
Parallelization of skeleton extraction from 3D models and point
clouds

Nikolas Hamran ∗

Supervised by: Martin Madaras

Institute of Computer Engineering and Applied Informatics
Faculty of Informatics and Information Technologies STU

Bratislava / Slovakia

Abstract

We present a GPU accelerated algorithm for skeleton ex-
traction from 3D meshes and point clouds. Our method
performs skeletonization in a pipeline, where each stage
ensures an optimal transformation of the input data to
achieve a satisfactory result. The input vertices are con-
verted to the medial surface of the mesh with the shrinking
spheres method for improved accuracy of the final skele-
ton. Vertices are then sampled from the medial surface
and contracted to a thin shape with the L1 method. These
steps are done in parallel. The final stages include skele-
ton reconstruction and post processing on the CPU. We
introduced modifications to the original CPU based algo-
rithms for them to be suitable for parallel execution. These
modifications include speedups for algorithm convergence
and data dependency removal during computation. An ad-
vantage of our method is that it does not require connec-
tivity information between vertices, as opposed to Lapla-
cian based mesh contraction methods. Experimental re-
sults show near real time performance of our algorithm.
The implementation uses the CUDA API for efficient uti-
lization of the GPU resources.

Keywords: Curve skeleton, GPU, CUDA

1 Introduction

The curve skeleton is a geometric graph structure which
encodes the shape and topology of a 3D mesh. Curve
skeletons have many important use cases in computer
graphics and other fields of research. They are vital for
3D mesh animation, 3D mesh repair and compression,
virtual navigation, visualization improvement and many
more. Finding a precise and fast approach to curve skele-
ton extraction remains an open problem despite many at-
tempts in the field [14].

With the rise of massively parallel processing archi-
tectures and the CUDA API, many algorithms were suc-
cessfully implemented in the GPGPU environment and

∗Master study programme in field: Intelligent Software Systems,
nikolas.hamran96@gmail.com

achieved significant speedup. 3D mesh skeletonization is
a fairly expensive operation and the main pitfall of many
recent approaches is the lack of real-time performance.
From many publications in this domain, only a few fo-
cus on accelerated curve skeleton extraction [3, 7]. This
is probably due to the GPGPU programming model be-
ing significantly less flexible than the sequential approach.
This model imposes many limitations on memory access,
data dependencies and program flow execution during
computation, therefore our aim is to design a skeletoniza-
tion algorithm based on existing methods which abides all
limits of the parallel approach.

In this paper we present a skeletonization pipeline,
shown in Figure 1, adapted to the GPGPU batch process-
ing model. Our method is based on the principle of L1
median contraction as proposed by Huang et al. [6]. The
L1 median calculation from a set of vertices is a data in-
dependent task well suited for the GPU. In addition to
the L1 median, the paper introduces a regularization con-
straint for maintaining the correct layout of skeleton ver-
tices during energy minimization. The regularization con-
straint requires moderate amounts of data exchange be-
tween threads during computation which had to be re-
moved in order to conform to the GPGPU scheme. To
compensate for the introduced changes in the L1 contrac-
tion phase and to increase the precision of the result we
first perform a medial surface extraction with the shrink-
ing spheres method as proposed by Ma et al. [11]. This
method, albeit expensive on the CPU, is well suited for
the parallel computation model as all processed elements
are data independent. The medial surface serves as an ap-
proximation of the curve skeleton for the L1 phase. Af-
ter the L1 contraction, a skeleton reconstruction phase is
performed with a recursive method as proposed by Lee et
al. [8]. The skeleton is reconstructed with a principal com-
ponent analysis (PCA) measure along the regression line
that passes trough the local area of skeleton vertices.

