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Abstract

Coaches in alpine skiing would like to know the speed
and useful biomechanical variables at each turn in a run.
Existing methods using body-worn sensors are distracting
and marker-based manual image annotation for inference
is time consuming. We propose a method of estimating
an athlete’s global 3D pose using multiple cameras. First,
tight estimated bounding boxes of the skier are fed to a 2D
pose estimator network. The 3D pose is then reconstructed
using a bundle adjustment method. We show results both
when using fully calibrated cameras, as well as when es-
timating the rotation of Pan-Tilt-Zoom cameras. To over-
come shortcomings of existing datasets we created a new
alpine skiing dataset and trained all methods on it. Our
method estimates accurate global 3D poses from images
only, providing coaches with an automatic and fast tool to
improve an athlete’s performance.

Keywords: Computer Vision, Pose Estimation, Motion
Capture, Camera Calibration, Deep Learning

1 Introduction

In many winter sports like alpine skiing, coaches would
like to know performance metrics such as Center of Mass,
speed and various biomechanical variables at every point
in time, giving them accurate feedback about potential in-
creases or losses in speed. This can then be used to en-
hance the athlete’s performance at every turn in the run.
Existing methods like optical barriers only offer average
speeds within segments, while other methods using Iner-
tial Measurement Unit (IMU) sensors are cumbersome for
the athletes to wear. Using motion capture suits is also not
feasible in high-speed settings with wide baselines.

Existing methods using only one camera are only able to
reconstruct a 3D pose relative to the camera’s coordinate
frame, which contains no information about the athletes
global position and speed. If the camera rotates, so does
it’s coordinate system. We therefore set ourselves the goal
of estimating an athlete’s global 3D pose at every point
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in time using just video frames from multiple cameras ar-
ranged around the track. One way to get those poses is to
manually annotate every frame and recreate the 3D struc-
ture from that. This manual annotation is however very
tedious and time-consuming, so instead we chose to train
a pose estimation network to predict 2D joint locations
without the athletes needing to wear markers. Normally,
pose estimation algorithms are only trained on human pose
databases which don’t contain skiing images, and if they
do, the skis and poles are not annotated. Existing alpine
skiing datasets [16, 7, 15] are very limited in the number
of athletes and locations that they feature, making meth-
ods trained on them not generalize well. To remedy those
problems we created a new alpine skiing dataset, contain-
ing 1982 manually annotated frames showing 32 athletes
in diverse weather conditions.

To go from videos to 3D poses, we propose the follow-
ing method: Because skiers are often very small in the
captured images, we first train a network to predict a tight
bounding box around them. Those crops are then given to
the pose estimation network that was trained from scratch
on the new skiing dataset. The 2D detections from all cam-
eras are then combined in a bundle adjustment approach
to reconstruct the global 3D pose. We compare the perfor-
mance of taking fully calibrated cameras with a method
estimating also the camera rotations, i.e. the direction the
cameras are facing.

2 Related work

This paper builds upon work in the fields of object detec-
tion, as well as 2D and 3D pose estimation techniques. In
the following, we outline the most important advances in
each of those fields.

2.1 Object detection

Object detection is the process of localizing occurrences of
certain classes in images and outputting a tight bounding
box around them. In recent years, several Deep Learning
approaches made great advances in terms of accuracy and
detection speed.

Redmon et al. introduced the YOLO [14] algorithm that
instead of applying a neural network to multiple scales of
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an image runs it through it only once, making it very fast
at test time.

Liu et al. propose the Single Shot MultiBox Detector
(SSD) [9] generating scores for the presence of an object in
predefined bins and then adjusting the bins to better match
the object shape. Detections from multiple feature maps
and different resolutions are then combined to allow for
detection of various sizes in one single network stage.

