Suitability of chain codes for near-lossless cartoon image
compression

Aljaz Jeromel*
Supervised by: Borut Zalik!

University of Maribor
Faculty of Electrical Engineering and Computer Science
Maribor / Slovenia

Abstract

The suitability of different chain codes for compression of
cartoon images is considered in this paper. Cartoon images
differ importantly from other raster images, as they are
produced by a human and not captured by a camera. They
are characterised by large regions of pixels with the same
colour, and, consequently, the number of visually distinct
colours is very low. Surprisingly, only a few methods have
been proposed for compressing cartoon images.

In this paper, we estimate the suitability of known chain
codes for region representation, including Freeman Chain
Code in Four and Eight Directions (F4, F8), Vertex Chain
Code (VCC), Three-Orthogonal Chain Code (30T), and a
new variation of the VCC, Modified Vertex Chain Code
(M_VCCQ). An evaluation was done of the compression ef-
ficiency.

Keywords: Cartoon images, Image compression, Chain
codes, String transformations

1 Introduction

Data compression is one of the oldest topics in Computer
Science. By removing redundancies in data, less data are
needed to be maintained. However, different kinds of data
(e.g. text, images, video) have different properties, and,
because of that, each can be compressed the most effi-
ciently only by specialised data compressors. Further-
more, different specimens of the same kind of data may
differ substantially, and may not be suitable for compres-
sion using the same approach. For example, according
to Salomon and Motta [1], images are divided into five
categories: Bi-level images, grayscale images, continuous
tone images, which are typically obtained from a cam-
era, discrete tone images, which are usually created by a
computer and contain distinct borders between regions of
different colours, and cartoon images, which are similar
to the discrete tone images, but differ from them by even
more evident borders between the different colours and a

*aljaz.jeromel @um.si
Tborut.zalik @um.si

very low amount of colours used. An example of a cartoon
image is shown in Figure 1.

Figure 1: Cartoon image

In a recent article [2], an efficient method for compress-
ing the cartoon images was proposed. The method takes
advantage of the low number of visually distinct regions in
a cartoon image by segmenting it and encoding the border
of each region using the chain code. This paper considers
the efficiency of representing the regions’ borders in re-
gard to the different chain codes, including Freeman Chain
Code in Four and Eight Directions (F4, F8), Vertex Chain
Code (VCC), Three-Orthogonal Chain Code (30T), and a
new variation of the VCC, Modified Vertex Chain Code,
M_VCC.

This paper is structured as follows. The related work in
cartoon image compression is presented in Section 2. In
Section 3, the most frequently used chain codes are pre-
sented, together with the new variation of VCC. The re-
sults are given in Section 4, and the conclusions are pre-
sented in Section 5.

2 Related work

Despite that Image Compression is a very well-
investigated field, most of the research has been done on
continuous tone images, as they are the most common of
the aforementioned five types of images. Only a few tech-
niques specialised in cartoon images have been developed,
and only two of them use chain codes for compression.
The research in this field began in 2006, when Tsai et
al. developed a cartoon image compression method utilis-
ing the quad-tree [3], where the colour palette is limited to
256 colours. Thus, dithering is applied to the image if it

Proceedings of CESCG 2020: The 24" Central European Seminar on Computer Graphics (non-peer-reviewed)

contains more colours, which allows its compression effi-
ciency to be slightly higher. After determining the colour
palette, the image is divided into blocks of 32 x 32 pix-
els, which are then represented using the quad-tree. The
output file is compressed additionally with the LZW algo-
rithm [1].

In 2009, Zhe-Lin et al. proposed another method
for compressing cartoon images, named RS-LZ, that em-
ployed simple segmentation to extract regions of uniform
colour [4]. Such regions were described using F8. The
leftover pixels are encoded using their RGB colour val-
ues, and the resulting data stream is processed with a ZIP
encoder [1]. The main disadvantage of this method is the
combination of F8 chain code and the process of determin-
ing which pixels belong to the solid region. For a pixel to
be assigned to a region, it has to be of the same colour
as all of its eight neighbours, resulting in some pixels be-
ing classified wrongly as leftovers and encoded separately.
This, unfortunately, lowers the compression efficiency.

