it is
inserted in the set of triangles. This is further called
preprocessing!>.

3. The first rule is applied. Faces are generated from
triangles which contain at least one trihedral vertex.
(Used edges are marked, triangle set is reduced by
triangles which can no longer be generated.)

4. The second rule is applied. Faces are generated from
triangles which contain at least one edge with degree
equal to the number of its necessary uses. This is
repeated as long as any such triangle remains.

5. The third rule is applied. Should any triangle remain
(and it should not) in the triangle set, then the one
with lowest degree is generated. After that the algo-
rithm continues with step 4.

6. As no triangle remain in the triangle set, the face set
is complete.

3.6 Implementation details

The time complexity of this algorithm can be as good
as O(n), where n is the number of proper faces (eventu-
ally vertices or edges, these are directly or almost directly
proportional depending on genus). This is confirmed for
tested meshes by results in Table 1 as well as by graph
in Fig. 17. But in order to achieve the complexity, the
algorithm must be implemented in an effective way. The
most important in this is the right use of sets. For the al-
gorithm to remain O(n) in all its parts, all operations with
the sets'* have to be O(1). In our case, we used the .NET
Hashset class'> as hashing is probably the simplest way to
solve the problem. The only difficulty was that the hash-
set needs O(n) to create an enumerator to iterate through
the set and this enumerator becomes unusable after every
change in the set. This means that all the elements of the
set have to be marked first and removed after the search of
the whole set.

131t is not part of the algorithm, as it is unnecessary should the algo-
rithm be used only for inner face removal.

'4Operations like add(), remove(), contains(), get() etc.

Bhttps://msdn.microsoft.com/en-us//library/bb359438(v=vs.110).aspx

Proceedings of CESCG 2018: The 22" Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2: Cube mesh with complexly rounded edges.
Implicit function isosurface obtained using the dual
contouring algorithm [4].

4 Results

The test data was all .OBJ files of closed edge-manifold
triangle meshes. Not only could this data by easily ob-
tained in huge variety and easily processed, but it can also
be easily used to verify that the face set has been correctly
reconstructed. On the other hand, no other similar algo-
rithm has been tested along with the above described one.
The algorithm based on planarization mentioned in Sec-
tion 2 could be used as such, but due to its specifics it can
be assumed it would be slower being O(n - log(n)) at best
and could be only used on meshes with genus 0. As this
new algorithm had been shown to run in linear time and
is more universal, the planarization algorithm should end
up losing. This is however very dependent on particular
implementation of planarization and was not tested, as the
implementation effective enough to stand against our al-

gorithm would be significantly more difficult to prepare'®.

4.1 Test data

Following meshes were tested with results shown in Table
1:

Meshes to prove basic functionality - Double Tetrahe-
dron (fig. 1), Icosahedron (fig. 3), Spheres (fig. 13), Fig-
ure (fig. 4) and Lion (fig. 11).

Meshes to prove identical results on meshes with same
topology and only different coordinates - Bunny (fig. 8)
and Helix (fig. 16) type meshes, found in MeshTest [9].

Random meshes from Thingl10K [11], some of which
are not genus 0 or consist of separate parts - Alien Egg
(fig. 12), Octocat (fig. 14), Loop (fig. 15), Land (fig. 7),
Water (fig. 6) and Gear (fig. 10).

A mesh with almost a million faces from the Smithso-
nian X 3D library - Palmyra (fig. 5).

1680 far, we found no tested planarization algorithm specifically for
inner face removal, so this all is only our speculation.

Figure 3: Icosahedron mesh.

Figure 4: Figure. Reconstructed human figure [1], [6].

A mesh with related inner faces - Cube (fig. 2).

Meshes with very high amount of inner faces - Monster
type meshes (fig. 9), named simply "Mesh”+vertex count.
These has been generated by our own custom software de-
signed to maximize the number of inner faces.

The algorithm seems to run in O(n). It is fast and able
to solve even complex meshes. Practical time complex-
ity of this algorithm, should it be computed, would oscil-
late around n!. Graph of linear regression (fig. 17 and
fig. 18) shows mild descent, but this irregularity is very
dependent on which meshes are included. Accurate prac-
tical time complexity computation would probably require
many meshes with 100k+ faces.

Spheres and Cube meshes are processed in noticeably
longer time. In the case of Spheres, it may be affected by
the inaccuracy evident for smallest meshes such as Dou-
ble Tetrahedron and Icosahedron, but it seems odd, since
Mesh1000 has similar number of faces and is almost twice
faster despite having a high amount of inner faces. In the
case of Cube, it is probably caused by inner faces being
interconnected with each other and thus obstructing their
elimination. But it does not explain why Monster type
mashes are processed so quickly despite of their complex
structure.

