
Real-Time Shadows for Large-Scale Geospatial Visualization

Michaela Niedermayer ∗

Supervised by: Jürgen Waser, Daniel Cornel

VRVis Zentrum für Virtual Reality und Visualisierung Forschungs- GmbH
Vienna / Austria

Abstract

Floods are often catastrophic and can cause enormous dam-
age. Simulations are used to predict risks and respond to
them early, like in the decision-support system Visdom. A
true-to-life representation of the entire scene is important,
as the visualization of the results must be understandable
also to non-experts, such as decision-makers or the general
public. What is missing so far are shadows, although they
are particularly well suited to recognize relations of objects
to each other. This paper covers the implementation of
shadows in Visdom, to increase the realism of the scene.
This is very complex for scenes on city or even country
scale and requires a lot of own strategies, as there are no
ready-made solutions. We present an adaptation of cas-
caded shadow maps for our purposes, as well as a variety
of improvements to increase the shadow quality in our ap-
plication. The result of this work is a flexible visualization
of soft shadows for a variety of different-sized scenes in
real time, which increase the realism and spatial perception.

Keywords: Real-Time, Shadow Maps, Cascaded Shadow
Maps, Soft Shadows

1 Introduction

Floods are dangerous and often unpredictable events that
can occur due to different causes, including heavy rain-
fall, snow melting, river overtoppings, dike breaches and
many more. The financial damages of these natural events
amount to several million Euros. Visdom is a software
framework used for decision support in flood management
[1]. It helps to simulate and visualize floods over a specific
period in different cities or countries (e.g., for Austria or
for the city of Cologne, Germany) and allows flood man-
agers, for example, to investigate which buildings would
be in danger in various scenarios. These simulation results
are mapped to the geospatial domain in a 3D visualization.
The visualization should not be too complex that impor-
tant results can be easily distinguished, but it should be
true-to-life that also non-experts are able to understand it
quickly. The visualization has already a high degree of
realism in many areas of the application, but not in illu-
mination. Shadows are missing in Visdom, although they

∗michaela.niedermayer@aon.at

Figure 1: A scene view from the city of Cologne without
(top) and with (bottom) shadows.

would be well suited to get knowledge about the relations
of the objects to each other. Shadows are the best solution
to determine the relative location of objects. They anchor
objects in the scene, indicate the position of light sources
and give a greater sense of depth of the scene. This is
demonstrated in Figure 1 with our own results. The aim of
this work is the implementation of high-quality shadows
without artifacts in the 3D visualization to increase the re-
alism and spatial perception for large-scale scenes, without
reducing the performance significantly. It is a complex
task to implement shadows for such large scenes. There
exist no ready-made solutions that could be implemented
without adaptions to our use case. We implement shadows
with an adapted cascaded shadow maps (CSM) algorithm
and further improvements to increase the quality of the
shadows. The first step is the implementation of standard

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

shadow mapping that has some known limitations, which
lead to artifacts in diverse situations. An issue of shadow
mapping is aliasing (perspective and projection aliasing),
which is an artifact caused by under-sampling due to the
low resolution of the depth map near the observer’s eye.
Another problem is incorrect self-shadowing of objects. It
is caused by the quantization of z-buffer surfaces when the
transformed point is not lying right on the surface of which
it is a part, but above or below [12]. The suggested solu-
tions for artifacts in synthetic cases do not always work in
real-world scenarios, so robust solutions have to be adapted
or developed. In addition, some artifacts stem from faults
in the geospatial data gathered from different sources over
which we have no control. Further, the succeeding change
to cascaded shadow maps is difficult, as it is normally not
used for orthographic projection. These are the challenging
problems, since existing approaches do not tackle these
issues and, therefore, own solutions need to be developed.

2 State of the Art

In the following subsections the state of the art of shadow
mapping, cascaded shadow maps and soft shadow tech-
niques are explained.

