
Breadth-First Search using Dynamic Parallelism on the GPU

Dominik Tödling∗

Supervised by: Martin Winter†

Institute of Computer Graphics and Vision
Graz University of Technology, Austria

Abstract

Breadth-First Search is an important basis for many differ-
ent graph-based algorithms with applications ranging from
peer-to-peer networking to garbage collection. However,
the performance of different approaches depends strongly
on the type of graph. In this paper, three algorithms
of varying complexity are implemented using the CUDA
Programming Model for the GPU and are compared to one
another on a variety of different, sparse graphs. As part of
this, we look into utilizing dynamic parallelism in order
to both reduce overhead from latency between the CPU
and GPU, as well as speed up the algorithm itself. Lastly,
the same three algorithms are then integrated with the
faimGraph framework for dynamic graphs and the rela-
tive performance to a Compressed-Sparse-Row data struc-
ture is examined. We show that our algorithm can be well
adapted to the dynamic setting and outperforms another
competing dynamic graph framework on our test set.

Keywords: GPU Programming, Breadth-First Search,
Dynamic Parallelism

1 Introduction

Breadth-First Search (BFS) is a strategy for traversing
graphs and can be used as a basis for solving various graph
problems, such as single-source shortest path or finding
connected components. It starts at a single node and pro-
ceeds to explore all other nodes in the graph in order of
distance from the first node. Thus, first the starting node’s
neighbors are explored, then the neighbors’ neighbors,
and so on. The typical single-threaded algorithm uses a
so-called frontier queue to remember which nodes to ex-
plore next. In each step it takes one item from the queue,
searches its neighbors for any undiscovered nodes, and
adds those to the end of the queue. This results in ev-
ery node and edge connected to the starting node being
examined at least once.

As the underlying graph domains are growing in size,
holding tens of millions of vertices and millions to even
billions of edges, the need for massively, parallel hardware
like the GPU arises. Since this hardware is now in frequent

∗dominik.toedling@student.tugraz.at
†martin.winter@icg.tugraz.at

use and also comparatively inexpensive, the GPU fits this
problem domain perfectly. Additionally, since clock speed
has hit the so-called power wall [17] while transistor count
keeps growing, a significant speedup can only be expected
by exploiting the parallelism inherent in such applications.
Achieving good performance on modern, massively paral-
lel hardware like the GPU can be challenging. This is es-
pecially true when dealing with graphs with a wide rang-
ing degree distribution, as naive approaches fail to balance
the workload accordingly. Furthermore, the non-coalesced
memory access pattern and the low arithmetic load are a
challenging problem. As a result, BFS is the first bench-
mark in the Graph500 [1] list of the high-performance-
computing graph community.

This paper presents three BFS algorithms implemented
using CUDA. We start with a naive version and discuss its
major weaknesses before looking into how how to solve
them. We combine approaches from previous papers to ar-
rive at our solutions for work efficiency and workload dis-
tribution and also investigate the efficacy of using dynamic
parallelism to split the uneven workload across threads.
Finally, we integrate all three algorithms with the dynamic
graph framework faimGraph and examine the changes re-
quired to do so, as well as their performance impact.

The CUDA Programming Model allows writing effi-
cient GPU code close to the hardware in a manner very
similar to traditional C++ code. The main functions to be
executed on the device are so-called kernels, which are ex-
ecuted by many threads in parallel. When launching a ker-
nel, a configuration for its grid is supplied, specifying how
many blocks of threads and how many threads per block
to launch, allowing millions of threads to be started simul-
taneously. Threads within the same block can be easily
synchronized and share a faster kind of memory with one
another, called shared memory. During execution, threads
are also grouped into warps where all threads in the same
warp always execute the same instructions in step.

The algorithms described here were all implemented
for a Compressed-Sparse-Row (CSR) data structure. A
graph’s CSR representation consists of three arrays: One
contains all the graph’s edges, another the weights of all
edges, and one more containing an offset into the edge ar-
ray for each node. This means all outgoing edges of a
node are always stored consecutively in memory, which is
important to achieve efficiency on the GPU. As BFS does

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



not take edge weights into account, only the edge and off-
set array are used.

2 Related Work

Related work on algorithms on graph data structures for
the GPU can be roughly categorized into static (not sup-
porting dynamic graph updates) and dynamic graph li-
braries as well as GPU-adapted implementations of dif-
ferent algorithms for BFS.

