
Real-time Global Illumination using Irradiance Probes

Simon Sedlacek∗

Supervised by: Jiri Bittner†

Department of Computer Graphics and Interaction
Czech Technical University

Prague / Czech Republic

Figure 1: Reflector on the right indirectly illuminates the scene. Shadow mapping + ambient light: no indirect illumi-
nation. The reference method proposed by Silvennoinen and Lehtinen [4]: global illumination only for a static scene.
dynamic LOD: significant speedup of the proposed method with an only small error in the rendered image. dynamic LOD
+ spatial receivers: global illumination with the support of shading for dynamic objects.

Abstract

I present two extensions to a recently introduced method
for real-time global illumination based on sparse irradi-
ance caching. The first extension allows the computation
of global illumination for dynamic objects with the support
of various shading techniques (normal mapping, specular
reflections). The second extension uses a dynamic level
of detail for global illumination, which is able to signif-
icantly improve performance without noticeable errors in
the rendered image.

Keywords: real-time global illumination, precomputed
radiance transfer, light propagation, spherical harmonics,
dynamic level of detail, performance improvement

1 Introduction

Calculation of a correct light propagation through a scene
in computer graphics is one of the most impactful effects
there is. Accurate light transport is often the effect, which
blurs a line between computer graphics and reality the
most. As impactful this effect is, it is also costly. To com-
pute such an enormous task of light propagation in real-
time even more problems show up. A standard way how
to solve this problem today is to calculate only a single
light path: from a light source to a first hit point. The rest
of the light propagation is then approximated with ambient
light.

As it is costly to compute the light path for every photon
in real-time, there was an idea to precompute these paths
and reuse them in real-time rendering. The class of al-
gorithms, which precompute lightpaths and reuse them in

real-time, is called Precomputed Radiance Transfer (PRT).
For a starting point of my work, I chose a newly released

algorithm from the PRT class: Real-time Global Illumi-
nation by Precomputed Local Reconstruction from Sparse
Radiance Probes by Silvennoinen and Lehtinen [4]. This
algorithm allows to precompute light paths and due to re-
rendering of computed light paths, it is able to approxi-
mate global illumination in real-time for dynamic lights.
As for every method, there are some drawbacks. This
method does not support dynamic objects and effects like
specular reflections are costly.

In this work, I present two extensions which solve the
drawbacks of the algorithm and push it towards real-life
usage in commercial rendering engines. The first exten-
sion is able to shade dynamic objects in real-time with
global illumination using a sparse voxel grid. This ex-
tension is also capable of normal mapping and specular
reflections approximation without the need for costly ra-
diance transport. The second extension uses a dynamic
Level of Detail to omit computations and improve perfor-
mance.

2 Related Work

Simulation of light propagation can be achieved in real-
time using two main approaches: view-dependent or view-
independent methods.

View-dependent methods use an idea of tracing rays
from a camera view. These methods provide fully dynamic
scenes and support even high-frequency spatially-varying
BRDF (such as specular reflections, mirrors, etc.). How-
ever, the computation of visibility in real-time is costly.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



Thus it is usually possible to compute only a few light
bounces. Due to possible insufficient sampling of rays,
these methods exhibit noise artifacts. View-dependent
methods can either be pure ray-tracing methods or an ap-
proximation of a light bounce using voxel space such as
Voxel Cone Tracing [5].

View-independent methods have to compute light re-
flectance independently of the camera position. If we omit
dynamic scenes and focus purely on static scenes a lot of
information about light propagation can be precomputed.
The class of algorithms using this idea is called Precom-
puted Radiance Transfer. For storage of light paths and
information about light reflectance Spherical Harmonics
are used. Green [2] describes the basic usage of Spherical
Harmonics in computer graphics.

Spherical Harmonics are good delivering light interme-
dian on low-frequency surfaces, such as diffuse surfaces.
For example, Sloan et al. [6] used Spherical Harmon-
ics to capture how the surface of a geometry reacts to an
incoming radiance. They stored this information on sur-
face points and were able to reconstruct shading with self-
shadowing not only for polygon meshes but also for volu-
metric geometry such as clouds and fog.