2.2 2D human pose estimation

To get an understanding of the human pose in images,
Deep Learning based pose estimation algorithms are
tasked to find the 2D locations of all specified body joints.
Cao et al. take a multi-stage approach with OpenPose [2],
predicting confidence map for each joint and a Part Affin-
ity Field (PAF) for each limb (a vector field encoding the
association of two joints connected by a limb). Using the
Part Affinity Fields as an indicator for which joints in the
heatmaps belong together, the poses of multiple people can
be efficiently differentiated.

2.3 Global 3D human pose estimation

Using at least two cameras from different perspectives, it is
possible to obtain a global 3D pose estimate and potential
ambiguities in scale can be resolved.

Several papers [3, 4, 13] leverage common line mark-
ings of sports fields as known reference points for pan-tilt-
zoom (PTZ) camera calibration. Those methods can also
leverage the geometric constraints that games like football
are played on a two-dimensional surface with a limited
spatial extent.

Pavlakos et al. [11] propose to extend pictorial structure
models by taking CNN generated 2D heatmaps and resolv-
ing the 3D structure in a quantized grid by maximizing a
likelihood term explaining the 2D detections. They use
however known camera parameters.

Puwein et al. [12] jointly estimate a 3D human pose
and the position and orientation of several fixed wide-
baseline cameras using a bundle adjustment method that
minimizes an energy function comprising reprojection er-
rors, a smoothness term and optical flow consistency be-
tween the motion of the estimated kinematic structure and
the videos.

Similarly, Elhayek et al. [6] estimate both pose and
camera locations simultaneously, with the difference that
some cameras are fixed, while others can freely move.
They minimize an energy function containing a negative
likelihood term describing the similarity of the model pa-
rameters to the measured data, as well as smoothness
terms for both the human pose and the cameras.

Using multiple unsynchronized and uncalibrated cam-
eras, Takahashi et al. [17] propose a bundle adjustment
method that leverages the limb lengths as priors on the
human body and takes into account that the 2D pose es-
timations contain some amount of error. To this end, they
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Figure 1: Setup overview of the multi-view skiing dataset.

relax the reprojection error, penalizing errors up to a cer-
tain point less.

3 Datasets overview

While there exists extensive datasets for human poses in
various settings like the MPII Human Pose [1] dataset
or the Human3.6M [8] dataset, they feature only none or
very few skiing images and lack annotation of the skis and
poles. Additionally they feature even fewer images of pro-
fessional athletes in a racing scenario, which would make
inference more difficult in those cases. To train a 2D de-
tector, we have therefore decided to create a new alpine
skiing dataset featuring mainly semi-professional athletes.
For the purpose of evaluating 3D pose estimation methods,
we used a manually annotated multi-view pan-tilt-zoom
alpine skiing dataset [16, 7, 15], which is explained in de-
tail in the following section.

3.1 Kühtai multi-view alpine skiing dataset

The aforementioned multi-view alpine skiing dataset [16,
7, 15] features 6 professional athletes on a Giant Slalom
slope with three turns, filmed by six cameras that are ar-
ranged in a circle around the center of the track as shown
in Figure 1. 2D joint locations were manually annotated.
Calibration points around the track served to calculate the
camera parameters, specifically the intrinsic and extrinsic
camera matrices. From this, global ground truth 3D poses
were computed.

While the existing skiing dataset is well suited for de-
veloping semi-supervised models [15], the fact that it only
features 6 different athletes in similar suits performing the
run on the same slope with the same camera angles would
make methods trained on it unable to generalize to differ-
ent skiing settings.

3.2 New alpine skiing dataset

To improve upon generalization, we create a new large
dataset for alpine skiing. We downloaded 16 alpine ski-
ing videos that were posted on Youtube under the Creative
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Figure 2: Figure a shows the 24 annotated joints. The
white circles are helper joints in the tree structure, with
the center hip being the root joint. Figure b shows four
annotated images of the new alpine skiing dataset.