2.1 Static Graph Frameworks on the GPU

There exist a number of different static graph libraries
on the GPU: nvGraph [15] (NVIDIA Graph Analytics li-
brary), offers implementations of widely-used algorithms,
supporting billion-edge graphs (using an NVIDIA Tesla
M40 with 24 GB). BlazeGraph [18] presents a high-
performance graph database built on its own domain-
specific language DASL. BelRed [5] offer a library of
software building blocks, addressing the challenges and
manual effort required to set up graph applications.
GasCL [4] presents a vertex-centric graph model, support-
ing the ”think-like-a-vertex” programming model, built
using Open Compute Language (OpenCL). Gunrock [19]
is a CUDA framework for graph processing, building on
highly optimized operators, trying to achieve a balance be-
tween applicability and performance.

2.2 Dynamic Graph Frameworks on the GPU

As a lot of problem domains build on highly volatile
data sets, changing vertices as well as edges, a few no-
table dynamic graph frameworks were introduced in re-
cent years. The first dynamic graph framework introduced
was cuSTINGER [9]. cuSTINGER is a GPU-adaptation of
STINGER [8] and its internal memory manager. Adjacen-
cies are managed as individual arrays, enabling efficient
memory access within an adjacency but requiring individ-
ual allocation procedures to increase/decrease a current al-
location state per adjacency. Furthermore, memory cannot
be efficiently reused within the system. aimGraph [21]
removes this restriction by shifting the memory manage-
ment to the GPU, requiring only a single allocation on the
host and managing memory using a page-based allocation
scheme. This allows for very efficient updates directly on
the GPU, but introduces some page traversal overhead and
memory is not reusable as well. Hornet [3] lifts this limi-
tation by limiting the length of an adjacency to a power of
two and managing such blocks in auxiliary data structures
on the CPU, enabling efficient reuse of freed up blocks
of memory. The adjacency itself is stored in an array-like
format. GPMA [16] is a novel dynamic graph framework
building on an adapted version of a Packed Memory Ar-
ray, supporting efficient stream updates with implicit sort-
ing. The data structure is allocated with a single alloca-

tion, but additional effort is required to maintain the data
structure after updates and traversal is hampered by non-
contiguous memory. faimGraph [20] is the newest addi-
tion to dynamic graph frameworks and continues with the
efforts of aimGraph by enabling fully-dynamic updates,
efficient memory-reuse directly on the GPU as well as al-
gorithmic validation using Static Triangle Counting and
PageRank. This allows for efficient updates as well as co-
alesced memory access within pages, but introduces a bit
of overhead due to the page traversal required.

2.3 BFS Implementations on the GPU

BFS was first demonstrated on the GPU by Harish and
Narayanan [10] in an exploration of using CUDA to ac-
celerate common graph algorithms. Their implementation
traverses the graph in levels, maintaining an array for vis-
ited status, one for frontier status, and one more for dis-
tance from the starting node. In each iteration each vertex
is then assigned a thread, which checks its frontier status
and updates the distance value for all its neighbors if it
is in the frontier. Deng et al. [7] later showed a BFS al-
gorithm based on their implementation of Sparse Matrix-
Vector Multiplication which outperformed current GPU
algorithms, but both of these algorithms performed more
than the asymptotically optimal amount of work.

To solve this, Luo et al. [13] first demonstrated a multi-
tier approach to constructing a frontier queue on the GPU
where queues are first assembled on a warp-level, then
block-level, and finally on a global level. Once such a
queue is finished, it can be used to examine only the cur-
rent frontier nodes and their corresponding edges in each
iteration. In their approach, warp-level queues require
atomics, however, due to the fact that the hardware they
were working with could only schedule 8 threads at a time,
while a warp consists of 32, they were able to organize
these accesses in such a way that simultaneously sched-
uled threads did not collide with one another. Once the
warp-level queues are constructed, they then use a single
thread to calculate the offset of the 8 warp-level queues
that make up a block-level queue. Using those offsets each
warp copies its queue into the block-level queue. Finally, a
single atomic increment on a global queue pointer is used
to reserve space for each block-level queue before copying
it there.