Proceedings of CESCG 2018: The 22™ Central European Seminar on Computer Graphics (non-peer-reviewed)

Inner Time Time/face Preprocess Prep/face

File Vertices Edges faces Faces Is] [11s] ing [s] (1] Prep/alg
Palmyra.obj 492465 1477425 678 984950 12.576 12.768 11.481 11.657 91.30%
Alien_Egg.obj 38788 117504 0 78336 1.096 13.990 0.909 11.601 82.93%
Bunny.obj 35946 107832 0 71888 0.893 12.417 0.782 10.885 87.66%
Helix.obj 30534 91590 0 61060 0.735 12.035 0.591 9.683 80.46%
Octocat.obj 20125 60369 30 40246 0.500 12.413 0.389 9.662 77.84%
Water.obj 18853 56817 1063 37878 0.469 12.389 0.388 10.256 82.78%
Figure.obj 15830 47490 2 31660 0.396 12.517 0.314 9.922 79.27%
Land.obj 14738 44208 49 29472 0.360 12.230 0.274 9.306 76.09%
Gear_Hypoid.obj 14566 43698 106 29132 0.364 12.490 0.274 9.413 75.36%
Cube.obj 5858 17568 116 11712 0.536 45.783 0.155 13.268 28.98%
Loop.obj 3040 11520 0 7680 0.111 14.411 0.063 8.141 56.50%
Lion.obj 2213 6633 10 4422 0.053 11.921 0.034 7.631 64.01%
Spheres.obj 974 2910 0 1940 0.038 19.766 0.016 8.285 41.92%
Icosahedron.obj 12 30 0 20 0.000 9.217 0.000 4.891 53.06%
Double_Tetrahedron.obj 5 9 1 6 0.000 34.300 0.000 14.587 42.53%
Mesh1000.0bj 1000 2994 996 1996 0.024 12.181 0.020 10.055 82.55%
Mesh2000.0bj 2000 5994 1996 3996 0.049 12.355 0.041 10.337 83.67%
Mesh3000.0bj 3000 8994 2996 5996 0.075 12.501 0.064 10.690 85.52%
Mesh4000.0bj 4000 11994 3996 7996 0.099 12.344 0.086 10.807 87.55%
Mesh5000.0bj 5000 14994 4996 9996 0.127 12.741 0.112 11.181 87.75%
Mesh6000.0bj 6000 17994 5996 11996 0.155 12.921 0.138 11.502 89.02%
Mesh7000.0bj 7000 20994 6996 13996 0.173 12.372 0.204 14.546 117.58%
Mesh8000.0bj 8000 23994 7996 15996 0.202 12.633 0.207 12.935 102.39%
Mesh9000.0bj 9000 26994 8996 17996 0.230 12.768 0.267 14.835 116.20%
Mesh10000.0bj 10000 29994 9996 19996 0.259 12.944 0.289 14.458 111.69%
Mesh11000.0bj 11000 32994 10996 21996 0.305 13.865 0.338 15.369 110.85%
Mesh12000.0bj 12000 35994 11996 23996 0.343 14.297 0.373 15.530 108.62%
Mesh13000.0bj 13000 38994 12996 25996 0.373 14.359 0.402 15.454 107.62%
Mesh14000.0bj 14000 41994 13996 27996 0.402 14.346 0.451 16.096 112.20%
Mesh15000.0bj 15000 44994 14996 29996 0.429 14.306 0.481 16.019 111.98%
Mesh16000.0bj 16000 47994 15996 31996 0.444 13.884 0.524 16.388 118.04%
Mesh17000.0bj 17000 50994 16996 33996 0.454 13.349 0.542 15.957 119.53%
Mesh18000.0bj 18000 53994 17996 35996 0.485 13.469 0.542 15.067 111.87%
Mesh19000.0bj 19000 56994 18996 37996 0.533 14.019 0.601 15.820 112.85%
Mesh20000.0bj 20000 59994 19996 39996 0.556 13.893 0.630 15.752 113.38%
Mesh21000.0bj 21000 62994 20996 41996 0.561 13.351 0.670 15.964 119.57%
Mesh22000.0bj 22000 65994 21996 43996 0.606 13.767 0.691 15.698 114.02%
Mesh23000.0bj 23000 68994 22996 45996 0.622 13.522 0.763 16.580 122.61%
Mesh24090.0bj 24090 72264 24086 48176 0.665 13.796 0.785 16.293 118.10%

Table 1: Testing data with their properties, average time for processing and preprocessing (of 100 tests), this time per face
count, and ratio between preprocessing and algorithm processing (Prep/alg). Preprocessing means generating a set of all
triangles.

