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Abstract

Deferred renderers are popular in computer graphics be-

cause they allow using a larger number of light sources,

but they have some drawbacks too. One of these is the

inability to work together with traditional hardware-based

multisample anti-aliasing. Multiple solutions exist to this

problem, but their common drawback is the increased

memory and bandwidth requirements. We propose a novel

approach that eliminates unnecessary memory usage and

improves performance while maintaining image quality.

Our method is based on a new G-Buffer structure that uses

per-pixel linked lists to store the samples. By limiting the

number of pre-allocated blocks in the G-Buffer we can

also satisfy strict requirements about memory usage and

processing time. Similarly to variable rate shading, our

method enables to selectively apply anti-aliasing either on

preferred parts of the screen or on a per-object basis. We

measured the new method using a Vulkan based renderer

on scenes with different geometry complexity and charac-

teristics while comparing performance and memory usage

to the traditional techniques.

Keywords: Antialiasing, Deferred rendering, Multisam-

pling

1 Introduction

Deferred shading based rendering algorithms are popu-

lar with real time three dimensional applications, because

they make it possible to use orders of magnitude more

light sources than with classical forward shading algo-

rithms. The disadvantage is, that we cannot use the built-in

multisample anti-aliasing algorithms of the GPU (MSAA).

There are multiple solutions for this problem, but the in-

creased memory and bandwidth consumption of the ren-

derer is a common drawback. For this reason, nowa-

days it is typical to use post processing based anti-aliasing

methods (e.g., FXAA). These techniques try to find and

then blur edges on the picture, instead of sampling it with

higher frequency. The inherent consequences of these

methods are that they are much faster than MSAA, but
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they cannot always produce correct results. The picture

could become blurry or fast camera movement could re-

sult in visible artifacts.

1.1 Deferred shading

Deferred shading [11] is a rendering technique that aims to

increase the usable number of light sources in a scene or

reduce the computational cost of lighting in case of com-

plex geometry. The idea is to divide the rendering pro-

cess into two parts, the geometry pass and the lighting pass

(Figure 1).

During the geometry pass the scene geometry is ras-

terized, but no shading is performed. Only the necessary

attributes are collected (e.g., albedo, normals, depth) and

stored in the so-called G-Buffer. It is usually implemented

as several frame sized textures, where every texel stores

the corresponding pixel’s attributes for lighting.

During the lighting pass light sources are processed.

There are multiple techniques to do this. The original one

rasterizes point light sources as spheres, where the radius

corresponds to the effective range of the light. Another

technique, called tile-based deferred shading [5] divides

the camera space into smaller parts and generates a list

of affecting light sources for each. The goal is to reduce

the number of unnecessary shading calculations and make

the processing time of light sources independent from the

scene geometry. During shading the G-Buffer is accessed

and results are accumulated.

Geometry

G-Buffer

Final Image

Geometry pass Lighting pass

Figure 1: Visual representation of deferred shading.
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1.2 Multisample anti-aliasing

Aliasing is a common problem during rendering. For ex-

ample when we rasterize the scene geometry, the sampling

rate is too low and geometry aliasing occurs. The visi-

ble results are the jagged edges in the final picture. To

solve this, we apply anti-aliasing methods in our rendering

pipelines (Figure 2). One method is supersampling which

renders the scene in a higher resolution than the target’s,

then downsamples it. This solution targets the root cause,

the undersampling of frequencies, but it comes with high

performance costs.

Figure 2: Results of anti-aliasing. From left to right: NO

AA, FXAA, 8x MSAA, the Proposed Algorithm.

Multisample anti-aliasing (MSAA [9]) is a hardware ac-

celerated optimization of supersampling. It aims to reduce

the number of shading calculations by only doing super-

sampling where it is necessary. These parts are the edges

of the rasterized triangles, where large differences can oc-

cur in the final colour. With MSAA we still store multiple

samples per pixel (just like with supersampling), but shad-

ing is only performed for some of them. Where the raster-

izer detects that a triangle covers some sample in a pixel it

invokes the fragment shader only once, but the result will

be written to each covered sample. After that, samples are

averaged to compute the final colour of the pixel.