Commons license, featuring mainly semi-professional ski
racers from many different perspectives. Those videos
were split into 147 training and 11 validation sequences,
each being one continuous camera motion without any
cuts. From each split, frames were sampled in fixed in-
tervals ranging from 0.3 to 10 seconds, depending on the
discipline. Slalom, featuring more variation in poses, had
a higher sampling frequency than downhill where athletes
often stay in the same pose for long stretches. In total,
1982 images were sampled and annotated with 24 key
points (see Figure 2a), of which 1830 were used as train-
ing and 152 as validation images. The dataset comprises
at least 32 unique athletes, 17 of which are women and 15
are men. It features 5 unique locations in various weather
conditions ranging from sunny to foggy (see Figure 2b).
There are 32 Slalom, 52 Giant Slalom, 26 Super-G, 24
Downhill and 6 training sequences filmed from a follow
cam including scenes from very close to very far away.
The dataset is available on request to the authors.

Calibration pole augmentation As this newly created
dataset does not feature any calibration poles like the
Kühtai dataset, evaluating a 2D pose estimation algorithm
that was only trained on this will produce significant out-
liers (mainly with the ski poles). One way to improve
robustness on the Kühtai dataset is to augment training
images with randomly superimposed cutouts of eight dif-
ferent calibration poles (see Figure 3). At training time,
we uniformly sample U (0,20) randomly selected poles
and place them uniformly over the image. The poles are
scaled by U (0.5,2.5) and rotated U (−15,15) degrees.
We compare this method to adding one Kühtai sequence
to the training of OpenPose.

4 Methodology

Our goal is to take as input a set of synchronized video
streams of the same athlete filmed from different angles
and estimate the global 3D pose. The cameras are assumed

Figure 3: Left: Example image showcasing calibration
poles. Right: Augmented alpine skiing image.

to be calibrated, meaning we know the intrinsic and extrin-
sic matrices for each frame and camera. Experiments were
also done inferring the rotation matrix of each camera. To
go from images to 3D pose, we propose a multi-staged
pipeline as shown in Figure 4, where 2D pose detections
are generated from cropped images around the athlete and
then 3D poses are optimized to best fit all localized 2D
joints. Generating 2D estimations first allows us to analyze
potential detection weaknesses when using a new dataset,
before developing a method for 3D joint detection.

First, we run an object detection network on each video
stream to generate a tight square bounding box around the
skier. Outliers are filtered out and bounding box detec-
tions are temporally smoothed. The OpenPose 2D pose
estimation network is run on the square crop, generating
joint heatmaps and Part-Affinity Fields, from which 2D
joint key points are extracted. The 2D detections from
all cameras are then incorporated into a bundle adjustment
method which reconstructs the underlying 3D pose of the
skier.

4.1 Skier detection

Sports videos with wide baselines often contain sequences
of very different zoom levels, resulting in the athlete size
in the image ranging from frame-filling to only making up
a very small portion of the frame. While pose estimation
networks like OpenPose run images through their network
at multiple scales to account for this fact, athletes can be
so small in images that detection fails completely. Even
when the skier fills a good portion of the frame and the
input scale is right for the pose estimation network, other
people on the slopes or other high-contrast objects in the
background can lead to wrong detections when only inter-
ested in the pose of the main subject. We therefore first
detect a tight bounding box around the athlete, resulting in
the pose estimation network always receiving examples of
the same scale.

For this task we chose the Single Shot MultiBox Ob-
ject Detector (SSD) [9] network (described in Section 2.1)
for its good performance and low computational overhead
during both train and test time. As the SSD network is a
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Figure 4: Method pipeline overview: Images from different cameras are preprocessed to find 2D joint locations by first
cropping a bounding box around the athlete and then running a pose estimation network on it. Pose estimates are used
to refine the bounding box. From all Nc cameras frames and over all time steps, the global 3D position is found using a
bundle adjustment method.

single-image detector and does not incorporate temporal
information from the fact that we are dealing with videos,
detections between frames can suffer from jitter and out-
liers if other people are present in the scene. To remove
strong outliers, we replace all detections whose center de-
viates beyond the bounding box of the last correctly de-
tected frame by the latter. Jitter and varying sizes of the
bounding boxes are dealt with by applying strong Gaus-
sian smoothing to the center location of the crops and their
respective side lengths with parameters σcenter = 10 and
σside = 50. Finally, side lengths are scaled by a factor of
1.5 for the newly created and 2 for the Kühtai dataset and
all crops get resized to 500 x 500 pixels.