Proceedings of CESCG 2018: The 22" Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 5: Palmyra mesh. Figure 6: Earth without land. Figure 7: Earth with no water.
Smithsonian institution [3]. Water.stl in [11]. Land.stlin [11].

Figure 10: Gear mesh.
gear_hypoid_left.stl in [11].

Figure 8: Bunny mesh.
bunny in [9].

Figure 11: Lion mesh. Figure 12: Alien egg mesh. Figure 13: Spheres; Models ob-
Courtesy of Ivo Hanak. alien_egg.stl in [11]. tained by polar parameterization
and icosahedron subdivision.

JRCCCECERCEE A

v
u
U
\
%

Figure 14: Octocat mesh. Figure 15: Loop mesh. Figure 16: Double helix.
Octocat-v2.stlin [11]. loop.stl in [11]. out in [9].
Proceedings of CESCG 2018: The 22™ Central European Seminar on Computer Graphics (non-peer-reviewed)

T
® o
[[J
2
2 14 .
8
<
Q
£
=
13.5 .
o ®
| | | |
1 1.5 2 2.5
Number of vertices 104

Figure 17: Graph showing linear processing time for Mon-
ster type meshes.

T T T T T T T T T
[]
14 - ° 1
>
2
g
S 13] y
H
.. °
[]
12| o . .
Lol Lol R |
10* 10° 10°

Number of faces

Figure 18: Graph showing linear processing time for rest
of the meshes.

5 Conclusions

A simple, purely topological algorithm of O(n) complex-
ity which recreates a set of non-oriented triangle faces
from only the set of edges was proposed, implemented and
tested. It appears to be both fastest and most universal (in
terms of mesh complexity) algorithm solving the problem
we know about. So far, no closed edge-manifold trian-
gle mesh has been found on which it fails. Experiments
demonstrate it runs in O(n) and the following properties
were observed:

Processing time grows linearly with the number of
proper faces for meshes bigger than 1000 faces, while the
processing time of small meshes fluctuates due to random
effects. For most of the meshes, time required to process
one face is approximately 13 s on current consumer level
PC.

Meshes processing is affected neither by mesh genus,
nor by the number of separate components it consists of.

The number of inner faces in comparison to true faces

also does not seem to affect efficiency.

Some meshes take noticeably more time to process from
still unknown reasons and relevance of some of the algo-
rithm supplementary elements (Rule 1 and 3) has not yet
been accurately tested.

To find out more details about this algorithm and its
more efficient implementation, further tests are needed.

Acknowledgement

This paper was written using Overleaf.

Tables generator was used to generate Table 1.

Mesh screenshots has been made using MeshMagic.
Bibliography has been made using Citation Machine.
Meshes were converted to .obj using Spin 3D.

References

[1] Nizam Anuar and Igor Guskov. Extracting animated
meshes with adaptive motion estimation. In Vision,
Modeling, and Visualization, pages 6371, 2004.

[2] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Al-
liez, and Bruno Lvy. Polygon Mesh Processing. AK
Peters, 2010.

[3] Smithsonian Institution. Funerary relief bust
of haliphat. https://3d.si.edu/model/fullscreen/p1b-
14747160205411478115444790-0.

[4] Tao Ju, Frank Losasso, Scott Schaefer, and Joe War-
ren. Dual contouring of hermite data. ACM Trans.
Graph., 21(3):339-346, July 2002.

[5] Mauricio G. C. Resende and Celso C. Ribeiro. Graph
planarization, pages 908-913. Springer US, Boston,
MA, 2001.

[6] Peter Sand, Leonard McMillan, and Jovan Popovic.
Continuous capture of skin deformation. ACM Trans.
Graph., 22(3):578-586, July 2003.

[7] Peter A.c. Varley. Implementing the new algorithm
for finding faces in wireframes, 2009.

[8] Peter A.c. Varley and Pedro P. Company. A new al-
gorithm for finding faces in wireframes. Computer-
Aided Design, 42(4):279-309, 2010.

[9] Libor Vasa. Software for comparing models mesht-
est, 2010.

[10] Luca Vismara. Planar straight-line drawing algo-
rithms. In Roberto Tamassia, editor, Handbook on
Graph Drawing and Visualization., pages 193-222.
Chapman and Hall/CRC, 2013.

[11] Qingnan Zhou and Alec Jacobson. ThingilOk, 2016.
https://ten-thousand-models.appspot.com/.

Proceedings of CESCG 2018: The 22" Central European Seminar on Computer Graphics (non-peer-reviewed)