1.3 Deferred shading with MSAA

When multisampling is applied to a deferred renderer we

can no longer use the basic hardware accelerated process.

The whole G-Buffer must be created with higher sampling

frequency (using MSAA). The information about pixel

coverage must be stored in the G-Buffer too. Increased

size can already become a problem for mobile devices, but

the memory bandwidth consumption makes it very taxing

on desktop GPUs too. A further problem is that during the

lighting pass we do not want to calculate shading for du-

plicated sample data. A complex logic to select the unique

samples for shading is unpractical for the massively par-

allel nature of the GPU, but if we settle with less accurate

selections (e.g., simple, and supersampled pixel) then it

will result in many unnecessary calculations.

In this work we analyse the previously mentioned

problems with the combination of deferred shading and

MSAA. We introduce a new method to mitigate these and

implement it in a modern renderer with Vulkan and C++.

2 Related work

To apply anti-aliasing Reshetov [10] proposed a post-

processing based approach, which worked by searching

various patterns in the final image and blending the colours

in the neighbourhood. It can be used efficiently in a de-

ferred renderer. Lottes et. al [7] proposed a different im-

plementation based on the same idea with alternative edge

detection mechanism. Jimenez et. al [4] adapted the origi-

nal technique to work together with traditional MSAA and

temporal supersampling to recover subpixel features.

Chajdas et. al [2] proposed a method that used single-

pixel shading with sub-pixel visibility to create anti-

aliased images.

Another branch of the anti-aliasing techniques uses pre-

vious frames to solve the problem. A recent variant, pro-

posed by Marrs et. al [8] combines it with supersampling

and raytracing.

Liktor et. al [6] proposed an alternative structure for

the G-Buffer which allows efficient storage of sample at-

tributes. They used this structure for stochastic rendering

and also for anti-aliasing.

Salvi et. al [12] proposed a method for deferred ren-

derers that reduces the stored and shaded sample count by

merging samples that belong to the same surface. Crassin

et. al [3] proposed a similar method that uses more com-

plex criteria to group samples together and calculate ag-

gregate values. Both methods are using a pre-pass before

filling the G-Buffer to generate supporting information for

subsequent passes.

Our implementation of the G-Buffer uses a structure

similar to the A-buffer, proposed by Carpenter et. al [1].

The A-Buffer can be used for order independent trans-

parency by collecting and sorting every rasterized frag-

ment for each pixel in linked lists. Instead, we collect

only the visible samples for every pixel and skip the sort-

ing step.

3 The proposed algorithm

The main problem of multisampling in case of deferred

shading is the redundant storage of samples. The stan-

dard G-Buffers are using textures to store per-pixel data.

In case of multisampling we need to use larger textures

to store more samples. By using 8x multisampling we ef-

fectively use eight times more memory. Most of it is un-

necessary because a large part of the screen requires only

1-2 samples. This redundancy also causes further prob-

lems. MSAA is faster than supersampling, because only

one sample is shaded for each fragment that is covered by
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just one triangle. It is a great optimization for forward ren-

derers, but during the lighting pass of a deferred renderer

this information is not available. It means we must recover

it manually or use supersampling, effectively losing all the

benefits of MSAA.

The proposed technique consists of an alternative data

structure for the G-Buffer and algorithms to build and use

it. The G-Buffer is divided into two parts. The first one

contains one block of data for each pixel. It represents

the basic G-Buffer used in standard deferred shading. It

also contains the heads of per-pixel linked lists that store

data for the rest of the samples, originating from the same

pixel. These linked lists are stored in the second part of

the G-Buffer. The whole structure can be represented on

the GPU as a Shader storage buffer object (SSBO).

The idea is that we construct the G-Buffer in a way

to prevent redundancy. Then during the lighting pass we

know for certain that every block of data must be shaded

and no unnecessary calculations will be done. The re-

quired size for the G-Buffer is reduced too.

