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Abstract

Medical imaging is an important tool for the diagnosis and
the evaluation of an aortic dissection (AD); a serious con-
dition of the aorta, which could lead to a life-threatening
aortic rupture. AD patients need life-long medical mon-
itoring of the aortic enlargement and of the disease pro-
gression, subsequent to the diagnosis of the aortic dis-
section. Since there is a lack of “healthy-dissected” im-
age pairs from medical studies, the application of inpaint-
ing techniques offers an alternative source for generating
them by doing a virtual regression from dissected aortae
to healthy aortae; an indirect way to study the origin of
the disease. The proposed inpainting tool combines a neu-
ral network, which was trained on the task of inpainting
aortic dissections, with an easy-to-use user interface. To
achieve this goal, the inpainting tool has been integrated
within the 3D medical image viewer of StudierFenster
(www.studierfenster.at). By designing the tool as a web
application, we simplify the usage of the neural network
and reduce the initial learning curve.

Keywords: Aortic Dissection, Inpainting, Web Applica-
tion, Medical Image Analysis, Cloud

1 Introduction

Since the emergence of deep learning networks for image
inpainting [9], the quality of inpainted images increased
remarkably over the course of the past few years. Driven
by this leap of quality, inpainting could be used in more
and more application areas to complete missing or masked
image regions. In particular, an uprising field of applica-
tion for inpainting is medical imaging. A related example
would be the removal of interfering artifacts on medical
images caused by dental fillings [14].

∗alexander.prutsch@student.tugraz.at
†antonio.pepe@tugraz.at
‡egger@icg.tugraz.at

In this work, we apply inpainting on medical images of
aortic dissection. An aortic dissection is characterized by
the formation of a second, false lumen in the aorta [8].
The separation of the aortic wall is caused by a tear on the
inside of the wall, which allows blood to enter the vascular
wall. Due to the dissection of the aortic wall into two parts
the structural stability is affected, which could lead to an
aortic rupture. Thus, an aortic dissection can evolve into
a life-threatening situation and patients usually require a
continuous monitoring following the diagnosis of aortic
dissection [8]. Medical imaging is important in relation
to aortic dissections; its diagnosis is usually based on the
interpretation of CTA images [8]. In Figure 1 a CTA scan
slice showing an aortic dissection can be seen.

To the best of our knowledge, there are no easily-
accessible CTA image pairs available from medical stud-
ies, which show a patient before and after the diagnosis
of aortic dissection. Previously, the deep learning model
EdgeConnect [9] was trained on inpainting of aortic dis-
sections. EdgeConnect is capable of performing image in-
painting using two adversarial models: the first one is used
to reconstruct the edges in the missing image regions; the
second one is used to complete the missing regions. By
executing the neural network, the process can remove the
presence of aortic dissection on a given CTA scan slice.
Thereby, the visual appearance of the aorta is changed to
that of a healthy aorta with a lower cross-sectional diame-
ter. Hence, it is possible to gather image pairs before and
with an aortic dissection by simulating the shape of the
aorta before the dissection. In future works, these image
pairs should help to understand how the shape of the aorta
changes and, furthermore, help provide parameters for a
more reliable risk assessment.

EdgeConnect, which is implemented in Python, offers
no user interface beside command line interaction. This
work describes the integration of the inpainting functional-
ity into a 3D image viewer hosted on a website. As a ben-
efit, the usage of the neural network is simplified and the
sparse user experience is enhanced. This website, called
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StudierFenster (http://studierfenster.tugraz.at/ ), offers dif-
ferent tools for medical image processing. As a result of
this work, it is now possible to use the inpainting tool with-
out any software installation directly in the browser. In
addition, this integration adds a convenient and simple to
understand user interface to the inpainting tool. The user
interface features a free-drawing brush for creating the oc-
clusion mask.

Figure 1: Chest CTA scan slice featuring an aortic dissec-
tion. The aorta can be recognized as a circular shape in
the center of the image (just above the spine). The aortic
dissection is visible as a dark line separating this circular
shape.

