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Abstract

The creation of detailed models for computer graphics is a
work intensive task, which limits projects in the graphical
fidelity which can be achieved. Procedural modelling is an
ongoing field of research which aims to alleviate this pres-
sure. The most common systems for procedural modelling
specialize in either modelling plants, as is the case with L-
systems, or in modelling buildings, as do shape grammars.
This paper aims to show a path for improving this situa-
tion, by describing the conception and implementation of
a graph grammar for procedural modelling of both artifi-
cial (buildings and furniture) and organic (trees and flow-
ers) objects in 2D space. The suitability of the proposed
graph grammar is demonstrated by applying it to a variety
of modelling tasks, such as a Koch snowflake, circular and
square patterns, foliage and a building facade.

Keywords: graph grammar, procedural generation, mod-
elling

1 Introduction

Modelling of detailed objects is a subject of growing im-
portance, especially in the entertainment industry. Proce-
dural modelling can play an important role in this process,
by providing a means of creating detailed and varied mod-
els in a shortened time-frame. It has the potential to add
more objects, and more variety in the same class of ob-
jects, without requiring more development resources.

Most methods of procedural modelling used today have
a particular type of object they are good at producing. For
example, shape grammars are used very successfully to
create building facades, houses and cities, but they are not
very successful at creating plants. L-systems mirror this
state, being very good at modelling plants, but facing no-
ticeable limitations when applied to modelling buildings.

This paper attempts to show how graph grammars can
be used to model all kinds of objects, be they naturally
grown or artificially crafted.

The next section describes the relevant literature in the
fields of procedural modelling and graph grammars (Sec-
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tion 2). Afterwards, the next two sections give a formal
definition of the new grammar proposed in this paper and
a description of its actual implementation in Python (sec-
tions 3 and 4). Then, Section 5 will show how a production
is defined and display the results of various derivations. Fi-
nally, Section 6 contains conclusions and a discussion on
drawbacks and future work.

2 Related Works

A comprehensive introduction to L-systems and their ap-
plication to the modelling of plants can be found in [17].
In general, models of plants are generated from the string
produced by an L-system by interpreting them with a
Logo-style turtle. An example of such an L-system for
a simple 2D plant-like structure would be the following
(taken from [17]):

Axiom: X
Production rules:
X —> F[+X] [-X]FX
F -> FF

The set of rules would be repeatedly run in parallel, usu-
ally for a relatively low number of steps, seven in this
case, and then evaluated for display by a Logo-style tur-
tle. The interpretations would be F moves the turtle for-
ward, + makes it turn left, — makes it turn right, [ pushes
the current position and direction onto the stack, and ]
pops the last saved position and direction from the stack.
Many L-systems for generation of flora use an extended
set of functionality, such as a 3D space with operations to
change pitch and yaw, changing the diameter, or changing
the color of line segment.

L-systems are, however, not limited to the generation of
plant models, they can also very successfully create fractal
patterns and have even been applied to the modelling of
buildings and cities [15].

For the modelling of buildings and facades, an approach
based on shape grammars was developed since the turn of
the millennium. The term shape grammar is somewhat un-
fortunate, because what it commonly refers to is not tech-
nically a shape grammar, as defined by [20], but a subset
of set grammars.
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The split approach to shape grammars is the most com-
mon in procedural modelling. It was introduced by [22],
inspired by L-Systems and the work done in [15]. Since
then it has been improved and extended by multiple pub-
lications, such as the addition of scopes in [13], extend-
ing the use of non-terminal shapes in [11], allowing for a
shapes scope to be any convex polyhedra in [21], allow-
ing conditions on geometric information within produc-
tions in [19], and allowing for layers and SVG code inside
2D shapes in [8].

A typical example of a production in a shape grammar,
taken from [13], would be:

1: fac(h) :h>9~> floor(h/3) floor(h/3) floor(h/3)

Where 1 is the ID of a rule taking a shape with the label
fac for fagade and an attribute h for height and applying
only if h is greater than nine. If it is applied, it splits apart
the shape fac into three shapes, each with the label floor
and a height of one third of the original shape. To produce
an interesting facade additional functionality is needed to
control the productions. In [13] these are scopes, similar to
L-system scopes, a function to split along an axis, to scale
along an axis, to repeat a shape as long as there is space,
and finally a function to split a scope into its components
of lesser dimension, e.g. split a 3D cube into 2D faces.