To construct the G-Buffer scene geometry is rasterized

normally using the maximum desired multisampling fre-

quency. The target framebuffer contains only a depth

buffer with the appropriate sampling rate. According

to the behaviour of standard multisampling the fragment

shader is invoked for every triangle-pixel intersection and

each invocation represents one or more samples. The at-

tributes for lighting calculation are collected. The covered

samples are checked if they contain a previously specified

index. If that is the case then the collected data is writ-

ten into the first part of the G-Buffer. Otherwise, a new

block is allocated from the second part by using an atomic

counter. The block is connected to the pixel’s linked list

with an atomic operation and the data is written into it.

This way the G-Buffer becomes free of redundancy except

for one case. That is when hidden objects are rasterized

before the visible ones. We solve this by running a depth-

only Z-prepass before the geometry pass.

During the lighting-pass the shading can be done by

traversing the linked lists or the G-Buffer itself in an un-

ordered manner, according to the implementation of the

light sources. In our implementation we did the former.

The light sources were stored in a buffer and for every

sample we accumulated the shading for every light source.

Then the results were averaged, weighted by the number

of covered samples. This implementation of light sources

is hardly optimal because every light source influences ev-

ery part of the screen, even where its effect is unnoticeable.

We chose this method because it is straightforward to im-

plement and we can reason better about the performance

characteristics of different number of light sources. It is

also easy to extend to tile-based deferred shading, a popu-

lar variant of standard deferred shading.

4 Implementation

After an overview of the proposed technique, we highlight

the important details of our implementations.

4.1 The G-Buffer

In our shading model we needed the following attributes:

albedo, normal, roughness, metallic, ambient occlusion

factor (ao). We also needed a pointer to construct the

linked list.

1. bit                              8. 16.  24. 32. bit 

albedo1 (RGB) metallic1 

albedo2 (RGB) metallic2 

normal1 

normal2 

roughness1 roughness2 ao1 ao2 

pointer1 

pointer2 

Figure 3: Structure of two interleaved block in the G-

Buffer referring to two samples. Every sample uses 112

bits.

We interleaved every two block of data to prevent any

unnecessary padding (Figure 3). It is another added flex-

ibility of our data structure. The traditional texture based

G-Buffer does not allow this. (It would require 16 bits

padding for every sample.)

1. bit                                                                                                 26. 29. 32. bit 

index sample count sample index 

 

1. bit         32.       

next pointer pre-allocated blocks dynamic blocks 

 

Figure 4: Structure of the pointer and the G-Buffer.

As depicted in the top of Figure 4, the pointer consists

of three parts. The first 26 bit stores the index of the next

block in the linked list. Then 3 bits are needed to store the

number of samples covered by the next block, and another

3 bits to store the index of one of these samples. The latter

is needed to read the correct value from the multisampled

depth buffer.

The final structure of the G-Buffer is shown at the bot-

tom of Figure 4. The number of pre-allocated blocks must

match the number of pixels, because even without anti-

aliasing, one sample is needed. (This is the previously

mentioned first part of the G-Buffer.) The number of dy-

namic blocks depends on the available memory, perfor-

mance constraints and required quality. Additional sam-

ples after the first one are stored here in linked lists.

4.2 Light sources

We only used point light sources in our implementation.

As a simplification we also implemented it as a uniform

buffer and every fragment shader invocation iterated over
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the entire list. This does not impact the performance com-

parisons, because a smarter light source implementation

would affect each measured algorithm in the same way.

4.3 Z-prepass

A simple Z-prepass will not solve the problem of multiple

fragment shader invocations for the same sample in the

geometry pass, which can happen when triangles are in-

tersecting with each other. At the intersection, fragments

from different triangles can have the same depth value.

This means that both fragments will allocate memory for

the same sample location and it is possible that the result-

ing linked list will contain more fragments then the num-

ber of samples. This conflicts with the average calculation

and causes visual errors. A solution for this is to use one

bit of the stencil buffer to flag the sample after one invoca-

tion and discard subsequent ones.