The proposed algorithm requires the mesh vertex posi-
tions and normal vectors as input and produces a list of
skeleton vertex positions with an adjacency list to indicate
connections between skeleton vertices. We demonstrate
our method on example meshes and provide a table of ex-
traction times for individual phases.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

Input
mesh

Medial
surface

Sample
vertices

Skeleton
vertices

Skeleton
graph

Curve
skeleton

mesh.obj

Vertex
sampling

L1 Contraction

skel.out

Medial
surface

extraction

Post
processing
operations

Skeleton
reconstruction

Load
File

GPU

CPU

Figure 1: Skeletonization pipeline, phases colored green
are performed on the GPU, phases colored blue are per-
formed on the CPU

2 Background

GPU-Based approaches As stated in Section 1, not
many skeletonization algorithms were proposed for the
GPGPU platform. A recent method by Baldacci et al. [3]
relies on the shape diameter function as defined by Shapira
et al. [13]. This method uses ray-tracing for determin-
ing the local breadth of a mesh for each sampled vertex.
Ray tracing is performed in a cone shape centered at each
mesh vertex along the inner normal vectors of said ver-
tices. This is done in parallel, for no dependencies exist
between rays. The algorithm looks for intersections of
rays with the ”other side” of the mesh. Local breadth is
calculated as the weighted average of ray lengths based on
the angle between incoming rays and intersected triangu-
lar faces of the mesh. A skeleton vertex is obtained as a
point halfway along the line defined by the inner normal
and calculated mesh breadth.

A different parallel approach proposed by Jalba et al. [7]
applies a pipeline of transformations with gradual conver-
gence to the final skeleton. First the medial surface is ex-
tracted and then a curve skeleton is found using SSG -
shortest straightest geodesics. During medial surface ex-
traction, the flux of vertices is recorded. The curve skele-
ton is extracted based on the border lines between areas of
flux with different directions. We adopted this pipeline ap-
proach, for it is a natural fit for the GPU computing model.

Medial surface extraction The medial surface is a two
dimensional manifold that arises from the set of centers
of maximally inscribed spheres in a 3D mesh [4], and is
the 3D equivalent of the medial axis. As opposed to the
curve skeleton, the medial axis represents the true compact
representation of a 3D mesh, from which the mesh can
be fully reconstructed. Obtaining the medial surface in a

parallel environment is a relatively straightforward task. A
solution exploiting topological thinning was proposed by
Palagyi et al. [12]. This method uses mesh voxelization
and iterative thinning. The surface skeleton is obtained
by the removal of voxels in layers until a stop condition
is met. A significant disadvantage of the method is the
production of holes in the resulting medial surface. Holes
and cavities in the result surface skeleton are created when
the stop condition is not met in time.

An analytic method based on iterative contraction was
proposed by Ma et al.[11] which we adopt and explain in
Section 3.

Mesh contraction Many state of the art methods utilize
a energy minimization principle which results in the con-
traction of a 3D mesh to a thin shape resembling the curve
skeleton [2, 6, 9]. The curve skeleton reconstruction is per-
formed during or after the contraction phase. These meth-
ods prove to be resilient against surface noise and produce
a robust skeleton with well preserved homotopy.

The method proposed by Au et al. [2] utilizes iterative
contraction based on the mesh Laplacian. Vertices are con-
tracted by balancing contraction and attraction constraints
to achieve a well distributed thin shape. After contrac-
tion, a connective surgery step is performed in which the
contracted mesh edges are decimated to a 1D shape - the
curve skeleton. The contraction process relies on solving
a over-determined system of linear equations with a least
squares method. While there are library facilities which
implement the solution of such systems on the GPU, the
main disadvantage of said method is the numerical insta-
bility and the need for connectivity information between
mesh vertices.

The method proposed by Huang et al. [6] exploits the L1
geometric median and is the foundation of our approach.
We address the details in Section 3. A modified method
proposed by Li et al. [9] uses the local optimal projection
(LOP) operator to achieve a higher quality skeleton. This
method relies on the medial surface of the mesh. First
the medial surface is extracted and then marker points are
spread throughout the medial surface with the LOP opera-
tor. The LOP ensures an uniform distribution of marker
points on the medial surface by mutual repulsion. The
curve skeleton is then extracted by contracting the marker
points with the L1 median method. The uniformity of the
marker points ensures a higher quality skeleton.