To support fully dynamic lights Silvennoinen and Lehti-
nen [4] decomposed the light transport to two major
stages. They separated light gathering (using radiance
probes) and light propagation (using radiance receivers).
Furthermore, with the usage of Singular Value Decompo-
sition (SVD), the truncation of transport matrices leads to
memory and time efficient algorithm for real-time global
illumination.

3 The proposed method

My work is based on the algorithm proposed by Silven-
noinen and Lehtinen [4]. Since my extensions use this
method as a basis, I describe this method first.

Computing interaction of every light sample point with
every other is demanding on time. To solve this problem,
the authors factorized irradiance transport into two stages.
The method uses probes and receivers for transport of ir-
radiance.

The probe is a point in space in which incoming irradi-
ance is measured from many directions (ideally it would
be from all directions). It stores this measured irradiance,
which is then used by receivers. The set of probes is sparse
(the usual density is around 0.02 probes per m3).

The receiver is a point on the surface of the scene. It
uses surrounding probes to fetch irradiance. For each
probe, the receiver fetches the irradiance from a correct
direction. The set of receivers is dense (the usual density
is around 80 receivers per m3).In the implementation, re-
ceivers are texels of a lightmap. The lightmap is then used
when meshes of the scene are rendered.

An example of how this works is shown in Figure 2.
Probes describe irradiance from many directions. Re-

ceivers use the irradiance from probes to illuminate the
lightmap.

During the second cycle, the lightmap has been illumi-
nated from the first cycle. Thus probes will accumulate
irradiance not only from the light source but also from the
lightmap. This cycling of irradiance through the system
results in global illumination.

Figure 2: The rendering cycle. The first image: two probes
(p0 and p1) in space visualized as red dots, many receivers
on scene surface as black dots and a single light source vi-
sualized as a yellow rectangle. The second image: both
probes measure irradiance in the scene. The third im-
age: probes describe irradiance from many directions. The
fourth image: receivers fetch irradiance from probes and
accumulate it. Irradiance measured in receivers is then
used to illuminate scene meshes.

3.1 Spherical Harmonics

The method uses Spherical Harmonics to transport irradi-
ance.

Spherical Harmonics (SH) are functions, which allow
approximation of any k-dimensional function that is de-
fined on a surface of a sphere. Naturally, SH allow recon-
struction of the stored signal in any direction.

An example of Spherical Harmonics usage in com-
puter graphics has been described by Green [2]. SH ba-
sis functions are commonly noted as Y m

l (~ω), where ~ω is
parametrized position on a unit sphere, l is a degree of SH
and m is an index of a function in this degree [6].

A signal of encoded function can be obtained by the
weighted sum of several basis functions:

f (~ω)≈
n−1

∑
l=0

l

∑
m=−l

λ
m
l Y m

l (~ω) (1)

where n is the maximum degree of SH (sometimes
called a band of SH).

The numbers λ m
l are called SH coefficients. SH coef-

ficients encode the function itself and are measured from
the samples to obtain f (~ω). For simplification of Equation
1, I am going to use a notation from [4]: λ m

l = λi j, where
i is an index of some particular measured function and j is

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



an index of a basis function obtained as j = l2 + l +m. To
store the signal using SH we must obtain SH coefficients
λi j. The equation is as simple as final signal reconstruction
the process is just reversed:

λi j ≈
4π

N

N

∑
i=1

f (~xi)Yj(~xi) (2)

where xi is a sample from a set of sampled irradiance.
Equation 2 uses Monte-Carlo integration with the weight
of every sample equal to 4π (samples on the surface of a
sphere). Once SH coefficients are known the reconstruc-
tion of the signal can be computed by Equation 1.

Every probe has its unique set of measured λi j SH coef-
ficients. These coefficients are then provided to receivers.

The degree of SH crucially affects the accuracy of the
reconstructed signal. The higher the degree is the better
approximation is provided (see Figure 3).

Figure 3: The degree of Spherical Harmonics affects
the accuracy of the signal reconstruction (degrees 0,2,4,7
shown).

