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Abstract

Augmented reality visualizes additional information in
real-world environment. Main goal is achieving natural
looking of the inserted 2D graphics in a scene captured by
a stationary camera with possibility of real time process-
ing. Although several methods tackled foreground seg-
mentation problem, many of them are not robust enough
on diverse datasets. Modified background subtraction al-
gorithm ViBe yields best visual results, but because of the
nature of binary mask, edges of the segmented objects
are coarse. In order to smooth edges, Global Sampling
Matting is performed, this refinement greatly increased
the perceptual quality of segmentation. Considering that
the shadows are not classified by ViBe, artifacts were oc-
curring after insertion of segmented objects on top of the
graphics. This was solved by the proposed shadow seg-
mentation, which was achieved by comparing the differ-
ences between brightness and gradients of the background
model and the current frame. To remove plastic look of the
inserted graphics, texture propagation has been proposed,
that considers the local and mean brightness of the back-
ground. Segmentation algorithms and image matting al-
gorithms are tested on various datasets. Resulted pipeline
is demonstrated on a dataset of videos (sports and other).

Keywords: Augmented Reality, Computer Vision, Image
Processing

1 Introduction

In recent years augmented reality has been broadly used
in various applications such as video games, designing or
sport broadcasting. Existing algorithms [5, 14] addressing
this problem have been mainly focused on stitching graph-
ics to the ground due to moving camera. Natural look of
the inserted graphics is not discussed at all. Thus inserted
graphics look too plastic. Therefore this paper is focused
on natural look of the inserted virtual 2D graphics, result-
ing in graphics that give the impression, that it has been
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Figure 1: (b) Example of the result obtained from the
proposed pipeline. (a) Result without texture propagation
and foreground segmentation.

painted on the surface of the ground (Figure 1).

With increasing resolution and color accuracy, many
works are focused towards better accuracy, unfortunately
at the expense of processing time. Thus, these methods
can not be used in the proposed pipeline, since it aims to
be possible of real time processing. Another criterion is
keeping the integrity of the segmented objects, which is
more important than overall precision. Due to this fact,
used algorithms can not be chosen only by metrics.

Proposed pipeline should result in more natural looking
of virtual graphics, that can be used in sport broadcasting,
visualizing sponsors or virtual advertisement.

In this paper, we propose flexible and robust system for
natural looking graphics insertion using ViBe [2], which
is then refined by shadow removal (Section 3.1.2) and
smoothed by Global Sampling Matting method. Even-
tually graphics is refined using texture propagation de-
scribed in Section 3.3.2. In Section 4 proposed pipeline
is demonstrated on various datasets.

2 Related Work

In the past several years, numerous foreground segmen-
tation and image matting methods has been proposed.
Nonetheless combinations with image matting algorithms
were rarely tested.
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2.1 Segmentation

Since a majority of sports are played by humans, human
segmentation can be adopted. Pose machines algorithms
[19, 4] use multi-stage Convolutional Neural Network
(CNN) to generate confidence map of joints locations, bet-
ter precision can be achieved by using more stages, at the
expense of speed. Afterwards joints with high connec-
tion confidence are connected. To address joints ambigu-
ity in crowds of people, Cao et al. [4] uses part affinity
fields, which are predicted using CNN as well. Nonethe-
less such approach can be used only to refine the segmen-
tation mask, since it generates only skeleton of persons.

Although with DensePose [15] release, pose machine
can be utilized as standalone foreground segmenter. It
is based on DensePose-RCNN architecture which uses
ResNet50 [11] as region of interest (ROI) detector. Al-
though it was trained on the large DensePose-COCO [15]
dataset, it fails to detect body parts with a skin color simi-
lar to the background, see Figure 10.

DensePose classify every body part, however such in-
formation is not required, segmentation mask is suffi-
cient, thus CNN-based semantic segmentation such as
DeepLabv3+ [6] can be used. It is based on the encoder-
decoder architecture. The decoder is fairly simple, the en-
coder part is on the other hand more complex and flexible.
Any deep CNN could be used as an encoder part. Out-
put from atrous spatial pyramid pooling is added to the
decoder input.