They also introduced a strategy of hierarchical kernel
management, where a different synchronization strategy is
used depending on the frontier size. For frontiers up to the
block size they use the simple block-level synchronization
provided by CUDA, as well as maintain the frontier queue
entirely in shared memory. Once that size is exceeded,
they switch to a different strategy described by Xiao and
Feng [22], which allows synchronization between blocks
as long as there is a maximum of one block per multipro-
cessor. Only once that size is exceeded is the synchroniza-
tion provided by separate kernel launches used.

Later work done by Merrill et al. [14] shows a more

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



comprehensive approach, which tackles both vertex- and
edge-level parallelism, as well as performing an asymp-
totically optimal amount of work and being multi-GPU
compatible. Their algorithm maintains an explicit vertex
queue, as well as an edge queue. Instead of inspecting
the neighbors of the current frontier-vertices immediately,
they instead aggregate them into a global edge-queue. This
queue is then filtered to remove previously-visited and du-
plicate vertices before either being immediately expanded
again or placed into a global vertex queue depending on
the frontier size. They also demonstrate the effectiveness
of prefix sum as a way of determining per-thread offsets
when building a global queue structure, which they use
for both their vertex and edge queue.

In the gathering part of the algorithm (expanding the
vertex queue into an edge queue), they start by assigning
one vertex to each thread, but then have all threads with
large nodes vie for control over the entire block by writing
to the same address before synchronizing. The last thread
to perform the write then has its vertex explored. This is
repeated on the warp level for nodes larger than the warp
width. Finally, the adjacencies of small nodes are shared
within each block by their assigned threads, copying them
into shared memory, before jointly checking them. This
results in efficient utilization of all threads for all vertex
sizes.

A different algorithm was introduced by Liu and
Huang [12] which also incorporates bottom-up BFS to
save on the amount of edges that need to be traversed [2].
During the top-down and direction switching phase of
their algorithm they do not produce a new frontier queue
each iteration to use as input for the next, but rather scan
the status array to generate the frontier queue at the be-
ginning of each iteration. In the bottom-up phase, during
which all unvisited vertices are examined for already vis-
ited neighbors, they instead simply place all vertices that
did not have any visited neighbors into the queue for the
next iteration. This is possible because with bottom-up
BFS the next frontier queue is always a subset of the cur-
rent queue.

Their approach to edge-level parallelization is also dif-
ferent, relying on classification of vertices based on their
number of neighbors to determine how many threads to
assign to each. They use four separate frontier queues to
represent the classes, assigning either one thread, warp,
block, or the entire grid to work on each node in a queue.

Lastly, Zhang et al. [23] investigate using dynamic par-
allelism to implement BFS. They use two kernels in their
implementation, an outer kernel that iterated over all ver-
tices to check their frontier status, and an inner kernel to
iterate over the adjacency of a single vertex. This results
in a very simple implementation which they can then ex-
pand with various experimental improvements. Their final
algorithm utilizes the warp-level cooperation scheme de-
scribed by Merrill et al. [14] and shows comparable per-
formance to an implementation of Merrill’s algorithm up
to scale 19 on the Graph500 benchmark [1], but falls off

1ms

5ms
10ms

50ms
100ms

500ms
1000ms

5000ms

wi
kip
ed
ia-

rgg
_n
_2
_2
1_
s0

ms
do
or

kro
n_
g5
00
-lo
gn
20

in-
20
04

hu
ge
bu
bb
les
-

eu
rop

e_
os
m

ca
ge
15

au
dik
w_
1

af_
sh
ell
9

Naive GPMA

Figure 1: Performance comparison between the naive ver-
sion of the BFS algorithm described and the algorithm im-
plemented by the GPMA framework.

sharply at larger scales.

3 Parallelizing BFS

Sequential implementations of BFS are rather trivial but
not worth of consideration for larger graphs, due to the
inherent benefits of using a parallel approach. Given a cer-
tain root vertex, its corresponding adjacency is traversed,
adding these vertices to an auxiliary data structure for the
next iteration while noting the current depth. This pro-
cess is repeated for all vertices in the auxiliary data struc-
ture, whereas each vertex can be added to this structure
just once (to avoid cycles in the search). The algorithm is
done once no new vertices can be added to the auxiliary
data structure.