3.2 Per Receiver Irradiance Gathering

The irradiance in a receiver is computed by gathering ir-
radiance from a probe (using its λi j SH coefficients). Re-
ceiver x gathers irradiance from probe pi in direction ω if
both the probe and the receiver see in that direction exactly
the same surface.

To store information about this visibility match for each
receiver x and probe pi the authors introduced the follow-
ing visibility function:

Ki j(x,ω) =
wi(x)Vi(ω)Yj(Ψ(ω))

∑k wk(x)Vk(ω)
(3)

where j is an index of an SH basis function, k are indexes
of all probes, wi(x) is a distance weight function between
the probe pi and the receiver x [4]. ω is a direction from
the receiver to a surface visible to the receiver. Ψ(ω) is
a direction from the probe to the same surface. Vi(ω) is
a binary function. Vi(ω) = 1, if the surface visible by the
receiver x from the direction ω , is also visible to the probe
pi. Function Ki j(x,ω) encodes visibility match between
probe pi and receiver x weighted by their distance. This
function can be then used to compute a visibility match
from any direction ω . The visibility match is denoted as
αi j and can be computed as an integral using Ki j(x,ω) for
all ω [4]:

αi j =
∫

ω∈Ω

Ki j(ω)dω (4)

Gathered irradiance in some receiver x is computed in
real-time using the following equation:

I(x)≈
∫

ω∈Ω
∑
i j

λi jKi j(ω)dω = ∑
i j

λi jαi j (5)

where i is an index of a probe. Notice similarities with
Equation 1. αi j can be seen as ∀ω : Yj(ω) enriched with
weighted visibility. Values αi j are precomputed for all re-
ceivers and stored to be used in real-time rendering.

3.3 Gathering Acceleration

Because the number of receiver coefficients αi j is huge,
the authors factorized irradiance transport using Clustered
Principal Component Analysis (CPCA). Receivers are di-
vided into clusters (kD tree division) in the precomputa-
tion part. Coefficients αi j of receivers in a certain clus-
ter are put vertically into transport matrices (matrix Ac for
cluster c in Equation 6) and SVD matrices are computed.

Ac =UcΣcV T
c (6)

This decomposition is truncated (leaving only the 32
biggest singular values from matrix Σc) to ease memory re-
quirements [4]. If the SVD projection was not sufficiently
accurate, the cluster is recursively split into half.

The algorithm is divided into precomputation part and
real-time rendering. During the precomputation part, all
visibility coefficients αi j are computed using ray-casting
and stored in truncated SVD matrices (Uc and ΣcV T

c ).
Also, all hitpoints for all probes (set of samples xi from
eq. 2) and values of basis functions Yj(~xi) are precom-
puted and stored.

During real-time rendering, all probes compute their λi j
SH coefficients using precomputed hitpoints and values of
basis functions. Receivers then compute their irradiance
using λi j coefficients and precomputed SVD matrices. Dy-
namic light sources can be implemented using standard
shadow mapping to illuminate the lightmap.

3.4 Drawbacks

The proposed method [4] does not support dynamic ob-
jects and effects like normal mapping or specular reflec-
tions are possible only if radiance is transported. As it was
already noted by the authors, transport of radiance is no-
ticeably more demanding on both memory and computa-
tion time due to the higher dimension of transport in every
stage. Also, the method does not scale well with increas-
ing number of receivers, as it has to recompute the whole
lightmap in every frame.

I have created two extensions which aimed to solve
these drawbacks. The first extension (section 4) is able to
shade dynamic objects with global illumination and sup-
ports effects like normal mapping or specular reflections.
The second extension (section 5) uses a dynamic Level
of Detail to omit computations and improve performance.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



Both of the extensions are described in the following chap-
ters.