An important contribution was made by Taylor in 2011
[5]. He proposed the breadth-first search using a colour
tolerance to identify the regions of uniform colour, while
simultaneously removing some of the possible noise. The
noise could be the consequence of edge smoothing, or pre-
vious lossy compression with, for example, JPEG. In the
next step, regions containing a very low amount of pix-
els are merged with larger regions, to reduce noise further
and improve the efficiency of the compression. Regions
are then encoded using the position of the first pixel en-
countered in the raster scan order, the width and height of
the region, its colour, and the pixel bit mask. The latter
is encoded with Run-Length Encoding (RLE). At the end,
the output stream is encoded additionally with Huffman
coding [1].

The latest developed method, which forms the frame-
work for this work, is the Chain Code Cartoon Compres-
sion algorithm (4C) [2]. The algorithm consists of four
steps. In the first step, the image is partitioned into regions
of uniform colour using the breadth-first search, similar
to Taylor’s suggestion [5]. Too small regions are merged
with their most similar neighbours. In the third step, the
chain codes of all regions are determined, and concate-
nated to improve the compression efficiency [6]. In the
final step, the chain codes are transformed using the string
transformation algorithms, the Burrows-Wheeler Trans-
form (BWT) [7], Move-To-Front transform (MTF) [1],
and Run-Length Encoding (RLE) [1], and written to the
output stream, along with the image metadata. Optionally,
the output stream can be compressed additionally by a bi-
nary arithmetic coder, e.g. PAQS8L [8]. Because of the
colour tolerance in the first step, and the region merging in
the second, the 4C algorithm is lossy. However, by setting
the parameters in the aforementioned steps adequately, the
difference between the source and the compressed image
can hardly be distinguished. An example is shown in Fig-
ure 2.

The deformity of the images was tested using the Struc-

Figure 2: Original cartoon image (left) and image com-
pressed with the 4C algorithm (right)

tural Similarity Index (SSIM) [9] and Peak signal to noise
ratio [1]. The Table containing the SSIM and PSNR results
for the test images is available in the article presenting the
4C algorithm [2].

3 Chain codes

The most popular chain codes are presented in this Sec-
tion. The idea of using simple instructions for represent-
ing the boundary of the rasterized object is very old, and
was proposed by Freeman in 1961 [10]. He proposed two
chain codes to represent the boundary pixels, the eight-
directional F8 and the four-directional F4. Since then,
some other chain codes have been developed. In 1999,
Bribiesca proposed the Vertex Chain Code, VCC, which
consists of only three symbols [11]. Another chain code
popular in data compression is the 30T chain code, pro-
posed in 2005 by Sanchez-Cruz et. al [12], which also
contains only three symbols.

Though very efficient at representing the contour of an
object, most chain codes allow pixels of the same object
to be connected in four directions only. It is more effi-
cient, however, to allow pixels to be connected in eight
directions, which is allowed by, for example, the F8 chain
code. Since more data than just chain code are needed to
reconstruct a region, having a lower number of regions re-
sults in better compression. Therefore, a chain code which
can represent diagonally connected components should be
more efficient at compressing cartoon images. The only
popular chain code that is able to represent the diagonally
connected components is F8, but its downside is the num-
ber of symbols, i.e. F8 consists of eight different symbols,
which means that each symbol is encoded with three bits.
Thus, a new chain code, based on VCC, is proposed, which
can also represent the diagonally connected components.
The chain codes compared in this paper are described in
more detail in the following Subsections.

3.1 Freeman Chain Code in Four Directions

The first considered chain code is F4. It consists of
four symbols, which represent the direction of movement
which are shown in Figure 3.

With this chain code, the contour of an object is tracked
by moving from pixel to pixel, or by tracking the edges

Proceedings of CESCG 2020: The 24" Central European Seminar on Computer Graphics (non-peer-reviewed)

0

_—

1

|

2

-

3

|

Figure 3: Symbols of the F4 chain code

of border pixels. An example of encoding a shape by
the F4 chain code, while moving in the clockwise di-
rection, is shown in Figure 4. Starting from the top-
most pixel (the starting vertex marked in red), the code
is 0303303222112101.