Another approach is background subtraction, which
models the background and then compare it with the cur-
rent frame to detect changes. FgSegNet [13] is CNN-based
background subtraction method, which utilizes autoen-
coder architecture with triplet of CNNs as the encoder. Al-
though it has best performance in ChangeDetection chal-
lenge, it needs to be retrained on each category, which
makes it impractical in situations, where camera need to
be often repositioned.

ViBe [2], MoG [18] and SubSENSE [17] are classical
landmark algorithms. Unlike MoG which models back-
ground pixels using multiple gaussians, ViBe as well as
SubSENSE model background using multiple samples.
Nonetheless all background subtraction have to handle
sudden movement of static object, previously classified
as background, this phenomenon (referred to as a ghost)
leaves behind static hole in the background, that will be
misclassified as foreground.

ViBe use the L2 norm to compute the color distance be-
tween the background samples Mi and the frame I, pixels
with the color distance larger then the threshold TD, over
TSC samples are marked as a foreground in the segmenta-
tion mask S (Equation 1). ViBe+ [7] propose refinement
of the segmentation mask using morphological operations,
and usage of different function computing color distance,
however our implementation of proposed color distance
does not yield similar results as in Van Droogenbroeck et
al. [7], so only refinement using the morphological oper-

ations is used. Classical ViBe refined by morphological
operations is addressed as ViBe#.

SubSENSE [17] is similar to ViBe [2], yet it uses L1
norm to the compute color distance and LBSP [3] features
to detect camouflaged objects, nonetheless it does not ex-
ploit the LBSP features to classify a shadow. Only MoG
from mentioned algorithms separate shadow.

S =

{
f oreground, (∑n

i=1[||Mi− I||> TD])>= TSC

background, otherwise.
(1)

ViBe authors set TD, TSC, n to TD = 20, TSC = 2, n = 20.
Colors are in the range [0,255].

Chroma Key computes the color distance as well,
nonetheless is does not model a background. Color dis-
tance is computed from the keyed color Ki, and colors
similar to the keyed color are classified as a background.
It can be expressed as a sum of differences over all the
channels (Equation 2).

S =

{
f oreground, (∑3

i=1 |Ki− Ii|)> T
background, otherwise.

(2)

I denotes input frame.

2.2 Alpha Matting

Alpha matting refers to the problem of softly and ac-
curately extracting the foreground from an image [10].
Specifically the algorithm determine an alpha mask α in
order to create a composition C of the foreground image F
and the background image B:

C = Fα +B(1−α) (3)

The input of the alpha matting algorithms is trimap, which
specifies foreground (white color), background (black
color) and unkown pixels (gray color).

Methods like Closed Form [12] which can be cate-
gorized as propagation-based method, yields results bet-
ter than the sampling-based methods, however only the
sampling-based and the CNN-based methods can be op-
timized to real time performance. Well known sampling
based methods are Global Sampling [10] and Shared Mat-
ting [9]. Sampling methods create samples set from known
pixels and then compute alpha matte [10].

Global sampling matting [10] create samples from the
border with an unknown area. Random samples are added
to the sample set as well. For every tested sample, the cost
function is computed to determine fitness of the sample in
the matting equation (Equation 3). The best pair of sample
(F,B) is found using the SamplePatch algorithm.

In the bechmark conducted by Erofeev [8], DeepMat-
ting has the best performance [20], is uses an autoencoder
network. The encoder is consisted of layers from VGG-16
[16] architecture.
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Figure 2: Pipeline is divided into three major tasks, segmentation, segmentation refinement, graphics insertions. Seg-
mentation is performed by ViBe [2], then the segmentation mask is refined using open and close morphological transfor-
mations, followed by shadow removal from the segmentation mask (described in Section 3.1.2). Next trimap is generated
from the edges of the segmented objects as specified in Section 3.2.1. Afterwards Global Sampling Matting [10] uses
the trimap and the input frame, to smooth the segmentation mask. Inserted graphics is transformed to match the position
and the shape defined by a user. Then the graphics is added to the input frame. Texture is propagated from the modeled
background to the graphics, see Section 3.3.2. The remaining task is to bring foreground objects with their shadows on
top of the inserted graphics.