4 Shading of Dynamic Objects

In this section, I present my first extension, which is ca-
pable of shading dynamic objects with global illumination
using a sparse voxel grid. To measure irradiance on a sur-
face of dynamic objects, I used a special version of irradi-
ance receivers. I call them spatial receivers. Similarly to
The Irradiance Volume [3], these receivers measure irra-
diance from certain directions. Particularly in such direc-
tions to be able to estimate irradiance in all directions. In
my implementation, a single spatial receiver is measuring
irradiance from 6 different directions, which are equal to
axes of the scene (±x, ±y and ±z). However, the method
is not constrained to a fixed number of directions. More di-
rections can provide a better approximation of irradiance.

In every direction, I measure irradiance with a weight
equal to a normalized degree between the direction of in-
coming irradiance and the current direction vector. The
weight is computed with the following equation:

w(d, I) =
π

2 −acos(max(dot(d, I),0)
π

2
(7)

This equation gives us the ability to combine irradiance
from different directions into a single value. In the case
of spatial receivers, I chose to cluster every direction sep-
arately as it was more coherent.

I voxelized the scene with a regular grid and placed
a single spatial receiver in every vertex of the grid, as it
was proposed by Greger et al. [3]. The algorithm takes
an approximate number of desired spatial receivers as
an input from the user. I estimate the number of spatial
receivers in every axis using the method of Amanatides et
al. [1].

Nz =

 3

√
Nz2

xy

 ,Ny =

⌈√
Ny
Nzx

⌉
,Nx =

⌈
N

NyNz

⌉
(8)

where Nz, Ny, Nx is a number of cells in z-, y-, x-axis.
N is a desired number of cells and [x,y,z] is a size of the
scenes axis-aligned bounding box (AABB).

To extend this idea, in my implementation every dy-
namic object has its AABB. This AABB is tested against
the irradiance grid, so I can detect, which spatial receivers
have to be computed. The rest does not compute its irradi-
ance at all.

It can happen and it will happen that some spatial re-
ceivers will be placed inside objects of the static scene.
These receivers would not receive any irradiance and
would distort the resulting grid. To avoid this, I shift the
measuring position of each spatial receiver, which is in-
side of a geometry. Detection of incorrectly placed spatial

receivers has been done using ray-casting. In my imple-
mentation, I used Intel Embree CPU raytracer.

4.1 Usage of Irradiance Grid in Fragments

For dynamic objects, the computation of irradiance is done
per fragment. In a fragment shader, every fragment deter-
mines its position in the irradiance grid. Because a normal
vector of the fragment is known, it is possible to estimate,
which directions of spatial receivers would affect this frag-
ment the most. Using a dot product I measure the weight
for every spatial receiver direction. I use these weights for
a weighted sum of irradiance from the irradiance grid (see
Figure 4).

Figure 4: Visualization of irradiance reconstruction in a
fragment: spatial receivers (green dots), measured direc-
tional irradiance in spatial receivers (green arrows), the
fragment (black dot) with a normal vector (red arrow) and
interpolated irradiances (blue arrows), summarized irradi-
ance marked with an ”irradiance” label (a light vector).

The light vector describes from which direction comes
the maximal valid irradiance to a certain fragment. Notice
how this method gives us an approximation of the light
vector yet just irradiance was transferred. This allows us-
age of normal mapping and specular reflections for dy-
namics objects. Furthermore, we can use the same process
to apply normal mapping and specular reflections to the
static scene as well. This approximation is not as accurate
as transferring radiance vectors but it costs almost no ad-
ditional performance and results are visually pleasing (as
it will be shown in sec. 6.2).

5 Dynamic Level of Detail

My second extension uses a dynamic Level of Detail to
omit computations and improve performance. The main
rendering loop is separated into three stages: computation
of SH coefficients for probes (λi j), computation of cluster
basis vectors and computation of irradiance for every re-
ceiver using cluster basis vectors. My method is affecting
every stage of this computation, so I will describe them se-
quentially. Every aspect of Level of Detail (LOD) such as
distances, number of coefficients, number of relight rays
can be freely changed in runtime.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



For every level of detail, I define a distance where this
level is triggered. The distance is measured between an
object and a center of the camera and then compared with
defined LOD distances.

5.1 Dynamic LOD for Probes

Firstly I determine to which LOD certain probe belongs. I
measure this via distance between the camera center and a
probe position in space.