4.4 Shadows and transparent materials

In our implementation we chose to not implement shad-

ows or transparency. Transparency is a common problem

for deferred renderers and they are generally handled sep-

arately. Shadow calculation is working well with deferred

renderers. The most popular solutions are shadow map-

ping and its variations. Our approach does not interfere

with these methods and they can be applied to the resolved

image without changes.

5 G-Buffer Optimizations

Our method stores samples in the G-Buffer precisely,

when we decide to shade them. This characteristic allows

us to further reduce memory usage by storing fewer sam-

ples for certain pixels in the geometry pass. To apply ar-

bitrary maximum sample count for a pixel, we would re-

quire another 32 bit atomic counter for every one of them.

It is also impossible to ensure deterministic behaviour, so

small flickering can ruin the results. Instead, we opted to

use a maximum of 1 sample. This needs no further mem-

ory storage or complexity because we just need to discard

every sample except the one, which goes to the first part of

the G-Buffer. The remaining question is how to decide if

a pixel only needs one sample. We provide four different

methods, which can be used either exclusively or simulta-

neously.

5.1 Filtering based on location

We can select certain areas on the screen in advance to

disable anti-aliasing by limiting the maximum number of

samples to one. It goes well with certain kind of programs,

where a large part of the screen would get blurred (e.g.,

car racing) or with VR where edges of the screen need less

detail. The only limitation is the allowed complexity for

selecting parts of the screen.

Figure 5: Visualization of sample usage after filtering by

an ellipse (black - 1 sample, red - 8 samples).

We implemented two methods based on an ellipse (Fig-

ure 5) and a rectangle. The latter is given with top, bottom,

left and right values while the former with its centre, width

and height. Outside of the selected region, only one sam-

ple is stored and no anti-aliasing is performed, while in

the inside everything remains the same as before (dynamic

sample count).

The advantage is that we know beforehand how many

pixels are going to be filtered. We can reason about the

memory requirements better and we can reduce it pre-

emptively. The disadvantage is that no dynamic adjust-

ments are done and edges of the selection are clearly visi-

ble if a complex, unblurred object intersects it.

5.2 Filtering based on depth

We can also use the depth buffer to specify a threshold

for anti-aliasing (Figure 6). It is great for certain scenes,

where background objects are always getting blurred or

barely visible (e.g., fog). The problem is, that we must

also select these objects precisely and reliably based only

on depth. It helps that we can apply per-frame thresholds

based on previous frames or by using some other heuris-

tics.

5.3 Filtering based on objects

Sometimes there are objects with very simple geometry (or

some other special properties) that need no anti-aliasing

(e.g., spheres).

These can be flagged beforehand and excluded from us-

ing multiple samples (Figure 6). It is a very specific so-

lution which must be used with care but can boost perfor-

mance immensely in certain environments while maintain-

ing image quality.

5.4 Filtering based on edges

A common problem with MSAA is that it applies to every

triangle edge, even when they come from the same object
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Figure 6: Top: Visualization of sample usage after filtering

by a depth threshold. The cathedral and the rearmost tree

is partially excluded from anti-aliasing. Bottom: Visual-

ization of sample usage after filtering out a pair of trees.

and no anti-aliasing would be needed. To reduce these

false-positive cases we can use edge detection on the depth

buffer after the Z-prepass to flag true edges on the screen

(Figure 7). These can be used to further constrain the anti-

aliasing.

The problem with this approach is that by only using

subpasses we can access the depth only for the currently

processed pixel. This makes it difficult to use robust edge

detection algorithms that would make use of the neigh-

bouring pixels and directional information. We decided

to calculate the minimum and maximum depth values for

each pixel (from the samples) and threshold the difference.

Results were not satisfactory, because many true edges

were excluded.

Figure 7: Visualization of sample usage after edge detec-

tion on the depth buffer.