3 Proposed pipeline

The pipeline is divided into three major tasks, coarse
segmentation, segmentation refinement, graphics insertion
(Figure 2). The pipeline accepts an input frame and an in-
serted graphics as an input.

The coarse segmentation step segments the foreground
objects, that will be brought on top of the inserted graph-
ics. After coarse segmentation is executed, refinement of
the segmentation mask is performed. Then the inserted
graphics, foreground objects and the current frame are
composed.

3.1 Coarse Segmentation

Considering that this work aims on sport broadcasting,
human segmentation can be obtained by a pose estima-
tion [19, 4] in the combination with superpixelization [1].
However the result shown in Figure 3 is not optimal, thus
this approach is not tested furthermore.

Input image (b) Output

Figure 3: Human segmentation using Convolutional
Pose Machines (CPM) [19] with SLIC [1]. (b) Red area
denotes human pose estimated by CPM, white area stands
for resultant segmentation.

(a) First frame (b) Input frame (c) (d)

Figure 4: Ghosts can appear in the foreground mask cre-
ated by the background subtraction algorithms. If these
methods are initialized simply with the first frame, multi-
ple ghosts can occur, which leads to a misclassified back-
ground area as can be be seen in (d). (a) First frame of the
JNZP dataset. (b) Frame number #21. (c) Segmentation
mask produced by ViBe initialized with a computed back-
ground, see Section3.1. (d) Mask from ViBe with the first
frame initialization. Red area denotes a ghost merged with
a foreground object.

3.1.1 Segmentation

As mentioned in Section 1, preservation of the integrity of
the segmented objects is crucial for the perceptual accu-
racy. As can be seen in Figure 10 ViBe preserve objects
integrity, although a lot of noise is classified as a fore-
ground. Fortunately, the misclassified noise forms only
small blobs, which can be removed by applying the same
morphological operations as in Van Droogenbroeck et al.
[7] (Open morphology with kernel size 4x4, followed by
Close morphology with kernel size 3x3). ViBe# refers to
ViBe refined by morphological operations. ViBe# yielded
overall the best results as shown in Table 1 and Figure 10,
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thus it is used in the proposed pipeline.

3.1.2 Shadow detection

As mentioned in Section 2.1, ViBe [2] does not distinguish
the foreground objects from their shadows. Thus a simple
shadow detector is proposed. It compares a segmented ob-
jects color Ii and texture (Equation 5) with the modeled
background Mi, where index i denotes channel. Color dis-
tance is measured only from A and B components in the
LAB color space as can be seen in Equation 4. O is the
resulted shadow intensity. Result from this method can be
seen in Figure 5.

(a) (b) (c)

Figure 5: Shadow comparison on the PETS 2009 dataset.
(a) Without shadow segmentation artifacts are present. (b)
Result with the proposed shadow segmentation, see Sec-
tion 3.1.2. (c) Smoothed out shadow using Gaussian blur
with the kernel size 5x5 and σ = 5. Shadow intensity was
three times increased to enhance visibility in figure.

∆D =

√
∑

i∈(A,B)
(Ii−Mi)

2 (4)

where A,B denote image components of the LAB color
space.

∆G = ||GI−GM|| (5)

where GI and GM are gradients of the grayscaled frame
and background. Gradients were computed using Sobel
operator.

O =

{
Lbg−Lframe, ∆D < TC ∧∆G < TG

0, otherwise.
(6)

thresholds TC,TG were experimentally set to TC = 8 and
TG = 60.