With a known level of detail for a certain probe, it is
possible to reduce calculation time in many ways. The first
place where I reduced calculation time is in the number
of SH coefficients.The more coefficients we use, the more
accurate will be the reconstruction of the signal. So let’s
say we have SH of degree 4 (which is 25 coefficients, 25
basis functions to reconstruct function f (ω)). Now we
use SH of degree 7 (which is 64 coefficients). Even if we
use SH of degree 7, those 25 coefficients from 64 in total
will affect exactly the same basis functions as before. I
used this property in LOD. I calculate only that number of
coefficients for each probe, which is necessary for correct
irradiance reconstruction. For example, in level 0, I use
64 coefficients, in level 1, I use 25 coefficients and so on.
Of course, this number of coefficients must match with the
computation of cluster basis vectors.

The second major improvement was made in the num-
ber of relight rays. Relight rays are used to approximate
λi j coefficients using Monte-Carlo integration. The more
relight rays we use, the more accurate SH coefficients are
and thus the reconstruction of irradiance is more accurate.
But to save computation time, it is desirable to lower the
amount of these rays. In my implementation, I used 512
for level 0, 256 for level 1 and so on. With these exten-
sions, we can notice some problems. The first problem is
that a relight ray hit doesn’t have to be in the same LOD
as the probe is. This problem is visualized in Figure 5.

Figure 5: Visualization of different LOD for a probe and
its relight rays: red rays require more detail, green rays are
at same LOD and blue rays need less detail.

To solve this problem, every relight ray needs to look
into the lightmap texture to correct LOD. There are two
possible solutions on how to solve this. The first solution
is that every relight ray remembers its 3D position of a
hit and it decides itself to which LOD to look for the
irradiance. The second solution is that relight rays always
take irradiance from the lightmap texture with the highest
LOD. The lightmap with the highest LOD is refreshed

every frame and contains the newest information. In the
second solution, reconstruction of the signal is less accu-
rate but much faster to compute. I made both solutions in
my implementation.

Figure 6: Visualization of different LOD for a probe and
receivers supported by this probe.

Another problem comes from receivers. Even though
the probe is in level 1, we cannot assign it to level 1 be-
cause there is a receiver r1 which is in level 0 (see Figure
6).

However, only receivers which fall under the support of
a certain probe are affected by it. The support of every
probe was determined by a constant radius, thus the solu-
tion is to shift LOD of the probe by the constant radius.
This way every receiver which needs more detailed infor-
mation will get it (see Figure 7).

Figure 7: Visualization of a probe’s LOD shifted by the
probe radius.

To further improve performance I changed LOD for ev-
ery probe (and its relight rays) with respect to a camera
direction of view. I split surrounding of the camera into
separated zones as is shown in Figure 8. To maintain good
performance, I implemented this separation using a dot
product with the camera view direction. This technique
has been used for cluster basis vectors and irradiance re-
ceivers as well.

Note that it is important to calculate even points which
are not directly visible to the viewer. Due to global
illumination, even not visible points affect the final image.

5.2 Dynamic LOD for Clusters

In the beginning, we have to determine to which LOD cer-
tain cluster belongs. In the precomputation part, clusters
were made by a kD-tree division. Thus, every cluster fits
nicely into an AABB. I measured the closest distance from
the camera center to this bounding volume and used the
separated zones around the camera.

With determined LOD of the cluster, I can determine
how many coefficients from probes to use for the basis

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 8: Visualization of separated zones around the cam-
era, each zone has different LOD distances.

vector. In the precomputation part, two PCA matrices
were calculated: matrix ΣV t and matrix U . In this stage,
we compute basis vector b, for which only matrix ΣV t is
needed.

An important property of SVD is that it maintains the
order of an input vector. Thus, the order of columns in
matrix ΣV t is equal to the order of columns in the orig-
inal transformation matrix (let’s call that matrix A). In
the algorithm, our input vector is a vector containing λi j
SH coefficients of probes supporting this cluster. Because
columns are in the correct order even after decomposition,
we can use only those columns from ΣV t , which we need.
An example is shown in Figure 9.