When parallelizing BFS, there are two possible areas to
tackle: Exploring multiple vertices in parallel and explor-
ing multiple neighbors of a single vertex in parallel. The
initial algorithm presented here only takes advantage of
the former. In the interest of simplicity of implementation
it also foregoes an explicit frontier queue, as managing
such data structures on the GPU is non-trivial. The only
supporting data structure used is a status array which con-
tains one entry for each vertex indicating at which depth,
that is distance from the starting node, it was first discov-
ered. The algorithm is then split into separate iterations,
each of which performs a single depth step into the graph.

In each iteration one thread is launched for every node
in the graph. Each thread then checks if its assigned node
is currently marked as a frontier in the status array and
only then proceeds to explore the neighbors of that node.
When it finds an undiscovered neighbor, it simply marks
it as a frontier for the next iteration by writing the next
depth value into its status array entry. As all threads poten-
tially discovering the same node in this step would write
the same value to the status array, no synchronization be-
tween them is necessary.

Table 1 lists the graphs used to compare the perfor-

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



Name Nodes Edges Depth
wikipedia-20070206 3,566,907 45,030,389 460

rgg n 2 21 s0 2,097,152 28,975,990 1147

msdoor 415,863 19,173,163 127

kron g500-logn20 1,048,576 89,239,674 6

in-2004 1,325,741 16,917,053 47

hugebubbles-00020 21,198,119 63,580,358 4500

europe osm 50,912,018 108,109,320 17346

cage15 5,154,859 99,199,551 500

audikw 1 943,695 77,651,847 55

af shell9 504,855 17,588,845 472

Table 1: The graphs used as a test set to evaluate perfor-
mance of different algorithms. Shows number of nodes,
edges, and iterations required to completely traverse the
graph starting at node 0.

mance of different algorithms in this paper. All graphs
were taken from the SuiteSparse Matrix Collection [6].
Figure 1 shows a comparison between the naive algo-
rithm just described and the algorithm implemented by the
GPMA [16] framework for working with dynamic graphs
on the GPU, which is based on the work done by Merrill
et al. [14]. As the GPMA algorithm is based on a dynamic
data structure while the CSR structure used here is purely
static, there is some overhead not represented in our mea-
surements, however, it serves to highlight strengths and
weaknesses of the algorithms described here.

As can be seen in Figure 1, our algorithm already per-
forms quite well for certain kinds of workloads. Namely,
graphs with a low diameter and a relatively uniformly low
out-degree perform well, as the overhead of launching un-
necessary threads is made up for by the low amount of
work each thread has to perform in order to discover a sin-
gle node. It slows down significantly, however, as soon
as one of those conditions is not fulfilled. As each node
is always only explored by a single thread, having a sin-
gle large node in an iteration can result in all other threads
waiting for one thread to finish its work. This is apparent
in its performance on the kron g500-lgn20 graph, which is
a so-called kronecker graph [11]. These graphs have com-
parable properties to real-world power-law graphs, which
for this algorithm means it contains a few very large nodes.
This graph in particular is of degree 20, meaning it con-
tains 220 vertices.

The most drastic difference can be seen for very large-
diameter graphs such as europe osm, which is a graph of
the European street network. Its 50 million vertices are
spread over 17346 iterations and each vertex only has a
few neighbors each. In these cases the vast majority of
threads launched in each iteration are unnecessary, result-
ing in a massive slowdown.

1
4

2 3 7
5
6

0 2 5 6Offsets

… 1 4 2 5 6 3 7 ...

Thread
Queues

Global Queue

+ Block Offset

Figure 2: Diagram of individual thread frontiers and how
they are arranged into the global queue.

4 The Frontier Queue

In order to produce a work-efficient algorithm, an explicit
frontier queue is required so that only the nodes currently
in the frontier can be examined.

As described in section 2.3, Luo et al. [13] first demon-
strated an approach to generate such a structure, however,
our work uses an approach closer to the one described by
Merrill et al. [14]. Each thread keeps track of discovered
vertices in its registers and an exclusive prefix sum is used
to calculate the block-level offsets for each thread. The
last thread in each block then reserves space in the global
queue with an atomic addition, before each thread copies
its thread queue directly into the global queue, as shown
in Figure 2. This means only a single atomic operation
is required per block and the discovered nodes are only
copied once. There is also an additional cost, however, as
it is now important to avoid duplicates when discovering
new nodes. In order to achieve this we replace the look-
up in the depth array for a vertex’s status with an atomic
compare-and-swap. As these accesses are typically dis-
tributed randomly across the graph, the chance of multiple
threads wanting to access the same node at the same time
in this manner is low, meaning little to no performance
impact on average.