2.1 Shadow Mapping

The two best-known algorithms for shadows are shadow
volumes [4] and shadow mapping. As shadow mapping is
significantly faster than shadow volumes in many cases, it is
state of the art for real-time applications. Another obvious
choice for shadow computation is ray casting, but with a
single ray per fragment it results in hard shadows and needs
more implementation effort than shadow mapping. For soft
shadows more ray tracing would be needed, which is, in
spite of modern hardware support, in world space much
slower than an image-space method. Shadow Mapping
[12] is a technique done in image space with two render
passes. In the first render pass (z-buffer pass), a depth map
from the point of view of the light source, i.e., in light
space, is created. In the second render pass, the scene is
rendered from the observer’s eye, i.e., the camera of the
scene. During rendering, the fragments of shadow receivers
are mapped to the light space, the depth values of the same
point of interest of both passes are then compared to each
other. If the fragment depth from the second render pass
is larger than from the first, the fragment is in shadow and
gets shaded accordingly. As shadow mapping is done in
image space, some limitations must be observed [8], e.g.,
that all objects that cast a shadow in the viewed scene are
part of the depth map. In addition to the aliasing problems,
shadow mapping is view-dependent and it is problematic
for omnidirectional lights. Besides the major advantages of
shadow mapping, which are efficiency and speed, it enables
self-shadowing, is independent of scene complexity and
the depth map can sometimes be reused.

Figure 2: Cascaded Shadow Mapping splits.

Figure 3: A shadow of a statue with no use of PCF (left),
PCF with a 9×9 kernel size (middle) and PCSS (right).
Images are taken from [3].

2.2 Cascaded Shadow Maps

Cascaded shadow maps (CSM) can be used to address
the problem of producing high-quality shadows in large
environments. It is a partitioning method where the view
frustum is split into different parts and a depth map is
created for each of them (example in Figure 2). Through
the separate depth maps, the resolution in each subfrustum
is higher and aliasing artifacts are reduced, which improves
the shadow quality. In which shadow map the lookup
is taken depends on the fragment’s depth. CSM is often
seen as an discretization of Perspective Shadow Maps [11],
which has the idea to wrap the light frustum to exactly
coincide with the view frustum [5].

2.3 Soft Shadows

Traditional shadow mapping produces hard shadows, which
causes sharp shadow edges and a lot of aliasing. Percentage
closer filtering (PCF) [9] provides an anti-aliasing solution
where the results of the depth map lookup are sampled
around the projected point. The binary results are filtered
in a given kernel and the data average is calculated, so
the new shadow value is in the range between zero and
one instead of exactly zero or one. The bigger the size
of the PCF kernel, the softer are the resulting shadows

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 4: (a) Camera view: rendered scene. (b-d) Light
view: depth maps of three different cascades of image (a).

(example in Figure 3). In another soft shadow technique,
percentage closer soft shadows (PCSS) [7], the filter size
varies intelligently to achieve a plausible degree of softness
as well as hard contact shadows. In the first step of PCSS
(the blocker search), the depths that are closer to the light
source than to the receivers are searched and averaged.
Then the penumbra width is estimated with the following
equation:

w Penumbra = (d Receiver −d Blocker) ˙ w Light/d Blocker. (1)

In the last step, a PCF filtering is performed using a kernel
size proportional to the penumbra estimation. PCSS is gen-
erating perceptually accurate soft shadows without needing
additional geometry (example in Figure 3). These are just
two out of many possible approaches for anti-aliasing. An-
other well-known method is Variance Shadow Maps (VSM)
where the mean of a distribution of depths is stored to com-
pute the variance over a region [6]. It is not implemented,
as the quality of PCSS with PCF filtering is preferred.

3 Methodology

In this section, the theoretical background of the implemen-
tation is explained. The goal is to implement a shadow
mapping algorithm (subsection 3.1) to render good look-
ing shadows in large environments. The implementation
includes many methods to calculate the necessary values
automatically, suitable for the actual scene and view. In the
following subsections, the basic shadow mapping, cascaded
shadow maps and further improvements are described.