We trained a PyTorch implementation of the SSD net-
work [5] on the newly annotated alpine skiing dataset for
2000 iterations, using a batch size of 32 images. The net-
work was initialized with pretrained VGG 16 weights. The
optimizer used was Stochastic Gradient Descent (SGD)
with learning rate 0.001, momentum 0.9 and weight de-
cay 0.0005. The learning rate was scaled by 0.1 at itera-
tions 1000 and 1500. As this PyTorch implementation was
made for multiple object classes we trained it with one ath-
lete class and one unused dummy class.

4.2 2D pose estimation

Given an input image I ∈ Rw×h×3 of width w and height
h, the task of 2D pose estimation is to compute x and y
coordinates for every joint j ∈ {1, ...,NJ}. The OpenPose
network returns for every joint j a confidence/heat map
H j ∈ Rw×h and for each limb/bone l ∈ {1, ...,NL} a Part
Affinity Field (PAF) Bl ∈ Rw×h×2, with every point in Bl
encoding a vector describing limb orientations. Because in
our problem we are focusing solely on the pose estimation
of a single athlete on the slope and not multiple people, we
don’t rely on some of the multi-person detection advan-
tages that PAF’s bring to the table. Indeed, for this task we

take the maximum location p∗j ∈R2 as p∗j = argmaxw,h H j
of each confidence map for each joint j.

Implementation Details For training OpenPose, all im-
ages were resized to 736 x 368 pixels. In addition to the
augmentation with Kühtai calibration poles (as explained
in Section 3.2), for data augmentation each of the fol-
lowing transformations was applied independently with a
probability of 0.5:

• Adjusting the image gamma value uniformly by a
factor of U (0.5,1.5).

• Shifting the image hue uniformly by U (−15◦,15◦).

• Rotating the image uniformly by U (−40◦,40◦).

• Mirroring the image horizontally.

In addition, all training images were randomly cropped
around the ground truth pose of the skier, such that the
network always received poses of roughly the same scale.
During test time, no data augmentation is applied besides
resizing the imaged to the input resolution.

Training was done in batch sizes of 8 over 200 epochs
using the Adam optimizer with learning rate 0.00004, mo-
mentum 0.9 and weight decay 0.0005. In all cases, the
first OpenPose stage block was initialized with pretrained
VGG 19 weights, while all other stages were either ran-
domly initialized or using weights pretrained on the MPII
dataset.

During test time the OpenPose model that yielded the
lowest validation error during all training epochs was cho-
sen. The outputs from the SSD network were resized to
368 x 368 pixels and run through OpenPose six times
scaled by 0.5, 0.75, 1, 1.25, 1.5 and 2 for being able to de-
tect a wider range of SSD outputs. Results from all scales
were averaged to generate the final heatmaps and PAFs.
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Refining SSD bounding boxes using OpenPose Be-
cause of the smoothing of detected SSD bounding boxes,
drifts in the crop with respect of the athlete’s center may
still be present. To remedy this, we run OpenPose on the
generated crops and take the median of the computed joint
positions as the new center for each frame. Then, we apply
a weaker Gaussian smoothing pass to the center locations
and side lengths with parameters σcenter = 5 and σside = 5.

4.3 3D pose estimation

The last step in the pipeline is estimating the 3D poses
of the skier using a bundle adjustment optimization
method with the detected 2D joint locations. We take
the OpenPose output ppp f ,c

j ∈ R2 from all cameras c ∈
{1, ...,NC}, over all frames f ∈ {1, ...,NF}, for each joint
j ∈ {1, ...,NJ} and reconstruct the respective underlying
3D joint positions PPP f

j ∈ R3 in global space. Let us denote
the complete 3D pose at time f as PPP f ∈ RNJ×3.