3.1.3 Background model initialization

ViBe is also greatly sensitive to the background model
initialization, nonetheless it can be exploited to increase
the short term performance by initializing the background
model with a background analogous to the groundtruth
background resulting in the ghosts absence in the begin-
ning of the processing. Such initialization can be accom-
plished by computing a median of a few hundred frames

(a) LITOVEL_01 (b) ALFHEIM (c) PETS09 (d) JNZP

Figure 6: Background computed by median of the first
300 frames. On very dynamic scenes 300 frames is enough
to estimate the background, however when foreground ob-
jects do not move enough, some parts of the foreground
objects can be classified as background, see highlighted
red area.

(6). As can be seen in Figure 6 300 hundred frames proved
sufficient for the dynamic datasets. Due to slow decay rate
of the foreground pixels, ghosts disappearance would take
longer than with the mentioned background model initial-
ization, see Figure 4.

Mode-based background modeling [21] is faster than
median-based, as can seen in evaluation in Zheng et al.
[21]. Mode needs fewer frames than a median to pro-
duce an accurate background model. However the chosen
method does not matter, since the background initializa-
tion is supervised by a user, and as can be seen in Figure 6
median produces sufficient results.

3.2 Refinement

Coarse segmentation provides only a binary mask, which
causes sharp edges of the foreground objects, as can be
seen in Figure 7. Therefore smoothing of the segmentation
mask is performed.

3.2.1 Trimap generation

After shadow is removed from the foreground mask,
trimap is automatically generated by applying the So-
bel operator, edges with magnitude lower than 10 are re-
moved, threshold TE = 10 was empirically set. Afterwards
a dilatation (with kernel size 3x3) is used to thicken the un-
known area in the trimap. Example of a generated trimap
can be seen in Figure 7.

(a) Input frame (b) Trimap (c) ViBe (d) DeepMatting

Figure 7: Comparison of binary mask produced by Vibe
[2], and alpha mask created by DeepMatting [20]. (a) Red
area refers to the zoomed region. (b) Trimap generated
from edges, described in Section 3.2.1. (c) As can be seen,
edges of the segmented object are coarse. (d) Smoothed
segmentation mask using DeepMatting.
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3.2.2 Alpha Matting

In order to the increase perceptual quality of the segmen-
tation, alpha matting algorithms are used. Alpha mattings
algorithms take a trimap as an input and produce an alpha
mask α for the segmented objects. Global Sampling Mat-
ting (GSM) [10] and Closed Form Matting (CFM) [12] are
well known matting algorithms. CFM [12] in comparison
with GSM [10], is more prone to outliers as can be seen in
Figure 8, despite that CFM [12] results is more accurate in
VideoMatting challenge [8]. Unfortunately CFM [12] can
not be accelerated to real time processing, so GSM [10] is
used in the proposed pipeline.

CNN-based method DeepMatting [20] yields the best
results in the evaluation conducted by Erofeev et al. [8].
It can achieve real time processing, however only on the
more powerful GPU than the authors of this paper have
used, as mentioned in Section 4.

GSM CFM

Figure 8: Alpha matting algorithms comparison evalu-
ated on the PETS 2009 dataset. CFM [12] is more prone
to outliers than GSM [10].

3.3 Graphics insertion

Firstly, coordinates of the inserted graphics x are trans-
formed using the homography H to the user defined coor-
dinates x′ using Equation 7.

x′ = Hx (7)

3.3.1 Composing

After the graphics transformation, it is added to the frame,
followed by the foreground objects and the shadows. In
order to add shadows, graphics must be converted to the
LAB color space, then shadows are added to the L compo-
nent of the inserted graphics.

3.3.2 Texture Propagation

With a plain insertion of the graphics, background texture
is suppressed. Naive texture propagation can be achieved
by lowering the opacity of the graphics, however it low-
ers the visibility of the graphics, see Figure 9. Proposed
solution is to propagate the texture of the background con-
sidering local and mean brightness of the background, see
Algorithm 1.