3.1 Depth Map and Shadow Mapping

The first step is to create a single depth map for basic
shadow mapping. The generation of the depth map is the
first render pass of the shadow mapping algorithm. The
created texture stores the scene from the light source’s
“view”, which is called focusing. For shadow mapping, a
directional light is used. This kind of light is comparable
with a sun and has therefore no position in the scene, but a

Figure 5: The practical split scheme (right) consists of the
uniform split scheme (left) and the logarithmic split scheme
(middle). Image from [10].

direction in which the light is cast. The depth map includes
all kinds of meshes (buildings, bridges, etc.) and trees. The
terrain is not included, which means the terrain does not
cast shadows. A result of a depth map from the application
can be seen in Figure 4, already divided in the cascades,
which are explained in subsection 3.2.

After generating the depth map, the second render pass
can be done. This is the normal rendering but with an
additional shadow calculation method. The first step in
the method is the transformation of each visible surface
position to the light space and subsequent projection to the
image space of the corresponding cascade’s shadow map.
The normalized distance to the light source is stored as the
current depth. As the depth map is also in the range [0,1],
the closest depth from the light’s point of view can now be
determined with a lookup to the shadow map. The last step
is to compare the depths. If the current depth is larger than
the closest depth the shadow is one.

3.2 Cascaded Shadow Mapping

Cascaded Shadow Mapping is a technique where multi-
ple depth maps are used to overcome perspective aliasing.
In our application, one to five cascades are possible. As
described in subsection 2.2, the view frustum is split into
different parts. The splits are located along the z-axis in
view space. For the calculation of the split positions, a
scheme, called practical split scheme, is applied, which
provides a moderate sampling rate in the whole view frus-
tum. The split scheme, i.e., in Figure 5, consists of two
parts, which are the uniform part and the logarithmic part.

Ci = l(n(f/n)i/m)+(1− l)(n+(f −n)(i/m)) (2)

l is the amount in percent of how much the logarithmic part
is taken. The equation of the split position for cascade i
(from overall m cascades) is Equation 2, at which n is the
near plane and f is the far plane.

The next step in the cascaded shadow mapping algorithm
is to compute an orthographic projection for each subfrus-
tum. For simplicity and reusability of existing functionality,

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 6: (Top) A screenshot of a small part of the scene
without cascaded shadow mapping. (Bottom) The same
scene when four cascades are used.

a cascade camera is created for each split part to store
values like near/far plane, view matrix, projection matrix,
etc. Furthermore, an additional camera is created for each
cascade which faces the cascade from the direction of the
directional light source, in the following called a shadow
camera. All of these cameras are updated every time the
original scene camera is changing. All the steps done for
standard shadow mapping are now done for each cascade.
From a list of cascade splits along the view direction, it can
be decided for each visible surface position to which cas-
cade and therefore shadow map it corresponds. In Figure 6,
you can see the difference of the scene when using standard
shadow mapping (top) and cascaded shadow mapping with
four cascades (bottom).

3.3 Soft Shadows Improvements

One of two soft shadow techniques can be chosen in the
application, the Percentage Closer Filtering (PCF) and the
Percentage Closer Soft Shadows (PCSS). For PCF, the size
of the filter kernel can be selected in the application during
run time. It is also possible to select a size of 1×1-filter
kernel, which means no PCF filtering is done. The filtering
itself is done as described in the previous subsection 2.3.
For PCSS, two parameters can be set in the application

at run time, namely the light size and the number of sam-
ples for the included PCF algorithm. First, the blocker
search is done with a fixed number of the samples. After
this, the penumbra size is calculated with the parameters
set by the user. The last step is the PCF filtering with in-
cluded stochastic sampling. Through the combination with
stochastic sampling, the texels are less visible.