0
1 3
0 0
1 3
2 3
1 0
1 3
2 2 2

Figure 4: An example of encoding a shape using the F4
chain code

3.2 Freeman Chain Code in Eight Directions

Tracking the contour of the object using the F8 chain code
is done by moving along the bordering pixels in contrast to
moving along pixels’ edges. The symbols of the F8 chain
code are shown in Figure 5.

0 1 2 3
4 5 6 7

Figure 5: Symbols of the F8 chain code

An example of tracking the contour of an object with the
F8 chain code while moving clockwise is shown in Figure
6. Starting from the topmost pixel (marked in red), the
code is 76744231.

3.3 Vertex Chain Code

The Vertex Chain Code, VCC, was designed by Bribiesca
in 1999 [11]. To determine the Vertex Chain Code rep-
resentation of a shape, the algorithm tracks its border by
moving from one of the pixel’s corners (vertex) to the next.

Figure 6: An example of encoding a shape using the F8
chain code

The chain code contains only three symbols, which repre-
sent the number of neighbouring pixels belonging to the
shape, as shown in Figure 7.

Figure 7: Symbols of the VCC

Because of the low number of different symbols, VCC
is suitable for data compression. An example of encod-
ing the contour of an object with VCC is shown in Figure
8. Reading the chain code clockwise from the topmost
pixel (the starting vertex is marked in red) yields the code
1131231122123113.

1 1

1 3 3 1

1 3 2
2 3 1
1 2 2 1

Figure 8: An example of encoding an object with VCC

3.4 Three-Orthogonal Chain Code

Designed in 2005 by Sanchez-Cruz et. al, the 30T chain
code is one of the newest of the popular chain codes [12].
The same as with VCC, it consists of only three symbols,
which makes it very suitable for compression. To encode
a shape with the 30T chain code, the contour is tracked by
the edges of the bordering pixels. The track of two direc-
tions must be kept; the current and the previous direction.
The symbol 0 is output when there is no change to the cur-
rent direction. The symbol 1 is generated, when the cur-
rent direction changes and becomes equal to the previous

Proceedings of CESCG 2020: The 24" Central European Seminar on Computer Graphics (non-peer-reviewed)

direction, and the symbol 2 is issued when the current di-
rection changes and becomes the opposite of the previous
direction. The symbols of the 30T chain code are shown
in Figure 9, and an example is shown in Figure 10. The
encoding is done in the clockwise direction, and the 30T
code starting in the topmost pixel is 1211011200201121.

For better clarification on how the 30T chain code
works, certain pixel edges are marked in Figure 10. The
encoding begins at the vertex, marked with the red dot.
As the encoding is started at the top left vertex, the previ-
ous direction can be set to 'up’. Tracking the contour in
the clockwise direction, we move right using edge A, and
set the current direction to ’right’. The edge A cannot be
encoded yet, as only two directions are known. Next, the
edge B is tracked in the downward direction. The edge can
be encoded as both the current and the previous direction
are set. As the direction over edge B is different from the
current direction, it is then compared to the previous di-
rection. As they are opposite, the edge B is encoded with
symbol ’2’, the previous direction is set to 'right’, and the
current direction is set to ’"down’. Next, the edge C is en-
coded. The direction over C is 'right’, which is not equal
to the current direction ("down’). However, it is equal to
the previous direction, so C is encoded using symbol ’1°,
the previous direction is set to ’"down’, and the current di-
rection is set to 'right’. The next edge is D, and the di-
rection over it is ’down’, which is equal to the previous
direction, so again, the symbol ’1’ is output, the previous
direction is set to 'right’, and the current direction is set to
’down’. Next, the edge E is encoded. The direction over
it is ’down’, which is the same as the current direction.
Therefore, the symbol "0’ is output. However, in this case,
the current and the previous directions are not updated.
The rest of the object is then encoded following the same
procedure. In the end, the code for the edge A is inserted
at the beginning of the chain code.