5 Dynamic Parallelism

In CUDA programs, kernels are typically launched from
the host, that is, the CPU, however, dynamic parallelism
allows launching kernels from within other kernels. This
allows for a simple improvement to the algorithm, where
the main loop can be run directly on the GPU, rather than
on the host. This saves extra latency introduced in each it-
eration by having to copy back the flag indicating whether
any new nodes were discovered in the last iteration. For
most graphs in the test set this resulted in roughly a 10-
20% speedup, however, for some graphs it improved per-
formance by up to a factor of 2. Zhang et al. [23] also ex-

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



perimented with using dynamic parallelism, however, they
reported a slowdown of 1 to 44% in their measurements.
It is not clear why this is the case, but our results were
consistent across two devices with different hardware and
compute capability (5.2 and 6.1 respectively).

We also attempted to use dynamic parallelism to rem-
edy the second weakness of the initial algorithm, namely
that it only ever explores a single node’s neighbors with
a single thread. This means that a single large node in
an iteration can dominate that iteration’s processing time,
slowing down overall performance considerably. In order
to deal with this we set a static threshold above which
a thread would launch a sub-kernel to explore the node,
rather than exploring it directly. When doing this, it is im-
portant to consider how to distribute the workload across
the available threads. If threads within a warp access suc-
cessive memory locations, the GPU can coalesce these
memory accesses and serve them with potentially only a
single memory transaction. To achieve such a pattern, each
thread simply uses its unique thread ID (assigned sequen-
tially, starting at 0) to calculate its starting offset into the
adjacency array. In each step it then reads and processes
an edge, before incrementing that offset by the number of
threads working on the adjacency until all edges have been
explored.

Putting this together with the frontier queue described
in Section 4 results in the performance numbers shown in
Figure 3. Most importantly, this algorithm shows compa-
rable performance to the GPMA reference for the large-
diameter graphs from before. However, it also shows
slowdowns for others, due to its own weakness: The num-
ber of kernels launched can potentially become very large,
resulting in large driver overhead. For graphs with a large
median out-degree, it introduces a trade-off between the
amount of work performed and the number of kernels
launched. Since a thread’s discovered nodes are stored
in its registers, this threshold can not always be set high
enough to avoid a crippling number of kernel launches. It
is also important to note that this algorithm’s performance
is very inconsistent, varying by up to 2 times between con-
secutive runs, most likely due to different scheduling pat-
terns by the hardware scheduler for a larger number of ker-
nel launches.

6 Distributing Workload

Clearly, a more refined scheme is required for how to
distribute work across threads evenly. We chose to go
with an approach similar to the one proposed by Liu and
Huang [12], where frontier nodes are classified into differ-
ent queues based on their size. Each of these queues is then
handled by a different kernel with different parameters for
how many threads to assign to each node. In this work,
either one thread, one warp, or one block is assigned to
each node. As can be seen in Figure 4, this improves per-
formance across the board while also not suffering from

1ms

5ms

10ms

50ms

100ms

500ms

1000ms

wiki
pedia-

rgg_n
_2

_2
1_s

0

msd
oor

kro
n_g

500-lo
gn20

in-2004

hugebubbles-

europe_o
sm

ca
ge15

audikw
_1

af_s
hell9

Dynamic Parallelism GPMA

Figure 3: Performance measurements for the dynamic par-
allelism version of the algorithm.

1ms

5ms

10ms

50ms

100ms

500ms

1000ms

wiki
pedia-

rgg_n
_2

_2
1_s

0

msd
oor

kro
n_g

500-lo
gn20

in-2004

hugebubbles-

europe_o
sm

ca
ge15

audikw
_1

af_s
hell9

Dynamic Parallelism Classification GPMA

Figure 4: Performance measurements for the classification
version of the algorithm.

the inconsistency of the dynamic parallelism-based algo-
rithm. In particular, it can now handle all varieties of de-
gree distributions without causing significant slowdown.
Moreover, with this algorithm it is possible to tweak the
number of edges assigned to each thread and the number
of threads per block to better fit the type of graph being
processed. With some experimentation this can yield an
additional 10-20% speedup.