3 Overview

The input of our pipeline is a set of mesh vertices and their
respective normal vectors M = {pi,npi}, i ∈ I. The output
of the pipeline is a skeleton represented as a graph X =
{V,E}, where V is the set of skeleton vertices and E is a
set of skeleton edges.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

Medial surface The first step in our pipeline performs
the medial surface extraction Mmed = {ci}, i ∈ I. We adopt
the technique of shrinking spheres proposed by Ma et
al. [11]. The algorithm searches for the best approxima-
tion of the centers c of a maximally inscribed medial balls
B = (c,ρ) with radius ρ for each point p ∈M. If we as-
sume that B intersects M at p and that B is tangent to p
then c lies on the line defined by np. A sphere is uniquely
defined by two points, therefore our goal is to find a sec-
ond point p̃ ∈ M, p 6= p̃ which is equidistant from c with
respect to p. c is found iteratively. We present a high level
overview of the algorithm.

For each p ∈M in parallel do i ∈ {1,2, ...,k} iterations
of center point approximations. In each iteration

1. Select a random point p̃0 ∈M, p 6= p̃0,

2. Calculate ρ0 of the medial ball B0 defined by p, np
and p̃0,

3. Calculate c0
p = p−np ∗ρ0,

4. If abs(|ci
p p|− |ci

p p̃|)< ε1, then exit,

5. Find a new p̃i ∈M, p̃i 6= p as the closest neighbor to
the current approximation of the best center point ci

p,

6. Calculate ρ i+1 of the medial ball Bi+1 defined by p,
np and p̃i,

7. Calculate ci+1
p = p−np ∗ρ i+1,

8. Go to 4.

The new radius is calculated as ρ i+1 = d(p,p̃i)
2cosθ i

p
, where d is

the euclidean distance, θ is the smaller angle between np
and the vector p̃i p [11]. Next we address the introduced
modifications to the algorithm.

We perform a brute force approach to finding p̃i - the
closest neighbor of c in a ”carousel” memory access pat-
tern. Each thread i performs I checks of distances between
ci and c(i+a) mod I in a cycle with a ∈ {1,2, ..., I} as the it-
eration variable. This avoids memory access divergence,
for in any given time, all lanes in the memory bus are in
use. The brute force approach is acceptable on GPU im-
plementations as suggested by Li et al. [10].

As opposed to the approach by Ma et al. [11], we per-
form the iterative contraction exclusively on the GPU.
A thread which finds its c stops and waits for the other
threads in the group to finish. The original method uti-
lized medial center convergence checking between itera-
tions on the CPU. We deemed this approach to have sig-
nificant overhead due to buffer copying between the CPU/
GPU memory and repetitive kernel calls with each itera-
tion. Our approach might introduce some warp divergence
after some medial centers have been found, but we con-
sider this a smaller penalty compared to the overhead of
repetitive data copying.

1ε accounts for floating point errors

p

ci+1

ci

np

npg

npr

pg

pr
d1

d2

Figure 2: The shrinking spheres algorithm is augmented
with the ν coefficient, this ensures a better input for the
next phase.

(a) Without applied ν

(b) With applied ν =−0.8

Figure 3: The ν coefficient causes the contracted medial
surface to be more compact.