A different, but somewhat related approach to shape
grammars is GML [5]. It is a stack-based imperative pro-
gramming language, mirroring the syntax of PostScript,
which is well suited to implement typical context-free
shape grammars. In addition to its shape grammar like
functionality, it also supports shape representations using
pcB-Reps, Convex Polyhedra and Volumetric Bitmaps.

As to the subject of graph grammars, which are the un-
derpinning of this paper, the standard work is the “Hand-
book of Graph Grammars and Computing by Graph Trans-
formation” in three volumes [18, 3, 4]. A detailed, special-
ized treatment of double push out algebraic graph gram-
mars can be found in [2]. A comparison between the dou-
ble and the single push out approaches to algebraic graph
grammars can be found in [16].

Applications of graph grammars to procedural mod-
elling are not yet particularly well explored. There is [1],
which describes a graph grammar for general purpose pro-
cedural modelling, but deviates from the usual practice of
having labelled graph elements and places big limits on
what productions can look like. For plants there are [9],
which mirrors L-systems using graph grammars, and [6],
which is an extension of the graph based XFrog software.
Another work of interest is [12], which uses graph gram-
mars for evolutionary design. So there is active research in
this area, but as of yet there is no generally agreed upon ap-
proach to using graph grammars for procedural modelling,
as is the case with L-systems or shape grammars.

3 Formal Definition

The proposed grammar is a tuple of the form (A, P) where
A is the axiom graph, or the starting graph, and P is a set
of productions. A terminal state is implicitly encoded in a
set of productions: If there is no production which can be
applied to a graph, the graph is said to be in terminal form
for this particular set P of productions. All graphs in the
grammar are attributed and by default undirected.

At its most basic, the productions of the grammar are
of the form (M, p, D) where M, called the mother graph, is
the left-hand-side of the production; D, called the daughter
graph, is the right-hand-side of the production; and p is the
partial graph morphism.

The partial graph morphism p is a morphism of some
subgraph of M to D, i.e. SC M, p: S — D. Itis essentially
a mapping of graph elements (e.g. nodes, edges, faces or
volumes) between the mother graph M and the daughter
graph D. In addition to the usual restrictions on a partial
graph morphism found in literature, two constraints apply
in the new grammar:

* The preimage of an element of D may only contain
zero or one element, which is to say that an element
of D may be mapped to by at most one element of M.

* A graph element may only be mapped to another
graph element of the same type, i.e. a node may only
be mapped to a node, an edge to an edge and so on.

M D

AN pd [

to remove unchanged to add

Figure 1: Example of a production definition. The dot-
ted arrows going from M to D represent the partial graph
morphism p. Elements which will be added are circled
in red, elements to be added in green and elements kept
unchanded in blue.

Figure 1 provides an example for a production and the
partial graph morphism p defined between M and D, indi-
cated by the dotted arrows. The two nodes and one edge
which are matched by p, highlighted in blue, will be kept
unchanged during the application of this production. The
node of M highlighted in red and the edge connecting to
it are not part of p. This means they will be deleted when
applying the production. The node of D highlighted in
green and the two edges connected to it are also not part
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of p, but since they are part of D they will be the elements
added during production application.

A derivation step, or an application of a production
onto a hostgraph H, works by first finding an isomorphism
m: M — H. In the next step, for all elements of M not
part of the domain of the partial graph morphism dom(p),
their counterparts in H are deleted: R* = H \ {m(e)|e €
M ANe ¢ dom(p)}. Afterwards all new elements, those ele-
ments in D which are not part of the codomain codom(p),
are added to H and connected according to p, giving the
result R = R*U{n|n € D An ¢ codom(p)}. This process
is outlined in Figure 2, which applies the production from
Figure 1 to a graph containing a square. At first a match
from M to H is sought. One such possible match m is indi-
cated by the dashed arrows. Then one node and one edge
is removed from H, and two new edges as well as one new
node are added, as described above. The two newly added
edges are connected to the existing elements of H by look-
ing at the elements matched by the partial graph morphism
p. For this purpose, elements d € D Ad € codom(p) are
equated to their equivalent in H: $m(p~' (d)). Newly added
elements connecting to such an element d in D are recon-
nected to m(p~'(d)). The partial graph morphism p es-
sentially defines which elements of H are deleted, which
elements of D are merged together with elements of H,
and which elements are added as new additions.