Figure 9: Visualization of partial matrix multiplication
to obtain the cluster basis vector b: grey parts are
used/computed, white parts are omitted.

5.3 Dynamic LOD for Receivers

In this part of the computation, irradiance is computed
for every receiver, thus even for spatial receivers. In
the beginning, every receiver is tested whether it has to
be computed. If the receiver passes the test, irradiance
is computed. The computation is omitted otherwise.
The test is different if the receiver is a standard texel of
lightmap texture or a spatial receiver.

If it is a standard receiver, the test starts with reading
the LOD of its cluster from a texture. Then, a level of
this receiver needs to be known, for obtaining the level of
receiver we follow the same rules as for standard mipmap-
ping. Thus, let’s say that the coordinates of the receiver in
the lightmap texture (in pixels) are (x,y). If the last bit is
0 for both coordinates, then this receiver is at least level 1.
If the last 2 bits are 0, then this receiver is at least level 2
and so on. Otherwise, the receiver is level 0.

The irradiance of the receiver has to be propagated from
the LOD of its cluster to the level of the receiver. The
propagation is required due to possible different LOD of
the cluster and level of some receiver in that cluster. So it
may happen, that during rendering we require lesser detail
from the cluster with higher LOD. The problem is visual-
ized in Figure 10.

Figure 10: Visualization of the problem with receivers be-
ing in a different LOD than their cluster: receivers r2 and
r3 are in LOD 1 and 2 respectively, but the cluster is in
LOD 0.

If a tested receiver is a spatial receiver, then we check
whether its voxel is active (if the voxel has been triggered
by some dynamic object).

During rendering, LOD of every fragment is determined
the same way as for probes. The fragment then takes ir-
radiance from the lightmap at its LOD. To avoid sharp
edges, I smooth irradiance in fragments between LODs of
the lightmap texture. Furthermore, to avoid flickering due
to the convergence of the system, I shift the fragment-to-
camera distance by a static offset.

6 Results

Testing hardware for this section was the following PC
setup: 2× Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz,
RAM: 64GB, GPU NVIDIA GeForce GTX Titan Black
6GB, 980 Mhz. Renders were captured in a resolution
1280×960.

6.1 Shading of Dynamic Objects

Figure 11 demonstrates real-time color bleeding onto a dy-
namic container in the middle, it also shows support of
normal mapping and specular reflections.

My method is also capable to cast shadows from dy-
namic objects using shadow maps. An example is shown
in Figure 12. As it was mentioned in chapter 4, this
method can also approximate normal mapping and spec-
ular reflections for a static scene without costly radiance
transport. Examples are shown in Figure 13.

Quality of the shading depends on the density of the
grid. To show how the density can affect shading, I pre-
pared several scenes with a different grid density. The test
results are visible in Figure 14.

The Structural Similarity index (SSIM) comparisons
prove that even a sparse grid is capable to shade dynamic

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 11: Example of real-time color bleeding and sup-
port of normal mapping and specular reflections for dy-
namic objects (model of a container).

Figure 12: Example of a shadow cast by a dynamic object
(character in the middle).

objects without noticeable distortions. This gives us a
great ability to cover big scenes.

6.2 Dynamic Level of Detail

An example of my Dynamic Level of Detail is shown in
Figure 15. Setups used for the testing are in table 1, the
distance represents how far away from the camera does
this level begin. Measured results are in table 2.

For the examples, I chose high-quality setups of LOD,
so the differences of rendered images are minimal. How-
ever, it is possible to tweak any property of the Dynamic
LOD in run-time to increase the performance. As it was
mentioned in section 5 my Dynamic LOD system is able
to drastically decrease the number of computed receivers,
change the drawing distance for each level of detail (Fig-
ure 16), change the degree of Spherical Harmonics for
each level separately (Figure 3), change the number of
relight rays and it even provides view-dependant LOD to
minimize computations behind the camera.