We contribute to the original approach by introducing a
coefficient ν ∈ 〈−1,0), which produces a better input for
the L1 stage. During the nearest neighbor search, the dot
product between vertex normal vectors ndot = np · n p̃i is
calculated. Each vertex p whose ndot is above the thresh-
old given by ν is disqualified from this iteration of nearest
neighbor search. Therefore the new p̃i is guaranteed to lie
on the ”opposite side” of the input mesh, putting the center
point c approximately halfway in between p and p̃i. The
result is a 2D manifold slightly more contracted than the
real medial surface. This property is useful, as it brings
the input for the next phase of the algorithm closer to the
curve skeleton. The principle is demonstrated in Figure 2,
where despite pr being closer to ci (d1 < d2), pg is chosen
instead and the new center ci+1 is recalculated accordingly.
The improved result after medial surface extraction can be
seen in Figure 3. Figure 3b is more contracted as opposed
to Figure 3a.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

Vertex sampling The next step in the pipeline involves
vertex sampling from Mmed with a uniform stochastic
method. A random number r ∈ 〈0,1〉 is generated for
each vertex in Mmed (in parallel). If r is smaller than a
given sample vertex selection probability R ∈ 〈0,1〉, e.g.
r < R, then the vertex is marked as selected. The selected
vertices are then compressed to a new set of input ver-
tices Msampl = {x j}, j ∈ J with parallel reduction primi-
tives (prefix sum and map). We chose a 5% sampling rate
(R = 0.05). The parallel random number generator utilizes
a seed value to make the sampling deterministic.

L1 Contraction The sampled vertices Msampl are now
contracted to a thin shape with reference to Mmed based
on minimization of:

X = argmin
x

J

∑
j=1

I

∑
i=1

(||x j− ci||θ(||x j− ci||))+R(X) (1)

as proposed by Huang et al. [6] for each sampled vertex.
The minimization is done with:

xk+1
j =

∑i∈I ciα
k
i j

∑i∈I αk
i j

+µσ
k
j

∑ j′∈J\{ j}(xk
j− xk

j′)β
k
j j′

∑ j′∈J\{ j}β k
j j′

(2)

α
k
i j =

θ(||xk
j− ci||)

||xk
j− ci||

;β
k
j j′ =

θ(||xk
j− xk

j′ ||)
||xk

j− xk
j′ ||2

, j′ ∈ J\{ j}

The vertices in Mmed are fixed in place. The first term
of Equation 1 ||x j−ci||θ(||x j−ci||) is responsible for cal-
culating and minimizing the weighted sum of euclidean
distances to the closest neighbors in Mmed for each sam-
pling vertex in Msampl . The distances are weighted with
a fast decaying smooth function θ = e−(x/(h/2))2

where h
is the neighborhood support radius. h is initially set to
h0 = 2dbb/

3
√

I with dbb being the length of the bounding
box cross diagonal of Mmed . h is gradually increased be-
tween iterations based on h = h+ h0

2 . The second term, the
regularization constraint R(X), involves the calculation of
σ . σ is a weighted PCA conformity measure to assure
an even vertex distribution along local skeleton branches
during contraction. R(X) causes the contracted vertices
to repel each other along the dominant PCA directions of
forming branches. This direction is given as the dominant
eigenvector of a weighted covariance matrix from the lo-
cal neighborhood of sample vertices in Msampl . The repul-
sion strength is regulated with µ and is set by default to
µ = 0.35 [6].

Calculating the first term is trivial to parallelize. Each
thread performs the weighted distance calculation for one
vertex in Msampl . A problem arises with the calculation
of R(X). The calculation of σ requires the current posi-
tions of vertices in Msampl . This introduces a data depen-
dency problem. We solved this issue by partitioning the

algorithm to iterations and performing global synchroniza-
tion between them. To avoid data copying, we employed
a double-buffering approach with buffer pointer swapping
so only the overhead of kernel calls is in effect.