M D

'
match m !
\

|
derivation
step

Figure 2: An example application of the rule from Figure
1. The dashed lines show the match found between M and
H. R shows the result graph of applying the production.

A derivation is a sequence of derivation steps, defined
in the usual manner. A derivation ends and produces a
terminal graph when none of the productions in P can be
applied. This definition allows for the creation of infinite
derivations. This is not seen as an issue since, in practi-
cal application, the number of derivation steps will always
need to be bound, because of factors such as computer
memory or time constraints.

The above definition marks the introduced grammar as
an algebraic approach graph grammar, using the gluing ap-

proach to embedding. Within the algebraic graph gram-
mars, it is a single push-out approach graph grammar us-
ing a mapping between the left and the right hand sides of
the production, rather than a common interface graph. It
also allows for the deletion step in the derivation to leave
dangling edges, which is a defining characteristic of single
push-out grammars [2].

The implicit definition of a terminal form was chosen
out of consideration for practicality: A production in this
graph grammar can be of such complicated form that any
exhaustive listing of properties is unrealistic, in a practical
context, and would add unnecessary tedium from a user
interaction perspective.

3.1 Additional Extensions

To increase expressiveness and ease-of-use as a modelling
tool, the grammar specified above is extended in a number
of ways, detailed in this section.

Priority of productions. The order in which productions
are applied can be controlled by setting a priority for each
production. Those productions with the lowest priority
value are executed first. If there are multiple productions
with the same priority then the order in which they are ap-
plied is random.

Control of end of generation. In addition to defining a
grammar in such a way that it will eventually enter a termi-
nal state (a state where no production can be applied), it is
possible to define a maximum number of derivation steps
to execute. This can be done globally, meaning the entire
derivation will be stopped after x steps, or on a per-priority
level. These two modes can be combined, for example
consider a grammar with two priorities of productions, 0
and 1. For priority O a limit of 100 production applica-
tions is defined. In addition, a global limit of 500 produc-
tion steps is set. Then first, productions of priority 0 will
only be applied 100 times, following which productions
of priority one will be applied up to 400 times. But if the
productions of priority 1 make changes which lead to a ter-
minal graph with regards to priority 1 productions in, say,
200 steps, then the derivation will stop, even if productions
of priority O could still be applied. Examples of grammars
making use of this feature to control their derivations are
the Koch Snowflake from Section 5.1 and the tree models
of Section 5.3.

Multiple D graphs for one M. To allow for control of
the randomness when choosing between multiple deriva-
tions with the same left-hand side M, the productions take
the form (M, {(p,D,w)}) where M, p and D are as defined
above and w stands for the weight this particular daugh-
ter graph has when selecting which one will actually be
applied amongst all possibilities. Thus, a mother graph
has a set of possible daughter graphs, each with their own
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partial graph morphism p. If n is the number of possible
daughter graphs of a given production then the likelihood
of a particular daughter graph D; 0 < i < n being chosen

is wi/27=0wj.

Multiple matches of the same production. By default,
if a mother graph M has multiple matches in a hostgraph
H one of the matches is chosen at random. It is possible to
change this on a production level by setting the priority to
choose the match with the oldest elements.

Attributes of graph elements. Any graph element can
contain an arbitrary amount of attributes, which are tuples
of (name,value), where name is a string identifying the
attribute and value can be any arbitrary value.

Conditional Productions. When a production is
matched against a hostgraph, in addition to finding a
matching isomorphism m from M to H, it is also possible
to define matching conditions for any element e € M on
a per-element basis. These matching conditions take the
form of a function with access to all the attributes of m(e),
the elements potential match in the hostgraph H.

Calculation of new attribute values. In order to support
the calculation of new values for the attributes of graph el-
ements, the value fields of attributes in the daughter graph
D can contain calculation instructions rather than fixed
values. These calculation instructions have access to any
attribute values of any element matched in H, i.e. to any
element of the set {m(e)|e € M Ne € dom(p)}.