7 Integrating BFS with faimGraph

faimGraph is a fully-dynamic framework, supporting both
vertex as well as edge updates efficiently. Edges are stored
on pages linked together in a linked list, as can be seen in
Figure 5. For this work, only the destination of an edge
is relevant and all other edge data is omitted. This stor-
age format is the biggest difference compared to compet-
ing approaches, which enables faster update rates directly
on the device, but introduces additional challenges to al-
gorithms such as BFS. Array-like adjacencies, like CSR,
store all edges in a single array, where edges within a ver-
tex adjacency reside in contiguous memory and adjacent
threads can be served efficiently with coalesced memory

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



access, as described in section 5.
In order to achieve similar efficiency on a dynamic data

structure with a page-based adjacency management, a few
adjustments to the algorithms are required. Exploring an
adjacency with a single thread works nearly identical to ar-
ray traversal. The framework provides edge data iterators
which can be incremented until the last edge is reached,
automatically resolving the page traversal in the process.
Since the page size is fixed for an instance of faimGraph,
ideally a single page can be read by threads within a warp
at the same time. Hence, each work group (consisting of a
warp) first calculates the page its target edge is located on,
before one thread performs the page traversal to this page.
Only then will the threads within a warp resolve the edge
data iterator to its corresponding edge. This results in coa-
lesced memory access for threads within a warp, with the
same memory access patterns as with CSR. Nonetheless,
some overhead is introduced by the need to first traverse
the page lists to access the correct page, as can be seen in
Figure 6. This overhead depends on the overall sparsity di-
versity within the graph and is on average around 10% for
our test set, dependent on the average out-degree within
the graph.

8 Evaluation

All performance measurements so far have only consid-
ered the processing time itself, leaving out the allocation
of supporting structures as well as copying back the result
from GPU to CPU memory. In our measurements, alloca-
tions made up a negligible fraction of total time spent and
supporting structures can also be reused between runs if
memory requirements have not increased. Figure 7, how-
ever, shows that simply copying back the resulting depth
array can make up a substantial fraction of the total time

Figure 5: Edges within faimGraph are stored on pages
linked together by indices.

1ms

5ms

10ms

50ms

100ms

500ms

1000ms

wi
kip
ed
ia-

rgg
_n
_2
_2
1_
s0

ms
do
or

kro
n_
g5
00
-lo
gn
20

in-
20
04

hu
ge
bu
bb
les
-

eu
rop

e_
os
m

ca
ge
15

au
dik
w_
1

af_
sh
ell
9

CSR faimGraph

Figure 6: Performance comparison between the classifica-
tion version running on CSR and faimGraph.

1ms

5ms

10ms

50ms

100ms

500ms

1000ms

wiki
pedia-

rgg_n
_2

_2
1_s

0

msd
oor

kro
n_g

500-lo
gn20

in-2004

hugebubbles-

europe_o
sm

ca
ge15

audikw
_1

af_s
hell9

Total Time Kernel Time

Figure 7: Comparison of total time used to allocate sup-
porting structures, perform BFS, and copy the result from
GPU memory back to CPU memory versus the time spent
in the BFS kernel itself.

used, strongly incentivizing continued processing on the
GPU in order to save this step.

Figure 8 shows the relative performance of all variants
of BFS described in this paper, both using CSR and faim-
Graph, as well as the implementation provided by the
GPMA framework and a simple, single-threaded CPU im-
plementation as described in Section 1. It shows quite
well how BFS’ performance is very dependent on the type
of graph and even very simple algorithms can outperform
other, more sophisticated ones if the workload suits them
better. For example, the af shell9 data set favors the naive
implementation above all others, and even the CPU imple-
mentation stays competitive.

Furthermore, the impact of the adaption to faimGraph
can be seen for all variants of the algorithm, although its
effect is comparatively small and explained by the addi-
tional overhead of traversing the page-based data structure.
The impact is generally higher for the naive and dynamic
parallelism variants, where adjacencies are predominantly
explored by a single thread.