A second, more pressing, issue we encountered was a
gradual skeleton reconstruction step between iterations.
This step involves marking the contracted vertices with
flags to halt their further contraction and recursive skele-
ton branch construction. Initially a smoothed σ measure is
calculated for each vertex by averaging the σ of k-nearest
neighbors. Vertices with the smoothed σ above a threshold
are considered as candidates for skeleton branch vertices.
Branches are then recursively built from said candidates
along dominant PCA directions, discarding stray branches
and non-candidates. Branch vertices become fixed in place
and are no further contracted [6]. A troubling matter with
this approach is the recursion. Stacked traversal and re-
cursive function calls are not GPU friendly and therefore
we had to discard the intermediate skeletonization and the
stop condition. Instead we opted for a fixed number of
L1 contraction iterations and separated the skeleton re-
construction to a new phase. This introduced the problem
of unbounded neighbor radius growth which causes over-
contraction of certain input parts and the loss of fine details
of a skeleton. We solved this issue partially by a small,
fixed number of contraction iterations. We estimated 5 it-
erations to be sufficient for most inputs.

Skeleton reconstruction We propose a custom skeleton
reconstruction and down sampling method from the con-
tracted vertices in Msampl based on approaches by Huang
et al. [6] and Lee et al. [8]. We perform the skeleton re-
construction on the CPU.

The reconstruction begins with assigning a flag to each
vertex in Msampl , which determines the status of a vertex.
The possible flags are:

• Branch vertex: a vertex that is part of the final skele-
ton.

• Non-branch vertex: a candidate for becoming a
branch vertex.

• Invalid vertex: a vertex that is not part of any branch
and is ignored.

At the start, all vertices are labeled as non-branch vertices.
The algorithm begins by examining a non-branch vertex
(colored green in Figure 4). This vertex serves as a seed
point for a new skeleton branch. A recursive depth-first
traversal is performed. The skeleton is reconstructed along
the regression curve, which is determined by the dominant
eigenvector of the localized covariance matrix as proposed
by Lee et al. [8]. This eigenvector determines the forward
and backward direction of traversal as seen in Figure 4.
The algorithm searches for the farthest point (colored red
and blue in Figure 4) from the currently processed ver-
tex in each hemisphere of the sphere defined by the local

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

search radius hr. Only non-branch or branch points are
considered as valid neighbors. We propose hr to be calcu-
lated as hr = dbb/

√
I similarly as in the L1 phase. After

the search is finished and at least one farthest neighbor
is found, all vertices in the local area are marked as in-
valid, the processed vertex is marked as branch vertex and
the algorithm is recursively applied to the farthest found
neighbors (if said neighbor is a non-branch vertex). If no
neighbors are found, the search terminates and the algo-
rithm starts a new branch from an unprocessed non-branch
vertex. This is done until only branch vertices or invalid
vertices remain.

Figure 4: Hemispheres defined by the dominant eigenvec-
tor

The recursive reconstruction produces a set of discon-
nected skeleton branches which need to be connected. We
treat these components as nodes in a complete graph where
edges are weighted by the shortest possible distance be-
tween all component pairs. The edge weights incorpo-
rate the closets pair of vertices each belonging to their re-
spective component. Next, the components are connected
with Kruskal’s algorithm for finding the minimum span-
ning tree thus creating the curve skeleton.

Post processing The final stage of the pipeline involves
post processing of the extracted curve skeleton for fur-
ther improvements. Currently no operations are done in
the post processing stage. A skeleton re-centering step is
planned to be added soon.

4 Results

We tested our implementation on meshes with different in-
put sizes and measured the execution times which we sum-
marized in Table 1. The column ”Total” shows the sum of
execution times of individual phases of our pipeline. We
provide an overview of our skeletonization process in Fig-
ure 5 where the output from individual stages in the skele-
tonization pipeline is displayed. The hardware used during
tests is shown in Table 2. Our tests were performed with
ν =−0.8. The unbound contraction radius makes it diffi-
cult to produce an exact curve skeleton with our method,
therefore we prioritize the speed of extraction.