0 1 2

—_—

_— —

Figure 9: Symbols of the 30T chain code

3.5 Modified Vertex Chain Code

When compressing cartoon images by means of segmenta-
tion, it cannot be guaranteed that pixels of the same colour
are not connected diagonally. Objects where bordering
pixels are connected diagonally cannot be represented by
most of the traditional chain codes without breaking them
into multiple parts. To represent such an object with, for
example, VCC, the object has to be divided into compo-
nents that have pixels connected in four directions only.
This, however, means more metadata need to be encoded.
Therefore, it is desirable to represent such shapes with a

A
1 2
2 Bll~ 4
C
1 bll1
1
0 B0y
2 1
0 -0 2

Figure 10: Sample encoding of an object with the 30T
chain code

single chain.

The only chain code that could represent such a shape
without breaking it into two or more parts, is F8. There-
fore, a new chain code based on the Vertex Chain Code
is proposed in the paper. The difference between the new
chain code, Modified Vertex Chain Code (M_VCC), and
the original VCC is the behaviour when diagonally con-
nected pixels are encountered. In that case, the symbol ’3’
is output instead of 1’. An example of this is shown in
Figure 11. An example of a different number of regions to
encode when using M_VCC and VCC is shown in Figure
12.

VCC M_VCC

Figure 11: The difference between VCC and M_VCC:
When encoding the vertex between two diagonally con-
nected pixels, symbol ’3’ is output instead of symbol 1’

Encoding diagonally connected parts of the region with
a single chain code allows us to reduce the size of the
compressed file, as less starting coordinates need to be en-
coded to reconstruct the chain codes. An example of the

M_vCC VCC

Figure 12: The difference between the number of regions
when M_VCC and VCC are used.

Proceedings of CESCG 2020: The 24" Central European Seminar on Computer Graphics (non-peer-reviewed)

difference in encoding a diagonally connected object with
VCC and M_VCC is shown in Figure 13, where the en-
coding is done in the clockwise direction. The obtained
chain code strings are 121121 and 12121212 for VCC,
and 12112321212123 for M_VCC. The starting vertices
are marked with red and blue dots.

1 2 1 1 2 1
1 2 1 1 2 3

1 2 1 3 2 1
2 2 2 2
1 2 1 1 2 1

VCC - Total length: 14
Metadata: X1, Y1, X2, Y2

New chain code - Total length: 14
Metadata: X, Y

Figure 13: Comparison of VCC and M_VCC representa-
tion of a diagonally connected object

4 Results

The results of encoding the test images with the 4C al-
gorithm [2] using chain codes F4, F8, VCC, 30T, and
M_VCC, are presented in this Section. The images used
are the benchmark images for the 4C algorithm [2], which
are obtained from the Creative Commons image search,
and are free of copyright. They are shown in Figure 14.
The compression efficiencies of the tested chain codes are
given in Table 1, where the best result for each image is
marked in bold. The values are in bits per pixel (bpp) [1].
The compression ratios (ratio between the size of the com-
pressed file and the uncompressed file) [1] are given in Ta-
ble 2.

Table 1:
codes

Compression efficiencies for different chain

Image| F4 F8 VCC 30T M.VCC
bee |0.7296 0.0515 0.6957 0.7331 0.0402
dino | 0.8619 0.0460 0.8383 0.8622 0.0404

doctor |3.7795 0.1633 3.7271 3.7685 0.1584
racer [6.5949 0.1537 6.5236 6.5769 0.1488
tiger | 0.6983 0.0470 0.6636 0.6972 0.0410

turkey [1.0355 0.0709 0.9928 1.0291 0.0615

zebra | 0.8406 0.0602 0.7934 0.8426 0.0505

Average |2.0286 0.0811 1.9855 2.0247 0.0737

As seen, the chain codes capable of representing the di-
agonal pixel connectivity, F§ and M_VCC, outperform the
other chain codes by a significant margin. The reason for
that is their ability to represent multiple diagonally con-
nected regions as one. The metadata (coordinates, colour)
for only one of those regions needs to be, because of that,
encoded and stored in the compressed file. This lowers
the total compressed file size significantly. Between them,