We used two different ways of parameterizing the 3D
pose: In the first method, every 3D joint position is simply
described by its global 3D x, y, z location without any re-
strictions. The second possibility is modeling the athlete’s
pose as an articulated tree-like structure, parametrized by
joint angles and using one global x, y, z coordinate to po-
sition the tree root. We used the tree model described in
Figure 2a with the tree root being the hip center. Joint an-
gles are parametrized by unit quaternions. The ski joints
are fixed such that they are all in a straight line, rotating
with the foot. All x, y, z joint coordinates PPP j are com-
puted recursively from parent joint PPPi, starting from the
root node c in the following manner:

PPP j = PPPi +
y

∏
k:c→ j

Rk

bi→ j
x

bi→ j
y

bi→ j
z

`(i, j). (1)

Here c→ j is the node path from root joint c to joint i,

y

∏
k:c→ j

Rk = Rc · · ·Rk · · ·R j (2)

denotes matrix multiplication from the right, where Ri ∈
R3×3 is the rotation matrix associated with joint i. bi→ j ∈
R3 is a base direction of the bone from joint i to joint j with
norm 1, while `(i, j) is the respective bone length scalar.

An advantage of using joint angles is that it introduces
a strong prior on the human pose, which limits it to having
a fixed scale. If no restrictions are imposed on the angles,
impossible poses can still occur.

4.3.1 Known camera parameters

We assume that the parameters for all frames f and all
cameras c are known. Specifically, this means we know
the intrinsic matrix K f ,c ∈ R3×3, the matrix describing
world to camera rotationR f ,c ∈R3×3 and camera location

ttt f ,c ∈ R3. Using the extrinsics [R f ,c | ttt f ,c], the trans-
formation of a world coordinate point PPP f ,w

j to camera c’s
coordinate frame is given by

PPP f ,c
j =R f ,cPPP f ,w

j + ttt f ,c. (3)

The projection p̂pp f ,c
j ∈R3 (in homogeneous coordinates) of

point PPP f ,c
j onto camera c’s image plane is then given by

p̂pp f ,c
j =K f ,cPPP f ,w

j . (4)

The homogeneous point p̂pp f ,c
j can then be transformed to

the Euclidean point p̃pp f ,c
j ∈R2 by dividing by the last coor-

dinate. Finally, denote the complete projection from world
coordinates to an image plane as

πc(PPP
f ,w
j ) = p̃pp f ,c

j . (5)

3D reconstruction is done using a bundle adjustment ap-
proach, where we optimize an energy function

argmin
PPP

E(PPP,K,R, ttt) (6)

including a reprojection error, as well as priors on the hu-
man body. When using the general pose parametrization,
this function is defined as

E(PPP,K,R, ttt) =λrepro jErepro j

+λsmoothEsmooth

+λlimbsElimbs

(7)

and when using joint angles as

E(PPP,K,R, ttt) =λrepro jErepro j

+Esmooth.
(8)

Reprojection term The 3D joint location estimations are
iteratively updated by gradient descent such that when pro-
jected to each camera plane, they are as close as possible
to the 2D joint locations. If we had perfectly consistent
2D localizations, a simple bundle adjustment process with
decent initializations would yield very good results. As
this assumptions is not applicable because our 2D detec-
tions contain per-joint pixel errors, we have to relax the
reprojection errors using a similar method as proposed by
Takahashi et al. [17]. The reprojection energy term is de-
fined as

Erepro j(PPP,K,R, ttt) =
1

NF NCNJ

NF

∑
f=1

NC

∑
c=1

NJ

∑
j=1

g(πc(PPP
f ,w
j ), ppp f ,c

j ) (9)

The function

g(x,y) = (n(0)−n(erepro j(x,y)))erepro j(x,y) (10)

relaxes the scaled reprojection errors

erepro j(x,y) = ||(x− y)H(y)||2 (11)
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where n(x) denotes the normal distribution’s probability
density function N(0,σ2) and H(y) the heatmap probabil-
ity value at point y. Using this relaxation with σ2 = 100,
outlier points up to a certain point do not penalize the en-
ergy function too much.