Wildcard nodes in M. Edges in the mother graph M of
a production may be connected to wildcard nodes, which
can be matched to any node in the host graph and are left
completely unchanged by a production application. This is
merely syntactic sugar, simplifying the definition of pro-
ductions. It has no effect on the expressiveness of the
grammar.

Saving Vertex coordinates. To support a geometric in-
terpretation of productions, each vertex saves a x- and a y-
coordinate in its attributes. These attributes function like
normal attributes, can be queried in the mother graph and
have new values calculated in the daughter graph, but, if
no calculation function is supplied in the daughter graph,
the new values are calculated automatically. When using
the grammar to model structural relations, these attributes
can be ignored completely, but, when interpreting them as
replacements on geometric shapes, having access to the
x/y-coordinates is very helpful.

Matching spatial relationships. To further support a
geometric interpretation of productions, it is possible to
set an option on a per-production basis which requires that

any potential matches for the mother graph M in the host
graph H respect the total ordering which is defined by the
elements position on the x and y axes. This option has
proven itself to be very helpful in providing intuitive re-
sults for productions.

Optional directed Edges. Edges can optionally be in-
terpreted as being directed. This allows for additional ex-
pressiveness for some productions when used in a geomet-
ric context. An example of such a grammar is the Koch
Snowflake of Section 5.1.

This set-up allows for defining a graph grammar which
not only has a high level of expressiveness but allows for
intuitive interaction with the system.

3.2 Sources of randomness in the grammar

Since randomness is an important source of expressiveness
for the purpose of procedural generation of 2D models,
this sub-section will give a short summary of the different
means by which variation between results can be achieved
in the proposed grammar.

There are two types of variations which can be differ-
entiated. Structural variations, which change the content
and/or structure of the graph, and parametric variations,
which are changes in the attributes of graph elements. The
grammar offers a single way of adding variations in the
attributes of elements, namely by evaluating an arbitrary
Python expression with access to the random library. In
practice, this offers a sufficient degree of freedom for cal-
culating attributes that no additional functionality was nec-
essary.

As for structural variations, there are multiple ways by
which they can be achieved in the proposed grammar. If
there are multiple productions with the same priority one
of the productions is chosen at random. If all these produc-
tions make changes to the graph, which inhibit other pro-
ductions of this priority from being applied to the graph,
then this can be used to produce structural variations. In
addition to this method, it is possible to define a sin-
gle mother graph with multiple daughter graphs, each of
which have a weight attached to them. When such a pro-
duction is chosen for application and the mother graph
successfully matched against the host graph, one of the
daughter graphs is chosen at random, with the weight-
ing providing more control to the user. Lastly, it should
be noted that parametric variations can be used to lead to
structural variations in consecutive derivation steps, by us-
ing the value of a randomly calculated attribute as an appli-
cation condition in multiple productions of lower priority.

4 Implementation

In this section the implementation and the relevant algo-
rithms used therein are briefly discussed. The grammar
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was implemented in Python and the source code can be
found online!. It is split apart into a graph grammar li-
brary doing all the calculations and a GUI used to interact
with the library.

4.1 Matching Algorithm

Finding isomorphisms of two graphs is an NP-hard prob-
lem. In this particular application a simple and direct im-
plementation of the matching algorithm, testing an ele-
ment in the mother graph of a production against every
element of the host graph and then going along the graph
structure of the mother graph, trying to find a match for
each element using a depth first approach. In practical ap-
plication this turned out to have acceptable runtimes for
smaller mother graphs of about five elements matching
against moderate host graphs of about 1000 elements.

Further improvement is certainly possible and even nec-
essary for working with the grammar on a greater scale,
but outside the scope of the current work.

4.2 Replacement Algorithm

The replacement algorithm follows, as stated before, a sin-
gle push-out approach. In the implementation it uses five
graphs with mappings between them to apply a produc-
tion.