(g) zebra

Figure 14: Test images

Table 2: Compression ratios for different chain codes

Image| F4 F8 VCC 30T M.VCC
bee | 0.0304 0.0021 0.0290 0.0305 0.0017
dino | 0.0359 0.0019 0.0349 0.0359 0.0017

doctor | 0.1573 0.0068 0.1551 0.1568 0.0066
racer | 0.2748 0.0064 0.2718 0.2740 0.0062
tiger | 0.0297 0.0020 0.0276 0.0290 0.0017

turkey | 0.1294 0.0089 0.1241 0.1286 0.0077

zebra | 0.0350 0.0025 0.0330 0.0351 0.0021

Average [0.0989 0.0044 0.0965 0.0986 0.0040

M_VCC proved to be more efficient in every test case, due
to its lower number of different symbols. Out of the less
efficient chain codes, the Vertex Chain Code, proved to be
somewhat more efficient at encoding cartoon images than
the 30T and the F4 chain codes.

Proceedings of CESCG 2020: The 24" Central European Seminar on Computer Graphics (non-peer-reviewed)

5 Conclusions

In this paper, the efficiency of different chain codes was
compared for compression of cartoon images with the 4C
algorithm. The chain codes considered are F4, F§, VCC
and 30T, as well as a new variation of the Vertex Chain
Code, M_VCC. Images were encoded most efficiently by
using the new chain code M_VCC, followed tightly by the
F8 chain code. The reason for that lies in the ability to
represent diagonally connected objects as one, as it re-
duces the amount of metadata that need to be encoded in
the compressed file.

References

[1] David Salomon and Giovanni Motta. Data Compres-
sion: The Complete Reference, 5th edition. Springer,
New York, 2010.

[2] Aljaz Jeromel and Borut Zalik. An efficient lossy
cartoon image compression method. Multimedia
Tools and Applications, 79:433-451, 2020.

[3] Yi-Chen Tsai, Ming-Sui Lee, Meiyin Shen, and C.-
C. Jay Kuo. A quad-tree decomposition approach
to cartoon image compression. In IEEE Workshop
on Multimedia Signal Processing, pages 456—460.
IEEE, 2006.

[4] Li Zhe-Lin, Xia Qin-Xiang, Jiang Li-Jun, and Wang
Shi-Zi. Full color cartoon image lossless com-
pression based on region segment. In 2009 World
Congress on Computer Science and Information En-
gineering, pages 545-548. IEEE, 2009.

[5] Ty Taylor. Compression of cartoon images. Master’s
thesis, Case Western Reserve University, 2011.

[6] Hiram H. Lépez Valdes, Hermilo Sanchez-Cruz, and
Magdalena C. Mascorro-Pantoja. Single chains to
represent groups of objects. Digital Signal Process-
ing, 51:73-81, 2016.

[7] Donald Adjeroh, Tim Bell, and Amar Mukherjee.
The Burrows-Wheeler Transform: Data Compres-
sion, Suffix Arrays, and Pattern Matching. Springer,
New York, 2008.

[8] Matt Mahoney. Data compression programs. Web
page. Available at: http://mattmahoney.net/dc/.

[9] Zhou Wang, Alan Conrad Bovik, Hamid Rahim
Sheikh, and Eero Simoncelli. Image quality assess-
ment: from error visibility to structural similarity.
IEEE Transactions on Image Processing, 13:600—
612, 2004.

[10] Herbert Freeman. On the encoding of arbitrary ge-
ometric configurations. IRE Transactions on Elec-
tronic Computers, 10:260-268, 1961.

[11] Ernesto Bribiesca. A new chain code. Pattern recog-
nition, 32:235-251, 1999.

[12] Hermilo Sanchez-Cruz and Ramon M. Rodriguez-
Dagnino. Compressing bi-level images by means of
a 3-bit chain code. SPIE Opticl Engineering, 44:1-8,
2005.

Proceedings of CESCG 2020: The 24" Central European Seminar on Computer Graphics (non-peer-reviewed)