Algorithm 1 Texture propagation algorithm

1: procedure PROPAGATETEXTURE
2: G← graphics
3: Bg← modeled background

4: GL,GA,GB← LAB(G)
5: AvgBg← AverageColor(Bg)
6: AvgBgL←ComponentL(LAB(AvgBg))
7: BgL←ComponentL(LAB(Bg))

8: DiffL← BgL−AvgBgL
9: GL←Clamp(GL+DiffL,0,255)

10: G←Merge(GL,GA,GB)

Input image (a) (b)

P
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Figure 9: Texture propagation enhances natural appear-
ance of the inserted graphics. (a) Naive texture propaga-
tion using lowering opacity of the graphics. (b) Proposed
texture propagation algorithm using Algorithm 1.

4 Results

As can be seen in Figure 10 DensePose [15] and
DeepLabv3+ [6] fails to segment persons, that are ”cam-
ouflaged” or small. Suprisingly DeepLabv3+ completely
fails in the greenscreen dataset (JZNP). SubSENSE [17]
performs quite well, however it sometimes remove details,
see Figure 10, LITOVEL 01 column. ViBe is producing
more false positives than false negatives, however such
result is more desired since the false positives can be re-
moved in the refinement step (Section 3.2). As previously
stated the false positives can be removed in the refinement
step, unfortunately some matting algorithms are not ro-
bust enough to handle correctly false positives. Due to this
fact small blobs of false positives are rather removed by
morphological operations. As can be seen in Figure 10
(ViBe#) a majority of the false positives is removed.

Although DeepMatting [20] and Closed Form Matting
[12] have best results in VideoMatting benchmark [8],
DeepMatting [20] processes 320x320 image for 36ms (on
Nvidia GTX 1070), thus it not capable of 25fps process-
ing with the combination of the algorithms used in the
pipeline. Only sample-based methods [10, 9] have the po-
tential to achieve desired speed. As can be seen in He et
al. [10] Global Sampling Matting (GSM) slightly outper-
forms Shared Matting [9], therefore GSM [10] is used in
the proposed pipeline.
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(h)

LITOVEL_01 ALFHEIM PETS09 JNZP

(a)

(b)

(c)

(d)

(e)

(f)

(g)

T=0.23, Key:    (156, 137, 96) T=0.25, Key:    (59, 122, 23) T=0.25, Key:    (140, 134, 136) T=0.12, Key:    (59, 174, 32)

Figure 10: Segmentation evaluation over various datasets. (a) Shows the input frames, (b) shows groundtruths in the
ssf format (blue channel = foreground mask, green channel = shadows mask, red = Outside region of interest). Results
correspond to the following methods (c)DensePose, pink areas are detected ROIs, (d) DeepLabv3+ [6], (e) SubSENSE
[17], (f) ViBe [2], (g) Vibe#, see Section 2.1, (h) Chroma-key, specified by Equation 2, the bottom parameters refers to
the key color and the threshold which is used for a colors in the range 〈0,1〉.
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Table 1: Comparison of segmentation methods based on RMSE metric. None that RMSE metric is computed only from
a single frame.

Dataset DensePose
[15]

DeepLabv3+
[6]

SubSENSE
[17]

ViBe [2] ViBe# Chroma-key

PETS09 31.9649 19.1179 18.9051 28.9328 20.1093 113.7187
LITOVEL 01 39.3016 47.2691 54.1864 61.8984 35.2635 107.0621
ALFHEIM 19.0938 15.6315 20.1774 29.0520 20.4717 94.9830
JZNP 26.8841 68.8796 25.2947 22.6819 19.1658 15.0399
Average RMSE 29.3111 37.7245 29.6409 35.6413 23.7526 82.7009

Figure 11: Evaluation performed on VIRAT, JNZP, LITOVEL 01, PETS 2009 and ALFHEIM datasets. First row
corresponds to the processed frames. As can be seen on (a), hard shadows are classified as the foreground, however due
to fix threshold. However background color nor texture are propagated, thus it does not change the visual appearance
of the resulted image. Although it can spotted, that the proposed pipeline still struggles with the colors similar to the
background. (b) The pipeline is tested on green screen as well. (c), (e) show usage of the pipeline on the sport datasets.