Smoothness term Since we are dealing with human
motion from videos, we would like it to be smooth in time.
To this end, we would like to minimize the differences in
estimated 3D joint velocity between frames.

Esmooth(PPP) =
1

NF NJ

NJ

∑
j=1

NF

∑
f=1

(∆2[PPPw
j ]( f ))2, (12)

where

∆
n[PPPw

j ]( f ) =
n

∑
k=0

(
n
k

)
(−1)n−kPPPw

j ( f + k) (13)

computes the n-th order finite differences over the time
dimension of PPPw

j ∈ RNF×3, for any frame f ∈ {1, ...,NF}.

Human prior term If we are not using the joint angle
representation, we would still like all limbs to consistently
have the same lengths over time. To this end, we minimize
the difference between the estimated and the known limb
lengths,

Elimbs(PPP) =
1

NF

NF

∑
f=1

∑
(i, j)∈Limbs

(‖PPP f ,w
i −PPP f ,w

j ‖2− `(i, j))2. (14)

Optimization and parameters When optimizing for ab-
solute 3D positions, all points were initialized in the cen-
ter between all cameras, with an additional random spread
of U (−10,10) meters. Using the joint angle represen-
tation, base poses were initialized in the center with an
additional random spread of U (−10,10) meters, with an-
gles initialized normally as N (0,0.1). We used the quasi-
Newton optimization algorithm Limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS) with learning
rate 0.05, running it for 100 epochs, with at most 20 iter-
ations per optimization step. For both the general pose
parametrization and the joint angles, the energy terms
were scaled by λrepro j = 80, λsmooth = 1 and λlimbs = 1.

4.3.2 Unknown camera rotation

In the same way we optimized the 3D pose positions, it
is also possible to freely optimize other parameters such
as the camera’s rotation matrices. The objective then be-
comes

argmin
PPP,R

E(PPP,K,R, ttt). (15)

Like the joint angles, the camera rotations can be
parametrized by quaternions and iteratively updated to the

correct angles by gradient descent. A problem with this
approach is however initialization. If the cameras face in
randomly initialized directions, it is unlikely that the op-
timization objective can converge to a desirable solution.
We instead propose an approach where in every gradient
descent iteration only the 3D poses are optimized, while
the camera are adjusted to always point to the center of
estimated poses.

More specifically, in the beginning we initialize all 3D
pose positions around the center of all cameras with a ran-
dom spread of U (−1,1) meters, with joint angles initial-
ized normally as N (0,0.1). For every camera we then
compute the look-at rotation matrix, with the target being
the mean location of the 3D pose and the camera’s up di-
rection being the global z-axis. A problem with the look-at
matrix is, that the person is originally not necessarily in the
middle of the image. To solve this, we first compute the
horizontal and vertical relative position of the skier in the
2D image. From the camera intrinsics, we know the Field
of View (FoV) and can then pan and tilt the rotation ma-
trix in the opposite direction of the calculated horizontal
and vertical FoV shift.

Optimizing with this method for 50 epochs, we get a
very rough estimate for the real 3D pose positions and
camera rotation matrices, which serves as an initializa-
tion for joint optimization of all parameters. We optimize
again for 50 epochs, but now also through minimizing the
energy/objective function adjust the camera angles. For
optimization with free camera rotations, the energy func-
tion was weighted with λrepro j = 500, λsmooth = 1 and
λlimbs = 1.

5 Results

We report the performance of our algorithms on unseen
test samples of both data sets. As metrics, we use the Per-
centage of Correct Key points (PCK), Mean Per Joint Pro-
jection Errors (MPJPE), Center of Mass (CoM) and ve-
locity errors. From the 3D skeleton, coaches could also
extract useful biomechanical variables.