3.4 Further Improvements

The first improvement is a blending between the cascades,
since it is sometimes visible where the next cascade begins.
For all the fragments in the blend area of a user-defined
size, a second shadow value is calculated. Both shadow
values are linearly combined to get the final shadow result.
Another improvement, which generates better shadow re-
sults, is a fade out of the shadow. Within a user-defined
fade out range, the shadow intensity is gradually reduced
and beyond that range, no shadows are drawn in order to
reduce the cascade size. This is a big improvement for the
shadow quality, since just the shadow range and fade out
area is rendered in the depth maps instead of the whole
scene.

4 Implementation

The whole shadow mapping algorithm with methods and
improvements explained in section 3 is implemented in
Visdom with the graphics API OpenGL. The code is written
in the programming language C++.

4.1 Setup

There exist three important parameters (z-near, z-far, ortho-
zoom factor) needed for the orthographic projection matrix.
The values of these parameters vary for a good-looking
shadow, depending on the actual view. Since the view and
therefore the amount of rendered polygons changes a lot
when zooming in and out, these three values are calculated
automatically. Z-near and z-far of the shadow camera of
each cascade are the first two values computed. With the
splits of the cascades, we get the z-near and z-far values for
the cascade cameras. These values are required to get the
frustum corners of the actual cascade. After multiplying the
frustum corners with the view matrix from the shadow cam-
era of this cascade, we get the coordinates in view space
and can store the minimum and maximum z-value.

The orthographic projection in the application is not a
standard OpenGL projection matrix, but an reversed one,
which means that it maps the far plane to zero instead of one
[2]. The orthozoom factor is a value, which does not exist in
a normal orthographic projection. This value is used in the
application to scale the whole scene before the projection,
to map the scene to a much smaller area. For the calculation
of the factor, first the bounding box of the scene camera of
one cascade is used, to get the intersection volume. In the

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 7: (Top) Example of incorrect self-shadowing. (Bot-
tom) The incorrect self-shadowing is reduced, but shadow
acne appears on the backface of the building.

next step, the intersection volume is projected onto the near
plane of the scene camera. Further, a new bounding box
around the points on the plane is built, to get the width and
the height of this bounding box. The width and the height
are each divided by two. The maximum of these two values
is then set as the orthozoom factor.

4.2 Shadow Pass

The program required to generate the depth map consists
of a vertex and a fragment shader. A framebuffer is used to
store the rendered result in a texture. First, the 2D texture
is created with a depth render target, as no color buffer is
needed in this render pass. This texture is then attached as
the framebuffer’s depth buffer. The render logic and the
vertex shader are the same as for rendering meshes. The
fragment shader is simpler, because it only stores the depth
values. In the vertex shader, the vertex coordinates are
transformed from world space to the cascade’s correspond-
ing light space before projection. An important step before
rendering the depth map is to change the viewport of the
OpenGL API to the light viewport. Further, the OpenGL
API offers a function to cull faces for the rendering, so they
are not drawn in the application. For surface rendering,
it is usual to cull the back faces, which means much less
triangles need to be rendered. For the depth map creation,
the value is set to front face culling. If the front face is
culled, the shadow map stores the depth value of the back
face instead of the front face. It does not change anything
for solid objects if the depth is taken from the front or back
face, as it does not matter if shadows are inside the objects.

Through the difference in the depth, there are no longer
artifacts on the roofs of the buildings. Furthermore, the
incorrect self-shadowing explained in subsection 2.1 is not
visible any longer, because the z-value of the light is now

always larger than the z-value of the eye, if the shaded point
is not in shadow. An example of a small scene with and
without incorrect self-shadowing can be seen in Figure 7.
The only exception are objects which do not have any depth
itself (e.g., a plane), as the front face culling would not
change anything regarding the depth. After the use of front
face culling, there are some artifacts on the back faces of the
meshes, named shadow acne, which can be seen in Figure 7
in the image below. It occurs when the shadow receiver
is orthogonal to the shadow map plane (i.e., projection
aliasing). A solution for this problem is implemented by
calculating the dot product of the directional light direction
and the normal of the shaded point. If the result is larger
than or equal to zero the fragment is in shadow.