The described pipeline is written in Python 3 using
OpenCV and NumPy packages. Current state of the
pipeline is far from real time processing (currently 5s on
the 1280x720 frame using i7-7500U processor), it does
not take any advantage of GPU nor faster programming
language. However ViBe has been accelerated on the
Nvidia GTX 1070 GPU and it can process 180 frames
(with resolution 1280x720) per second.

5 Conclusions

In this paper, experiments were carried out to determine
the best combination of existing algorithms to handle the
outlined task. Pose Machines combined with superpix-
elization were found unsuitable for dense human segmen-
tation.

Utilization of ViBe has drastically increased accuracy of
the segmentation. Exploiting the background initialization
(Section 3.1.3) removes majority of ghosts .

As mentioned in Section 4 the system is not real time,
although the real time implementations of the used algo-
rithms are possible. Shadow segmentation method has
been proposed, which has similar performance as MoG,
although segmentation is failing if the shadow is close to

the black, see Figure 11.
Although texture propagation of the background in-

creases the natural look in the resulted image, conversion
to the LAB color space is rather complex thus experiments
with HSV color space will be conducted.

Despite the results of the suggested pipeline appears
relatively satisfying, motion blur and color similarity be-
tween the background and the foreground are still chal-
lenging for the system.

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua,
and S. Ssstrunk. Slic superpixels compared to
state-of-the-art superpixel methods. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
34(11):2274–2282, Nov 2012.

[2] O. Barnich and M. Van Droogenbroeck. Vibe: A
universal background subtraction algorithm for video
sequences. IEEE Transactions on Image Processing,
20(6):1709–1724, June 2011.

[3] G. Bilodeau, J. Jodoin, and N. Saunier. Change de-
tection in feature space using local binary similarity

Proceedings of CESCG 2019: The 23nd Central European Seminar on Computer Graphics (non-peer-reviewed)



patterns. In 2013 International Conference on Com-
puter and Robot Vision, pages 106–112, May 2013.

[4] Z. Cao, T. Simon, S. Wei, and Y. Sheikh. Realtime
multi-person 2d pose estimation using part affinity
fields. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1302–1310,
July 2017.

[5] R. Cavallaro, M. Hybinette, M. White, and T. Balch.
Augmenting live broadcast sports with 3d tracking
information. IEEE MultiMedia, 18(4):38–47, April
2011.

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou,
Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for se-
mantic image segmentation. CoRR, abs/1802.02611,
2018.

[7] M. Van Droogenbroeck and O. Paquot. Back-
ground subtraction: Experiments and improvements
for vibe. In 2012 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Work-
shops, pages 32–37, June 2012.

[8] Mikhail Erofeev, Yury Gitman, Dmitriy Vatolin,
Alexey Fedorov, and Jue Wang. Perceptually mo-
tivated benchmark for video matting. In Proceedings
of the British Machine Vision Conference (BMVC),
pages 99.1–99.12. BMVA Press, September 2015.

[9] Eduardo S. L. Gastal and Manuel M. Oliveira.
Shared sampling for real-time alpha matting. Com-
puter Graphics Forum, 29(2):575–584, May 2010.
Proceedings of Eurographics.

[10] K. He, C. Rhemann, C. Rother, X. Tang, and J. Sun.
A global sampling method for alpha matting. In
CVPR 2011, pages 2049–2056, June 2011.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, June 2016.

[12] A. Levin, D. Lischinski, and Y. Weiss. A closed
form solution to natural image matting. In 2006
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’06), volume 1,
pages 61–68, June 2006.

[13] Long Ang Lim and Hacer Yalim Keles. Foreground
segmentation using a triplet convolutional neural
network for multiscale feature encoding. CoRR,
abs/1801.02225, 2018.

[14] S. Monji-Azad, S. Kasaei, and A. Eftekhari-
Moghadam. An efficient augmented reality method
for sports scene visualization from single moving

camera. In 2014 22nd Iranian Conference on Elec-
trical Engineering (ICEE), pages 1064–1069, May
2014.

[15] Iasonas Kokkinos Riza Alp Güler, Natalia Neverova.
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