5.1 2D pose estimation

We trained OpenPose using four different dataset configu-
rations. First we only trained it on the newly created alpine
skiing dataset, which we then augmented with calibration
poles. After that we initialized the network using pre-
trained weights from the MPII Human Pose dataset, and
finally we added to that one Kühtai sequence from four
camera angles.

In Table 1 we show the Percentage of Correct Key
points (PCK), as well as the Mean Per Joint Position
Errors (MPJPE) for both datasets, considering both all
skier joints and also just the human skeleton. The hu-
man pose is considered to be the collection of the 14
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Joints used PCK MPJPE ± std
Alpine all 92.69 0.0195 ± 0.0638
Alpine body 94.88 0.0132 ± 0.0416
Kühtai all 51.37 0.1064 ± 0.1297
Kühtai body 58.26 0.0835 ± 0.1092

(a) Standard alpine dataset.

Joints used PCK MPJPE ± std
Alpine all 95.77 0.0807 ± 0.0488
Alpine body 97.91 0.0625 ± 0.0346
Kühtai all 65.51 0.0137 ± 0.1236
Kühtai body 73.01 0.0092 ± 0.1074

(b) Augmented alpine dataset.
Joints used PCK MPJPE ± std
Alpine all 96.76 0.0119 ± 0.1268
Alpine body 98.36 0.0081 ± 0.1077
Kühtai all 70.10 0.0755 ± 0.0429
Kühtai body 76.83 0.0577 ± 0.0268

(c) Augmented alpine dataset
with weights initializations
trained on MPII dataset.

Joints used PCK MPJPE ± std
Alpine all 96.51 0.0119 ± 0.0431
Alpine body 97.81 0.0087 ± 0.0296
Kühtai all 78.11 0.0627 ± 0.1275
Kühtai body 83.12 0.0507 ± 0.1133

(d) Previous configurations, but
including one scene with four
cameras from Kühtai dataset.

Table 1: 2D pose estimation results with four different
dataset configurations used for training.

Metric Direct 3D Joint angles
MPJPE [m] 0.096 ± 0.125 0.102 ± 0.188
Centered MPJPE [m] 0.088 ± 0.126 0.110 ± 0.191
Normalized MPJPE [m] 0.0918 ± 0.1225 0.098 ± 0.186
CoM Error [m] 0.05 ± 0.02 0.05 ± 0.02
Speed MAE [m/s] 0.41 ± 0.97 0.43 ± 0.99

(a) With known camera parameters.

Metric Direct 3D Joint angles
MPJPE [m] 9.406 ± 6.622 5.523 ± 5.041
Centered MPJPE [m] 0.841 ± 3.295 0.252 ± 0.340
Normalized MPJPE [m] 5.382 ± 4.218 3.912 ± 4.371
CoM Error [m] 11.75 ± 6.38 6.75 ± 5.45
Speed MAE [m/s] 99.34 ± 72.74 32.81 ± 42.61

(b) With unknown camera rotations.

Table 2: Best reconstructed 3D pose metric means and
standard deviations when either directly inferring 3D lo-
cations or when using joint angles.

joints [0,1,2,3,4,6,7,8,10,11,12,13,14,15] shown in Fig-
ure 2a. For the MPJPE, image coordinates between 0 and
1 were used for the joint locations. In the case of the new
dataset we have information about joint visibility. Invisi-
ble joints were not counted in the PCK results. The data
augmentation and taking one Kühtai sequence for training
had the most impact on the accuracy.

5.2 3D pose estimation

The 3D poses were evaluated with the same four dataset
configurations.