The basic steps taken to apply a production, after a
match has been found and selected, are:

1. Calculate which elements to add, remove or change
and for which elements new attribute values need to
be calculated. (Done when creating/loading the pro-
duction)

2. Delete any element marked for removal.

3. Add the new elements, which will automatically con-
nect them as necessary.

4. Calculate the new value of attributes for those ele-
ments where this is necessary. This includes calcu-
lating the new position of elements, if no user-defined
calculation instructions are present.

The most difficult to understand part of the whole algo-
rithm is the hierarchy of the five different graphs and how
they are mapped to each other. A graphical representation
of the relationships can be found in Figure 3. M and D are
the mother or left-hand-side and daughter or right-hand-
side graphs of the production. The mapping between them
is decided by the user and decides whether an element is
kept, deleted or added to the result. The mother graph M
is matched to the host graph H with a partial isomorphism
as described in the Section 4.1. R and C are deep copies
of H and D respectively. Working with a copy of H as the

Uhttps://github.com/D4id4los/Python- Graph- Grammar

basis of the result graph R, allows one to just delete old el-
ements, add new elements and change some of the remain-
ing ones, while leaving the majority of elements within R
untouched. Without creating this copy first, one would
have to create a copy of each individual graph element as
needed and then add them to a result graph, which would
result in more complicated code. C, the copy of the daugh-
ter graph, is also just a function of convenience. When a
production adds a new element to the result graph R, the
element is simply moved from C to R and referenced in
neighbourhood lists appropriately. This way there is no
need for a special function to create new elements, while
copying only the relevant attributes and also calculating
the correct new position.

partial mapping
isomorphism by user
copy copy
R C

Figure 3: Overview of the hierarchy of graphs in a pro-
duction application. M and D are the left- and right-hand
sides of the production. H is the hostgraph to which the
production is applied. R is a deep-copy of H and C a deep-
copy of D. R becomes the result graph when all elements
to be added are moved from C to R.

As stated before, which elements are kept, added or re-
moved is decided by the mapping between M and D sup-
plied by the user. The rules are:

1. Elements of the host graph H not part of the par-
tial isomorphism with M are kept without changes,
except for maybe losing connections to deleted ele-
ments.

2. Elements with a mapping from M to D in the produc-
tion are kept, but their attributes are recalculated ac-
cording to instructions in the corresponding element
in D.

3. Elements of M without a mapping from M to D are
deleted.

4. Elements of D without a mapping from M to D are
added to the result. References to elements from
point 2 are translated to references to elements in R,
the copy of H.
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4.3 Calculation of Attributes and Position of
Elements

The attribute calculation instructions can be arbitrary
Python instructions allowing, in particular, to use the
Python library “random” to add randomness to attribute
values. To ease the calculation of attributes, which are
of geometric nature such as new positions or lengths of
vectors, a production can define vectors based on nodes,
which will be available for use in the argument calculation
formulas. For an example see Section 5.

The automatic calculation of new positions currently
calculates the barycentre of the daughter graph D and the
partial isomorphism of the mother graph in the host graph
HY . The delta between an element of the daughter graph
and the barycentre of the daughter graph is used to calcu-
late the new position relative to the barycentre in the host
graph. To account for potential rotation of the match in the
host graph, a “direction” is calculated for both the mother
graph and its matching subgraph in the host graph using
total least squares. The difference in direction between the
two directions is used to rotate the newly calculated posi-
tion. This new position is also scaled by the ratio of the
maximum extent of H™ and D divided by the ratio of the
maximum extent of M to D. This scaling allows produc-
tions to extend or shrink depending on what subgraph of
H they are matched to.

4.4 Export

The derivation result of the grammar can be saved to a
YAML file containing all information about the produced
graph, or as an SVG file for purposes of visualization.
SVG was chosen as the visual export format because it
has a simple structure and good library support in Python.
Every element of the graph is exported into precisely one
SVG tag, by default a vertex is exported as a circle and an
edge as a line, but this can be changed and configured by
setting special attributes on graph elements starting with
.SVg_.

For example a node can also define an attribute
.svg_tag with the value path and another attribute
with the name .svg_d containing the SVG path infor-
mation. This would then be exported as an SVG <path
d="x"> tag instead of a circle. The strength of this sys-
tem is that it allows productions to change the export set-
tings through calculations based on the values of other at-
tributes. This can be seen in full effect in the creation of
circular patterns in Section 5.