4.3 Shading Pass

This render pass is the common shading pass with an addi-
tional shadow calculation. The computation is done in the
fragment shader. Shadow camera parameters such as light-
space matrices and near and far bounds are provided with a
uniform buffer object. In the shader, the fragment’s depth is
used to find out in which cascade the shadow lookup is done.
To compare the fragment with the corresponding fragment
in the depth map, a transformation to the light screen space
is required. The fragment’s world-space position is trans-
formed to the shadow map’s image space. The calculation
and shading is done as described in subsection 3.1. This
algorithm returns hard shadows, which means the resulting
shadow is a binary value and causes hard lines between the
dark and lit regions. The soft shadow algorithms PCF and
PCSS are used to smooth the transition and to get other
shadow values between zero and one.

In the PCF algorithm, the user can select specified filter
sizes between 1×1 and 9×9. In two for-loops, all shadow
values of the neighbors of the actual fragment are summed
up and averaged. The PCSS algorithm can be divided into
three parts. In the first part, the blocker search, a fixed
number of blocker samples are used. We set this value
to five, by default. With the light size, the near plane
of the cascade, in which the fragment is lying, and the
current depth, a search width is defined. This search width
combined with stochastic sampling gives an offset, when
the closest depth is calculated. If the current depth is larger
than the closest depth, a new blocker is found. The result
is the sum of the blocker closest depth values divided by
the number of found blockers. After the penumbra size
calculation with the Equation 1, a PCF filtering is done.
The user can set the number of the PCF samples for PCSS.
The offset for the calculation of the current depth is the
penumbra size combined with stochastic sampling. For
every sample where the current depth is larger than the
closest depth, an amount of one is added to the sum, which
is at the end divided by the number of samples. The result
is the amount of shadow which is then multiplied with the
diffuse and specular colors.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 8: (Left) Shadow range of 5 km and fade out range of 500 m. (Right) No shadows.

5 Results and Discussion

In this section, the results of the implemented algorithm
are shown and explained. First, the visual results are shown
with short descriptions about what can be exactly seen in
the resulting images. After this, the performance results
are presented which are measured with the same camera
settings as in Figure 8. In the last subsection, which is the
discussion, a critical review of the results is done.

5.1 Visual Results

The results show the implemented shadow mapping algo-
rithm in the city of Cologne, Germany. This city provides
a good opportunity to show the results, as it is a big scene
with high buildings, a river, detailed bridges, trees and some
special buildings, e.g., the dome. The shadows make the
scene much more realistic, especially in a direct compar-
ison. Through cascaded shadow mapping and a limited
shadow range, the shadow quality increases a lot. A result
of a big scene with and without shadows can be seen in
Figure 8, where the shadows are restricted to a range of 5
kilometers. Shadows are cast by trees and various kinds of
meshes. That includes objects that are dynamically added
at run time, e.g., walls and sandbag barriers, which are
used to save endangered buildings from the floods. As soon
as they are added to the scene, the shadow appears. The
terrain receives shadows, but does not cast shadows itself.
This could be an add-on in future work.

The algorithm shows objects with little details very accu-
rately, e.g., one of the bridges which can be seen in Figure 9
on the image above. It is visible that the bridge is built out
of many thin metal bars. Further, you can see in this figure
the shadow of the bridge in the water twice. This happens
as one shadow is on the ground of the water, and the other
one is on the surface of the water. In Figure 9, in the image
below, trees with their shadows are shown. In the figure a
dynamic floodwall can be seen, which is inserted next to
the river to protect the buildings around it. Beside this, the

figure shows again the double shadow in the water area.

5.2 Performance Results

The computer used for testing the implementation has an
integrated Intel Core i5-4690K processor with 3.50GHz
and a memory of 32 GB RAM. As video card, the NVIDIA
GeForce GTX 1070 is used. The operating system is Mi-
crosoft Windows 10 x64. The elapsed time on the GPU is
measured with a pipeline statistics query from the OpenGL
API. Performance tests are done for both render passes. The
measured time of the first render pass includes the change
of the viewport and culling, the binding of the program
where all parameters are set and the rendering of the depth
map itself. In all render classes (terrain, mesh and tree),
the performance results of the shading pass include just the
drawing of the elements, which is the actual rendering.