A differentiating factor not mentioned so far is the mem-
ory footprint of each version. The naive version only re-

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



1ms

5ms
10ms

50ms
100ms

500ms
1000ms

5000ms
10000ms

wiki
pedia-

rgg_n
_2

_2
1_s

0

msd
oor

kro
n_g

500-

in-2004

hugebubbles-

europe_o
sm

ca
ge15

audikw
_1

af_s
hell9

Naive Dynamic Parallelism Classification Naive (faimGraph) Dynamic Parallelism (faimGraph)
Classification (faimGraph) GPMA CPU

Figure 8: Comparison of all variants described in this paper, as well as the algorithm implemented by GPMA and a simple
CPU implementation.

quires an additional array with one entry for each node,
while the dynamic parallelism version requires the same
status array plus space for its frontier queues, one that is
currently being processed and another that is being filled.
As a single iteration could potentially have effectively the
entire graph as its frontier, each queue is also allocated
enough space for every node. The classification version
requires four queues in total, one for each of the three
classes, as well as the queue for the next iteration. It would
also be possible to consolidate the classification step into
the exploration of the neighbors itself, however, this would
increase the requirement to six total queues as each class
would require its own working and next-iteration queue.
This is still typically less than that of approaches maintain-
ing an explicit edge queue, such as the one implemented
by the GPMA framework.

9 Conclusion

In this paper, three different algorithms are presented in or-
der to demonstrate the main challenges faced when adapt-
ing Breadth-First Search for the GPU. The initial algo-
rithm performs poorly for large diameter graphs as well as
graphs with consistently large out-degrees and was gradu-
ally improved to result in an algorithm capable of compet-
itive performance across a variety of graphs. The impor-
tance of a frontier queue was demonstrated and approaches
as to how to build one in parallel were discussed.

Dynamic parallelism was examined for its ability to
reduce unnecessary latency when running the main loop
on the CPU and it was demonstrated how attempting to
use it to deal with large nodes can lead to mixed results.
A classification-based approach to parallelizing individual
adjacencies was adapted from Liu and Huang [12], and its

effectiveness investigated. Finally, all algorithms were in-
tegrated with the faimGraph framework and the overhead
introduced by its paged data structure found to be com-
paratively low, outperforming a BFS implementation on a
competing dynamic graph framework, GPMA.

9.1 Future Work

While the final algorithm described here shows compet-
itive performance on a wide variety of graphs, there are
still several possible enhancements. Concerning the per-
formance of the algorithm itself, incorporating the idea of
bottom-up Breadth-First Search demonstrated by Beamer
et al. [2] and adapted for the GPU by Liu and Huang [12]
can lead to significant speedups for certain types of graphs.
It can save having to explore a significant chunk of a
graph’s edges by not searching all neighbors of the current
frontier for undiscovered nodes, but searching the neigh-
bors of undiscovered nodes for already discovered nodes.
A hybrid approach starting with conventional bottom-
down BFS and switching to bottom-up BFS once the fron-
tier size reaches a certain threshold can potentially run sev-
eral times faster than simply using the bottom-down ap-
proach.

As the algorithms were integrated with faimGraph, a
natural next step would be investigating partially updating
a previous Breadth-First Search result after a change to the
graph. This could include tying the BFS implementation
closer to the framework and observing changes to the ad-
jacencies, which can further guide the exploration phase
later on, possibly reducing the amount of work to be done.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



References

[1] Graph500 BFS lists. https://graph500.org/
?page_id=514. Accessed: 2019-02-03.

[2] S. Beamer, K. Asanović, and D. Patterson. Direction-
optimizing breadth-first search. Scientific Program-
ming, 21(3-4):137–148, 2013.

[3] F. Busato, O. Green, N. Bombieri, and David A.
Bader. HORNET: An efficient data structure for dy-
namic sparse graphs and matrices on GPUs. In 2018
IEEE High Performance Extreme Computing Con-
ference (HPEC ’18). Georgia Institute of Technol-
ogy, 2018.

[4] S. Che. GASCL: A vertex-centric graph model for
GPUs. In 2014 IEEE High Performance Embedded
Computing Conference (HPEC ’14), 2014.

[5] S. Che, B. M. Beckmann, and S. K. Reinhardt.
BelRedbel: Constructing GPGPU graph applica-
tions with software building blocks. In 2014 IEEE
High Performance Embedded Computing Confer-
ence (HPEC ’14), 2014.

[6] T. A. Davis and Y. Hu. The university of florida
sparse matrix collection. ACM Transactions on
Mathematical Software (TOMS), 38(1):1, 2011.

[7] Y. Steve Deng, B. David Wang, and S. Mu. Taming
irregular EDA applications on GPUs. In Proceedings
of the 2009 International Conference on Computer-
Aided Design, pages 539–546. ACM, 2009.