5 Examples

This section reports the results of applying the new gram-
mar proposed in this work to a number of modelling tasks.
The tasks where chosen to represent a variety of modelling
problems to which either L-systems or shape grammars

find the most successful application. Due to space con-
siderations the examples only constitute a showcase of the
new grammars capabilities, the complete definitions can
be found online as YAML files'.

For each of the examples a derivation runtime is given.
To inform interpretation of that number it is important to
keep in mind that no performance optimisation was under-
taken.

5.1 Modelling of a Koch Snowflake

The Koch Snowflake or Koch curve defined by Helge von
Koch in [10] is a classical task in procedural modelling.
The most common means of defining the snowflake in a
grammar is a set of L-System rules like the one below:

Alphabet: F, +, -
Axiom: F
Production rules:
F —-> F4+F——F+F

+ —> +

i _> .

Which is then interpreted either by a Logo turtle as: F
moves the turtle forward, + turns the turtle 60° to the left
and - turns the turtle 60° to the right; or by interpreting it
as vector graphics with each L-system symbol being asso-
ciated with a fixed vector displacement [14].

L R
0 3
8
9 4
7
2
6
10
11
1 5

Figure 4: The single production of the Koch Snowflake
derivation.

To define a Koch Snowflake in this grammar a differ-
ent approach was chosen. Starting with a graph in the
shape of an equilateral triangle the production presented
in Figure 4 is applied to every edge of the graph (or trian-
gle). To simplify the calculation of the new positions of
the nodes two vectors are defined. A, a point vector at the
position of node 3, and v1, a directional vector going from
the node 3 to the node 5. With that the function to cal-
culate the new position of node 4 becomes A + v1 / 2
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+ 1/3x (perp_left (vl)), where perp_left is a
function returning a vector perpendicular and pointing to
the left of a directional vector. This calculation instruc-
tion is saved as an attribute of the vertex with the name
.new_pos.

The final result is shown in Figure 5. It is produced after
192 derivation steps, taking an average of 9 seconds. The
result graph contains 1158 elements.

Figure 5: Result of a Koch Snowflake derivation. ~9
seconds runtime, 192 derivation steps resulting in 1158 el-
ements.

Of particular note is how this production mimics the
functionality of a string or graph interpreted by a Logo
turtle, but makes these changes directly on the geometri-
cal structure. Previous works on emulating and extend-
ing the functionality of L-systems with graph grammars
focused on creating a graph containing the same informa-
tion as is encoded in the result string of an L-system. To
produce a visualisation, this graph would then have to be
interpreted with methods similar to L-systems, as where
discussed above. Contrary to the above approach, the solu-
tion in this example has the visual and geometric informa-
tion already present in the result graph, without requiring
additional interpretation.

5.2 Modelling of Patterns

Creation of patterns can be an interesting subject of study
for grammars, because frequent repetition and the sym-
metric nature of patterns lends itself well to being ex-
pressed in grammars. In this subsection two different
kinds of patterns are created by the proposed grammar.
One is an infinitely tiling square pattern, the other is a
self-contained circular pattern, which is used to show the
grammars capabilities for creating a varied set of interest-
ing outputs from the same set of productions using ran-
domness in attribute calculations.

The ability of the proposed grammar to introduce ran-
domness into the result of production is shown in both the
square pattern in Figure 6 and the circular pattern of Figure
7. The circular pattern additionally displays the flexibility

| ==
== i
Figure 6: Different variation of a tiling square pattern

generation. Average 12 seconds runtime, 128 derivation
steps resulting in an average of 294 elements.

gained by allowing the export of arbitrary SVG tags, mak-
ing use of the <path> tag to export Bézier curves. The
square patterns are the result of 9 rules taking an average
of twelve seconds to complete the derivation consisting of
an average of 128 steps, producing 295 graph elements.
The circle patterns only require four rules and the deriva-
tions are very fast at a tenth of a second for 28 derivation
steps. The resulting graphs average 20 elements.

Figure 7: Nine different results of deriving a circular pat-
tern. Average 0.1 seconds runtime, 28 derivation steps re-
sulting in about 20 graph elements.