5.2.1 Known camera parameters

In Figure 5 we showcase the performance across datasets,
number of cameras and parametrization methods. The
method taking all 6 cameras with the OpenPose weights
that were trained on both datasets consistently performed
the best for both joint angle representation and directly
optimizing for 3D coordinates. It’s performance is high-
lighted in Table 2a. Surprisingly, the joint angle represen-

Metric Best calibrated Best uncalibrated A [10] B [10] C [15]
Global MPJPE [m] 0.096 ± 0.125 5.523 ± 5.041 n/a n/a n/a
Centered MPJPE [m] 0.088 ± 0.126 0.252 ± 0.340 n/a n/a n/a
Normalized MPJPE [m] 0.092 ± 0.123 3.912 ± 4.371 0.122 n/a 0.081
Global CoM Error [m] 0.05 ± 0.02 6.75 ± 5.45 n/a n/a n/a
Relative CoM Error [m] n/a n/a 0.031 0.034 n/a
Global speed MAE [m/s] 0.41 ± 0.97 32.81 ± 42.61 n/a n/a n/a

Table 3: Comparison of best results in calibrated and
uncalibrated cases to methods proposed by Ostrek et al.
[10] (A: Monocular 3D and B: Directly from images) and
Rhodin et al. [15] (C: Semi-supervised).

tation was in most cases outperformed by the optimization
of 3D coordinates. To compute global metrics, such as the
CoM and speed, taking 3 instead of 2 cameras gives us the
largest performance increase, while using more results in
diminishing returns. For the centered MPJPE, 3 cameras
also seem to be the minimum.

Velocity estimation Coaches and athletes desire to get
feedback about their increase or potential loss of speed at
every moment of the run to enhance their performance.
However, optical barriers only provide the average speed
within a segment and existing automatic approaches [10]
estimate only relative pose metrics, no absolute position
nor velocity. Our method allows to estimate the athletes
instantaneous velocity as the change in CoM position be-
tween two frames. It has a very low mean absolute error
of 0.41 m/s and standard deviation of 0.97 m/s.

5.2.2 Unknown camera rotation

The performance of estimating camera rotations using all
6 cameras and the OpenPose weights that were trained on
both datasets is shown in Table 2b. The proposed method
certainly moved the 3D pose in the right direction but is
still far from optimal. It seems to find a relatively reason-
able pose for the athlete, but has trouble finding the exact
right position in global 3D space. In this case, using joint
angles performs much better than when directly optimiz-
ing 3D joint locations.

5.2.3 Comparison to existing methods

In Table 3 we compare our best results from both cal-
ibrated (using direct 3D joint optimization) and uncali-
brated (using joint angles) cases with the methods pro-
posed by Ostrek et al. [10] and Rhodin et al. [15]. The first
method by Ostrek et al. estimates monocular 3D poses
and computes biomechanical variables from the 3D joint
locations, while their second method directly computes all
variables from images. Rhodin et al. estimate a monocu-
lar 3D pose trained using a semi-supervised method. Our
best method using calibrated cameras yields on average a
very comparable performance to previous work. In addi-
tion, we are also able to compute global metrics like the
athlete’s velocity.
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Figure 5: Comparison of all performance metrics for different number of cameras used in bundle adjustment, four differ-
ently trained 2D detectors and using joint angles or direct optimization.

6 Conclusion

To sum up our contributions, we created a pipeline taking
videos from multiple cameras that is able to reconstruct
the global 3D pose of the athlete. To this end, a new alpine
skiing dataset was created that can be used for further re-
search in pose estimation. The very specific data aug-
mentation using calibration poles showed measurable per-
formance improvements. This simple to implement aug-
mentation strategy might also translate very well to other
datasets that pose similar challenges. We also showed
how training OpenPose with different dataset configura-
tions of ever increasing complexity could result in perfor-
mance improvements in both 2D and 3D pose estimation.
From this we can conclude that accurate 2D detections are
needed if we want an equally good 3D reconstruction.

When taking fully calibrated cameras, the 3D estimates
show a very high CoM and speed accuracy. When esti-
mating camera rotations, the center position is a far way
off, so future work could try to incorporate Optical Flow
to constrain possible camera movements.
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