An interesting result shows the difference between the
use of one and five cascades. This calculation includes the
depth map generation as well as the shading pass for the
meshes and for the terrain. As can be seen in Figure 10
at the top, there is not a big difference in the elapsed time
between the amount of cascades for the second pass, but
in the shadow map creation the value for five cascades is
more than four times as high as for just one cascade. This
is expected, as the scene geometry has to be rendered four
more times. The diagram, shown in Figure 10 at the bottom,
shows the elapsed time (y-axis) of the mesh, terrain and tree
renderers (y-axis) when different soft shading techniques
are used. The best looking results are gotten with the use
of the PCF technique with a 9×9 filter size, but as can
be seen in the figure the elapsed time to render this, is on
average much higher than for the size 1×1 or for the other
techniques. There is just a minimal difference between
PCF 1×1 filter and PCSS with four samples, although a
PCF size of 1×1 means there is no soft shading done. With
increasing size of the samples in PCSS, also the elapsed
time is increasing, but in proportion the raise is very low.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 9: (Top) A bridge with many shadow details. (Bot-
tom) Shadow of trees and double shadow in the water.

5.3 Discussion

A difficult point in the shadow quality is that it depends
much on the direction of the scene camera. When a scene is
viewed top-down, the viewport includes just a few objects,
and therefore just a few objects need to be rendered in the
depth map. However, if the scene is viewed horizontally,
the viewport of the camera can contain the whole scene
in worst case. This leads to the problem that the entire
scene needs to be rendered into the depth map and the posi-
tions near the camera are extremely under-sampled. Many
improvements for this problem are added to the implemen-
tation, which are CSM, a practical split scheme and at least
a maximum range for the shadow. All of them are very
helpful to overcome the problem, but it is still visible that
the shadow quality in a horizontal view is worse than in a
top-down view. An example of such a horizontally viewed
scene can be seen in Figure 11a. In this view, CSM is
already used, but staircases in the shadow are visible, as no
shadow range was used and the depth map has a resolution
of 1024, which is too small for this scene view. With the
usage of a maximum shadow range or a higher resolution of
the depth maps, the result is much better, i.e., in Figure 11b
where a shadow map size of 4096 is used.

Figure 10: (Top) A diagram, which shows the different
performance for using one or five cascades. The diagram
includes both render passes. (Bottom) A diagram, which
shows the performance for the use of different soft shading
algorithms with different filter sizes and samples, measured
in the shading pass for the terrain, the meshes and trees.

All mentioned improvements are helpful, but it is still
visible that the shadow quality in a horizontal view is worse
than in a top-down view. Although it is visible, the improve-
ments decreased this artifact to a minimum and therefore
it is not annoying any longer. To implement the feature of
a maximum shadow range is helpful in many ways. It im-
proves the shadow quality and a little bit the performance
when terrain and meshes are rendered. Nevertheless, the
improvement has a disadvantage, one has to accept. In a
top-down view, it can happen for tall buildings that shadows
are still visible on the roof, but not on the ground.

One of the two soft shading techniques should always be
used when rendering shadows, at which PCSS has a better
proportion between performance and shadow quality. PCF
with a filter size of 9×9 is the best choice for screenshots,
since it gives the best looking results, but as described in
subsection 5.2 it has a too low performance to use it as
default filtering technique.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

(a)

(b)

Figure 11: A horizontally viewed scene. (a) A shadow map
size of 1024, which causes artifacts. (b) Much better results
with shadow map size of 4096.