Extraction times Our algorithm provides a significant
improvement of skeleton extraction time which is in the
range of milliseconds up to a few seconds. We tested
the approach proposed by Huang et al. [6] by perform-
ing skeletonization on the hardware listed in Table 2 with
an executable from the authors of said article. This ex-
ecutable is accessible from the page [1]. The results are
shown in the column ”L1 reference implementation” of
Table 1. The original CPU based approach performs in
the range tens of seconds up to minutes. The skeletons
extracted with this executable are shown in Figure 6.

(a) Human

(b) Armadillo

(c) Pig

(d) Dog

Figure 5: Our proposed skeletonization pipeline (Medial
surface, L1 contracted vertices, Curve skeleton) for vari-
ous meshes

Produced skeleton quality We now evaluate our skele-
tons based on the criteria for skeleton quality evaluation
as proposed by Cornea et al. [5]. Our skeletons show good

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

Mesh Vertex Medial Vertex L1 Skeleton Total L1 reference
count surface sampling Contraction reconstruction implementation

Suzanne 7 830 16 ms <1 ms <1 ms <1 ms 16 ms 11 311 ms
Frog 17 484 156 ms <1 ms <1 ms 1 ms 157 ms 15 547 ms
Dog 18 114 150 ms <1 ms <1 ms 1 ms 151 ms 12 306 ms
Pig 20 098 146 ms <1 ms <1 ms 1 ms 147 ms 19 659 ms

Plant 22 570 257 ms <1 ms <1 ms <1 ms 257 ms 8 303 ms
Human 24 461 170 ms <1 ms <1 ms 1 ms 171 ms 9 569 ms

Armadillo 34 594 418 ms <1 ms <1 ms 3 ms 421 ms 35 311 ms
Bunny 34 817 510 ms <1 ms <1 ms 5 ms 515 ms 60 360 ms
Hand 66 848 824 ms <1 ms <1 ms 8 ms 832 ms 142 425 ms
Horse 120 660 2 169 ms 1 ms <1 ms 12 ms 2 182 ms 134 400 ms

Motherhood 202 690 9 684 ms 1 ms <1 ms 91 ms 9 776 ms 563 590 ms

Table 1: Algorithm execution times for various meshes

(a) Human (b) Armadillo

(c) Pig (d) Dog

Figure 6: Skeletons extracted with the provided executable
based on the approach proposed by Huang et al. [6]

qualities in homotopy, thinness, robustness and connec-
tivity. Our skeletons are fully connected, as opposed to
the reference implementation with well formed branches
in all input meshes. The medial surface extraction step
helps achieve moderate centeredness, but an additional re-
centering step is required. Due to the reconstruction step,
the produced skeletons are not completely smooth. Our
approach should perform well under isometric transfor-
mations of the input, however our process of skeletoniza-
tion is data-destructive and does not provide the recon-
structability property.

HW Notebook MSI GS63VR RF7
CPU Intel i7-7700 HQ, 2.8GHz, quad core
RAM 16GB 2400MHz
GPU Nvidia GTX 1060 6GB, Pascal
OS Win 10 Home
CUDA 10.2

Table 2: Hardware used for testing

Shortcomings of our approach Our approach has its
shortcomings with the unbound contraction radius growth
being the most pressing one. We were not capable to
eliminate this effect due to the limitations in the GPGPU
computation model. This makes our algorithm semi-
automatic, as it requires the user to specify a fixed number
of iterations for the L1 contraction method based on their
satisfaction with the resulting skeleton.

We encountered a second problem which is that the par-
allel vertex sampling is biased due to differences in the
input medial surface density. We mitigate this effect by in-
troducing a relaxed contraction constraint to the L1 phase
as proposed by Huang et al. [6]. This constraint relies on
weighting the input medial surface vertices based on den-
sity and is shown in:

di = 1+ ∑
i′∈I {i}

θ(||ci− ci′ ||)

xk+1
j =

∑i∈I ciα
k
i j/di

∑i∈I αk
i j/di

+µσ
k
j

∑ j′∈J\{ j}(xk
j− xk

j′)β
k
j j′

∑ j′∈J\{ j}β k
j j′

(3)

The density weight is then incorporated to the contraction,
so denser regions have a more relaxed contraction speed
than sparser regions.