[8] D. Ediger, R. McColl, J. Riedy, and D. A. Bader.
STINGER: High performance data structure for
streaming graphs. In 2012 IEEE High Performance
Extreme Computing Conference (HPEC ’12). Geor-
gia Institute of Technology, 2012.

[9] O. Green and David A. Bader. cuSTINGER: Sup-
porting dynamic graph algorithms for GPUs. In 2016
IEEE High Performance Extreme Computing Con-
ference (HPEC ’16). Georgia Institute of Technol-
ogy, 2016.

[10] P. Harish and P. Narayanan. Accelerating large graph
algorithms on the GPU using CUDA. In Interna-
tional Conference on High-Performance Computing,
pages 197–208. Springer, 2007.

[11] J. Leskovec, D. Chakrabarti, J. Kleinberg, and
C. Faloutsos. Realistic, mathematically tractable
graph generation and evolution, using kronecker
multiplication. In European Conference on Prin-
ciples of Data Mining and Knowledge Discovery,
pages 133–145. Springer, 2005.

[12] H. Liu and H. H. Huang. Enterprise: Breadth-first
graph traversal on GPUs. In 2015 SC-International
Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 1–12. IEEE,
2015.

[13] L. Luo, M. Wong, and W. Hwu. An effective
GPU implementation of breadth-first search. In Pro-
ceedings of the 47th Design Automation Conference,
pages 52–55. ACM, 2010.

[14] D. Merrill, M. Garland, and A. Grimshaw. Scalable
GPU graph traversal. In ACM SIGPLAN Notices,
volume 47, pages 117–128. ACM, 2012.

[15] NVIDIA. nvGraph. https://developer.
nvidia.com/nvgraph, 2016. Accessed 2107-
05-12.

[16] M. Sha, Y. Li, B. He, and K. Tan. Accelerating dy-
namic graph analytics on GPUs. Proceedings of the
VLDB Endowment, 11(1):107–120, 2017.

[17] H. Sutter. The free lunch is over: A fundamental turn
toward concurrency in software. Dr. Dobb’s journal,
pages 202–210, 2005.

[18] LLC SYSTAP. BlazeGraph. https://www.
blazegraph.com/, 2017. Accessed 2017-05-01.

[19] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and
J. D. Owens. GunRock: A high-performance graph
processing library on the GPU. In ACM SIGPLAN
Notices, vol. 50, 2015.

[20] M. Winter, D. Mlakar, R. Zayer, H. Seidel, and
M. Steinberger. faimGraph: high performance man-
agement of fully-dynamic graphs under tight mem-
ory constraints on the GPU. In Proceedings of the In-
ternational Conference for High Performance Com-
puting, Networking, Storage, and Analysis, page 60.
IEEE Press, 2018.

[21] M. Winter, R. Zayer, and M. Steinberger. Au-
tonomous, independent management of dynamic
graphs on GPUs”. In 2017 IEEE High Performance
Extreme Computing Conference (HPEC ’17). Uni-
versity of Technology, Graz, 2017.

[22] S. Xiao and W. Feng. Inter-block GPU communica-
tion via fast barrier synchronization. In Parallel &
Distributed Processing (IPDPS), 2010 IEEE Inter-
national Symposium on, pages 1–12. IEEE, 2010.

[23] P. Zhang, E. Holk, J. Matty, S. Misurda, M. Zalewski,
J. Chu, S. McMillan, and A. Lumsdaine. Dynamic
parallelism for simple and efficient GPU graph algo-
rithms. In Proceedings of the 5th Workshop on Ir-
regular Applications: Architectures and Algorithms,
page 11. ACM, 2015.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)

https://graph500.org/?page_id=514
https://graph500.org/?page_id=514
https://developer.nvidia.com/nvgraph
https://developer.nvidia.com/nvgraph
https://www.blazegraph.com/
https://www.blazegraph.com/

	Introduction
	Related Work
	Static Graph Frameworks on the GPU
	Dynamic Graph Frameworks on the GPU
	bfs Implementations on the GPU

	Parallelizing bfs
	The Frontier Queue
	Dynamic Parallelism
	Distributing Workload
	Integrating BFS with faimGraph
	Evaluation
	Conclusion
	Future Work