With multiple renderpasses and with a more robust edge

detection algorithm, better results could be achieved, but

it could also hinder the performance on mobile devices.

6 Evaluation

We benchmarked the performance characteristics of our

implementation on multiple GPUs (Nvidia GTX970 and

GTX1050). We compared the processing time and mem-

ory usage to an implementation without anti-aliasing, to a

version of FXAA and to the traditional implementation of

MSAA.

Figure 8: Test scenes used during evaluation, and visual-

ized sample usage.

We used three test scenes with various geometry com-

plexity for our measurements. These scenes contain

1.424.145, 8.699.022 and 23.820.168 vertices respectively

(top row of Figure 8). The number of samples used for

each scene is also shown on the bottom row of Figure 8.

First we measured the required memory for 1920x1080

resolution (Table 1). Our proposed method has flexible

memory requirements so only minimum and maximum

values are given. In the case of minimum values no anti-

aliasing will be performed. The actual memory require-

ments for full anti-aliasing depend on the scene geometry

(Figure 9).

 
No 

AA 

MSAA Proposed algorithm 

4x 8x 
4x 8x 

Min Max Min Max 

G-Buffer 23.73 94.92 189.84 27.69 110.74 27.69 221.48 

Z-Buffer 7.91 31.64 63.28 31.64 31.64 63.28 63.28 

Total 31.64 126.56 253.12 59.33 142.38 90.97 284.76 

Table 1: Memory consumption of the anti-aliasing meth-

ods in Mbytes.

We also measured the processing times of the anti-

aliasing algorithms. As we can see in Table 2, our algo-

rithm performs well in environments where a large number

of shading calculations must be performed.
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Figure 9: Complex scene for memory requirements. It

needs 115.31 MB memory for 8x and 75.01 MB for 4x

anti-aliasing. In the 8x case it is even smaller than the

memory requirements of the traditional 4x MSAA imple-

mentation.

 MSAA  Proposed algorithm 

 4x 4x 8x 

1. scene  5   light sources 5.2648 3.8092 4.3629 

1. scene  50 light sources 21.987 12.5951 14.0772 

2. scene  5   light sources 7.9021 8.1721 8.97702 

2. scene  50 light sources 21.8875 16.5104 18.9172 

3. scene  5   light sources 14.069 19.1354 21.3446 

3. scene  50 light sources 33.293 31.7038 38.6841 

 

Table 2: Computation times of the anti-aliasing methods

without any G-Buffer optimization (ms).

On small scenes with many light sources our technique

is able to deliver better anti-aliasing results and even bet-

ter performance than previous solutions. It reacts well

to larger anti-aliasing settings too (left of Figure 10), be-

cause it effectively reduces unnecessary shading opera-

tions. Complex geometry can present a problem, because

of the Z-prepass, but only in extreme cases and even then,

with equally large number of light sources it still outper-

forms the traditional method (right of Figure 10).

 

1.2

1.7

2.2

2.7

3.2

3.7

2x 4x 8x

Anti-aliasing setting

3. Scene - 50 Light Sources

Proposed MSAA

1.2

1.7

2.2

2.7

3.2

3.7

5 20 50

Number of light sources

3. Scene

MSAA 4x MSAA 8x

Proposed 4x Proposed 8x

Figure 10: Relative processing times of the algorithms

with different anti-aliasing settings (left) and number of

light sources (right). The measured values represent the

relative performance of the techniques, compared to the

implemantation without anti-aliasing.

7 Conclusion

The proposed algorithm can apply multisample anti-

aliasing in a deferred renderer without unnecessary mem-

ory allocations and complex shading logic of traditional

methods. The performance is better for small scenes while

it also reacts well to more light sources and higher sample

count than the traditional method. The flexible data struc-

ture of the G-Buffer prevents any redundancy and enables

to further reduce the allocated storage by selectively ap-

plying anti-aliasing. These characteristics permit us to ag-

gressively limit the G-Buffers size and consequently sat-

isfy strict requirements about performance and memory

consumption.
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