6 Conclusion

This paper covers the implementation of real-time shadows
for large-scale geospatial visualization. An adapted version
of the cascaded shadow maps technique is used to reach a
good quality of the shadows and at interactive frame rates.
Several improvements helped to reach the desired quality
and a good performance. They further removed occur-
ring artifacts. Examples of these artifacts are the incorrect
self-shadowing, fixed with the use of front face culling,
perspective aliasing, fixed with the use of a specific split
scheme in CSM, and a visible cascade transition, which
is solved by blending between the cascades. As shadow
mapping produces hard shadows, we integrated two soft
shadow techniques, which are PCF and PCSS. The result
is a flexible visualization of real-time shadows, which im-
prove the realism of the scene. An add-on that should be
done in future work is casting shadows of the terrain.

7 Acknowledgements

This work was enabled by the Competence Centre VRVis.
VRVis is funded by BMVIT, BMDW, Styria, SFG and
Vienna Business Agency in the scope of COMET - Compe-
tence Centers for Excellent Technologies (854174) which
is managed by FFG.

References

[1] Visdom. http://www.visdom.at/.

[2] Depth precision. http://dev.theomader.
com/depth-precision/, May 2015.

[3] Louis Bavoil. Advanced soft shadow mapping
techniques. http://developer.download.
nvidia.com/presentations/2008/GDC/
GDC08_SoftShadowMapping.pdf, February
2008.

[4] Franklin C. Crow. Shadow algorithms for computer
graphics. In Proceedings of the 4th Annual Confer-
ence on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’77, pages 242–248, New York,
NY, USA, 1977. ACM.

[5] Rouslan Dimitrov. Cascaded shadow maps. Devel-
oper Documentation, NVIDIA Corp, 2007.

[6] William Donnelly and Andrew Lauritzen. Variance
shadow maps. In Proceedings of the 2006 Sympo-
sium on Interactive 3D Graphics and Games, I3D ’06,
pages 161–165, New York, NY, USA, 2006. ACM.

[7] Randima Fernando. Percentage-closer soft shadows.
In ACM SIGGRAPH 2005 Sketches, SIGGRAPH ’05,
New York, NY, USA, 2005. ACM.

[8] J. M. Hasenfratz, M. Lapierre, N. Holzschuch, F. Sil-
lion, and Artis GRAVIR/IMAG-INRIA. A survey of
real-time soft shadows algorithms. Computer Graph-
ics Forum, 22(4):753–774, 2003.

[9] Lu Liu and Shuangjiu Xiao. Real-time soft shadows
for large-scale virtual environments. In 2011 Interna-
tional Conference on Multimedia Technology, pages
5464–5467, July 2011.

[10] Hubert Nguyen. Gpu Gems 3. Addison-Wesley Pro-
fessional, first edition, 2007.

[11] Marc Stamminger and George Drettakis. Perspective
shadow maps. In Proceedings of the 29th Annual
Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’02, pages 557–562, New
York, NY, USA, 2002. ACM.

[12] Lance Williams. Casting curved shadows on curved
surfaces. In Proceedings of the 5th Annual Confer-
ence on Computer Graphics and Interactive Tech-
niques, SIGGRAPH ’78, pages 270–274, New York,
NY, USA, 1978. ACM.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

http://www.visdom.at/
http://dev.theomader.com/depth-precision/
http://dev.theomader.com/depth-precision/
http://developer.download.nvidia.com/presentations/2008/GDC/GDC08_SoftShadowMapping.pdf
http://developer.download.nvidia.com/presentations/2008/GDC/GDC08_SoftShadowMapping.pdf
http://developer.download.nvidia.com/presentations/2008/GDC/GDC08_SoftShadowMapping.pdf

	Introduction
	State of the Art
	Shadow Mapping
	Cascaded Shadow Maps
	Soft Shadows

	Methodology
	Depth Map and Shadow Mapping
	Cascaded Shadow Mapping
	Soft Shadows Improvements
	Further Improvements

	Implementation
	Setup
	Shadow Pass
	Shading Pass

	Results and Discussion
	Visual Results
	Performance Results
	Discussion

	Conclusion
	Acknowledgements