5.3 Modelling of a Tree

As part of the effort to show the versatility of the graph
grammar it was applied to the modelling of trees shown in
Figure 8. This grammar consists of two rules, which when
left to run for 200 steps produce 803 graph elements in an
average of five seconds.

The productions used in creating these trees where in-
spired by and adapted from the descriptions of trees by [7]
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Figure 8: Four possible results of running the tree deriva-
tion. Average 5 seconds runtime, 200 derivation steps re-
sulting in 803 graph elements.

as demonstrated in [17]. It is a fairly simple set of two pro-
ductions which grow the tree while decreasing the width
and length of additional segments with each steps.

Figure 9: Three results of the painted tree derivation.

Using the SVG capability of adding images with filters
to the output, it is possible to create a stylised visualisa-
tion of the tree generation as seen in Figure 9. This result
was obtained by adding two additional productions which
are run after the trees seen in Figure 8 finished generating.
One production places brush strokes along the trunks and
branches and the other places brush strokes at the end of
branches. Each brush stroke is a scaled and rotated image
of a black brush stroke added as an SVG image element
to the export. The different colours are obtained by apply-
ing various feColorMatrix filters.

5.4 Modelling of Facades

The modelling of building facades is a typical procedu-
ral modelling task for which shape grammars appear to be
the tool of choice. They lend themselves to a subdivision
approach where the surface of a building is continuously
divided into smaller and smaller parts until all important
elements of a facade, such as windows, doors, ledges and
the like, are placed [13]. In the usual approach this sub-
division does not result in a finished 3D model, but rather
in a “building plan” of the facade, into which scaled and
rotated 3D models, created in external applications, are
loaded at the appropriate places [8].
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Figure 10: Result of a very simple building facade gen-
eration. Average 11 seconds runtime, 116 derivation steps
ressulting in 468 graph elements.

The result of a simple example of using the proposed
graph grammar to model a building’s facade is shown in
Figure 10. It is only a simplified view of a fagade with
two floors, the windows having blinds which are placed at
random states of unrolling. For this result fourteen rules
where used, performing 116 derivation steps in about 11
seconds to produce a graph with 468 elements.

6 Conclusio and Future Work

Given the level of expressiveness available to graph gram-
mars and past works on specialised applications, such as
[12] for geometric objects and [9] or [6] for plants, the
ability of graph grammars to be used for general purpose
procedural modelling was never in question. What re-
mains to be answered is whether or not a single class of
graph grammars can be an effective tool for all these pur-
poses.

In this work it was shown that a single class of graph
grammars can indeed cover disparate types of procedural
modelling tasks effectively. This has the potential to in-
crease the flexibility of modelling tools, no longer requir-
ing the use of multiple separate tool-chains to combine e.g.
houses with foliage. Another contribution is the applica-
tion of Logo-like rules directly on graphs which represent
geometric information of obreadjects, as discussed in Sec-
tion 5.1.

The main limitations of the current implementation are
the lack of optimization, which limits the possibility of ap-
plying it to the creation of larger and more detailed mod-
els, and the state of the UL As the creation of the GUI
was not the sole nor the prime objective of this work, a
relatively simple GUI sufficient for this work was imple-
mented. However through working with the GUI on pro-
ducing the examples the author has come to the believe,
that there is a lot of potential to ease the use of graph gram-
mars and improve their intuitiveness by giving appropriate
visual feedback.
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This leads to a discussion of future work, where there
are two main directions of inquiry. The first is how the
speed of the matching process can be improved to enable
the generation of large scale models, such as entire cities,
within a reasonable time-frame. Aside from better match-
ing algorithms and low-level optimization of the match-
ing code, coupled with a rewrite in a language like C++,
one should also consider additional approaches, such as
defining subgraphs which would act like boundaries for
the matching algorithm, so that it does not need to match
against the entire graph at all times. The second direction
of inquiry are further improvements to the graph grammar
proposed in this work. Due to the limited scope it only
contains basic functionality and there are many extensions
which promise interesting results and new applications. A
small list of possibilities the author has considered is:

* A 3rd dimension
* Faces and volumes as graph elements

* A derivation hierarchy which could be queried within
productions

¢ Automatic level of detail control for distant models
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