I measured a scene with 6 different setups, data are vi-
sualized in Figure 17. The system was able to achieve
speedup up to 4.34 with SSIM difference of 0.972. Qual-
ity of the image is decreasing as we omit more computa-
tion. However, the differences are still quite small. Even
for the fastest tested setup, SSIM difference did not fall
below 0.97.

I compared my dynamic LOD with the original method.
Both methods were tested on scenes with different density
of receivers. The results are shown in Figure 18.

Figure 13: Example of normal mapping and specular re-
flections for a static scene.

Figure 14: Testing density of the irradiance grid: low den-
sity on the left (350 spatial receivers), high density in the
middle (8000 spatial receivers), SSIM difference on the
right.

7 Conclusions

I reimplemented the method for real-time global illumi-
nation [4] and created two extensions. The first exten-
sion is able to shade dynamic objects in real-time with
global illumination from the scene using a sparse voxel
grid. Furthermore, my method is capable of normal map-
ping and specular reflections approximation for both dy-
namic objects and static scene without the need for costly
radiance transport. The second extension uses a dynamic
Level of Detail to omit computations and improve perfor-
mance. This method achieved speedup up to 4.34 with
only a slight distortion of the rendered frame.

As the method is able to cast shadows for dynamic ob-
jects only from dynamic light-sources, I want to focus on
the full support of shadow casting even from indirect illu-
mination. Another field of study would be high-frequency
specular reflections, as they are not well handled by the
current method.

8 Acknowledgements

This research was supported by the Czech Science Foun-
dation under project number GA18-20374S, and the Grant
Agency of the Czech Technical University in Prague, grant
No. SGS19/179/OHK3/3T/13.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 15: Dynamic LOD. The first column: a reference
image without LOD. The second column: using my Dy-
namic LOD. The third column: SSIM difference.

level 0 level 1 level 2 level 3
SH degree 7 6 4 3
distance 0.0 20.0 50.0 100.0

Table 1: Table of setups for LOD in Figure 15.

References

[1] John Amanatides, Andrew Woo, et al. A fast voxel
traversal algorithm for ray tracing. In Eurographics,
volume 87, pages 3–10, 1987.

[2] Robin Green. Spherical harmonic lighting: The gritty
details. In Archives of the Game Developers Confer-
ence, volume 56, page 4, 2003.

[3] Gene Greger, Peter Shirley, Philip M Hubbard, and
Donald P Greenberg. The irradiance volume. IEEE
Computer Graphics and Applications, 18(2):32–43,
1998.

[4] Ari Silvennoinen Jaakko Lehtinen. Real-time Global
Illumination by Precomputed Local Reconstruction
from Sparse Radiance Probes. ACM Transactions on
Graphics, Vol. 36, No. 6, Article 230, 2017.

[5] Morgan McGuire, Mike Mara, Derek
Nowrouzezahrai, and David Luebke. Real-time
global illumination using precomputed light field
probes. In Proceedings of the 21st ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games,
I3D ’17, pages 2:1–2:11, New York, NY, USA, 2017.
ACM.

[6] Peter-Pike Sloan, Jan Kautz, and John Snyder. Pre-
computed radiance transfer for real-time rendering in
dynamic, low-frequency lighting environments. In
ACM Transactions on Graphics (TOG), volume 21,
pages 527–536. ACM, 2002.

Camera Receivers Time [ms] Speedup
No LOD LOD No LOD LOD

C1 512 026 135 452 1.99 1.25 1.60
C2 512 026 217 911 1.99 1.43 1.39

Table 2: Table of results for Figure 15. Presented times
are times for irradiance computation.

Figure 16: Dynamic LOD: change of drawing distance of
each LOD layer in run-time. Notice how LOD lightmaps
are only partially rendered. SSIM difference was tested
against a reference image without any LOD.

Figure 17: Comparison of different setups of Dynamic
LOD. The left chart: decreasing render time, with de-
creasing quality of the render. The right chart: increasing
speedup with decreasing quality of the render.

Figure 18: Comparison of No LOD and my Dynamic
LOD. The left chart: LOD decreases rendering time. The
right chart: speedup provided by LOD. LOD was set up to
sustain SSIM difference above 0.9.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)