5 Conclusion

In this paper we presented a hybrid approach for fast curve
skeleton extraction from 3D meshes and point clouds built
on the GPGPU platform. Our method combines reliable

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

algorithms from the state of the art domain and introduces
modifications which improve said algorithms and adapt
them for a GPGPU environment. We demonstrated the
capability of our implementation to run in near-real time
with satisfying results.

In the future we would like to improve the overall short-
comings of our algorithm and apply enhancements to fur-
ther increase the quality of our results.

References

[1] L1 skeleton extraction reference implementation -
author home page. http://shihaowu.net/.

[2] Oscar Kin-Chung Au, Chiew-Lan Tai, Hung-Kuo
Chu, Daniel Cohen-Or, and Tong-Yee Lee. Skele-
ton extraction by mesh contraction. In ACM transac-
tions on graphics (TOG), volume 27, page 44. ACM,
2008.

[3] Andrea Baldacci, Rastislav Kamenickỳ, Adam
Riečickỳ, Paolo Cignoni, Roman Ďurikovič, Roberto
Scopigno, and Martin Madaras. Gpu-based ap-
proaches for shape diameter function computation
and its applications focused on skeleton extraction.
Computers & Graphics, 59:151–159, 2016.

[4] Harry Blum et al. A transformation for extracting
new descriptors of shape. Models for the perception
of speech and visual form, 19(5):362–380, 1967.

[5] Nicu D Cornea, Deborah Silver, and Patrick Min.
Curve-skeleton properties, applications, and algo-
rithms. IEEE Transactions on Visualization & Com-
puter Graphics, (3):530–548, 2007.

[6] Hui Huang, Shihao Wu, Daniel Cohen-Or, Minglun
Gong, Hao Zhang, Guiqing Li, and Baoquan Chen.
L1-medial skeleton of point cloud. ACM Trans.
Graph., 32(4):65–1, 2013.

[7] Andrei C Jalba, Jacek Kustra, and Alexandru C
Telea. Surface and curve skeletonization of large 3d
models on the gpu. IEEE transactions on pattern
analysis and machine intelligence, 35(6):1495–1508,
2013.

[8] In-Kwon Lee. Curve reconstruction from unorga-
nized points. Computer aided geometric design,
17(2):161–177, 2000.

[9] Lei Li and Wencheng Wang. Improved use of lop
for curve skeleton extraction. In Computer Graph-
ics Forum, volume 37, pages 313–323. Wiley Online
Library, 2018.

[10] Shengren Li and Nina Amenta. Brute-force k-nearest
neighbors search on the gpu. In International Con-
ference on Similarity Search and Applications, pages
259–270. Springer, 2015.

[11] Jaehwan Ma, Sang Won Bae, and Sunghee Choi. 3d
medial axis point approximation using nearest neigh-
bors and the normal field. The Visual Computer,
28(1):7–19, 2012.

[12] Kálmán Palágyi and Attila Kuba. A parallel 3d 12-
subiteration thinning algorithm. Graphical Models
and Image Processing, 61(4):199–221, 1999.

[13] Lior Shapira, Ariel Shamir, and Daniel Cohen-Or.
Consistent mesh partitioning and skeletonisation us-
ing the shape diameter function. The Visual Com-
puter, 24(4):249, 2008.

[14] Andrea Tagliasacchi, Thomas Delame, Michela
Spagnuolo, Nina Amenta, and Alexandru Telea. 3d
skeletons: A state-of-the-art report. In Computer
Graphics Forum, volume 35, pages 573–597. Wiley
Online Library, 2016.

Proceedings of CESCG 2020: The 24th Central European Seminar on Computer Graphics (non-peer-reviewed)