2 Related Work

A similar application of inpainting in the medical imaging
area is proposed by Elmahdy et al. [3]. In this method in-
painting is applied on missing regions of CT scans caused
by gas pockets in the colon before they are used for im-
age registration. Subsequently, theses images are used for
online adaptive proton therapy of prostate cancer.

Additionally, there are also several other web pages with
both scientific and commercial purposes, which also offer
inpainting functionalities. It should be noted that, to the
best of our knowledge, none of them has a focus on medi-
cal imaging. An example therefore would be a demonstra-
tion tool for DeepFillv2, which is is an generative image
inpainting system [13]. The application supports the cre-
ation of a custom mask, but the input image cannot be cho-
sen freely. It is randomly selected out of the CelebA-HQ
or places2 dataset as the back-end network is specifically
trained on these datasets [12]. Another example would be
a commercial showcase tool developed by NVIDIA Cor-
poration. Any image can be uploaded as input image and it
also offers a drawing tool for mask creation, which allows
the user to draw any arbitrary mask [2].

3 Software Components

In this section, we introduce the core software components
of the inpainting tool. These are StudierFenster, the web-

based 3D Viewer, and EdgeConnect, the neural network
used for image inpainting.

3.1 StudierFenster Website

Studierfenster is a web-based tool for medical visualiza-
tion developed by researchers from Graz University of
Technology and Medical University of Graz [11]. In ad-
dition to medical image visualization, the website offers
tools for data format conversion, image segmentation and
the calculation of image scores [10].

For the front-end, three standard technologies for
web development, HTML, JavaScript and CSS, are used
in combination with additional JavaScript libraries like
JQuery. The back-end is implemented in Python and the
core component is a Flask-based application. Flask is a
web framework, which means it is capable of handling the
communication between a web server and its clients. The
functionality of the Flask application is extended by addi-
tional back-end CGI modules implemented either in C++
or Python [11]. For instance, the tool introduced in this
paper embodies one of these modules.

3.2 Medical 3D Viewer

The Medical 3D Viewer on StudierFenster allows the user
to visualize medical 3D data and execute different opera-
tions on the volumetric data such as image labeling [11].
Furthermore, the inpainting tool here introduced is devel-
oped as extension to the Medical 3D Viewer. The Med-
ical 3D Viewer is based on Slice:Drop [6], an interactive
viewer for medical imaging data offered by Boston Chil-
dren’s Hospital and Harvard Medical School. Slice:Drop
works client-side only and utilizes the X toolkit (XTK) [5]
for rendering on top of HTML Canvas and WebGL. XTK
was also developed by the same team as Slice:Drop in or-
der to provide a lightweight tool for scientific visualisation
[5].

Figure 2: Current layout of the Medical 3D Viewer on the
StudierFenster website with activated inpainting tab in the
sidebar menu (on the left side).

Figure 2 shows the layout of the Medical 3D Viewer
on StudierFenster. The current configuration of the Med-
ical 3D Viewer features four views. Three of them are
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Figure 4: (Left to Right) Original image, input image, gen-
erated edges, inpainted results without any post-processing.

cent works [55, 54, 9] have shown that metrics based on
deep features are closer to those based on human percep-
tion. FID measures the Wasserstein-2 distance between the
feature space representations of real and inpainted images
using a pre-trained Inception-V3 model [44]. The results
over Places2 dataset are reported in Table 1. Note that these
statistics are based on the synthesized image which mostly
comprises of the ground truth image. Therefore our re-
ported FID values are lower than other generative models
reported in [31].

Figure 5 shows the performance of our model for various

Mask CA GLCIC PConv* Ours Canny

` 1
(%

)†

10-20% 2.41 2.66 1.14 1.50 1.16
20-30% 4.23 4.70 1.98 2.59 1.88
30-40% 6.15 6.78 3.02 3.77 2.60
40-50% 8.03 8.85 4.11 5.14 3.41
Fixed 4.37 4.12 - 3.86 2.22

SS
IM

?

10-20% 0.893 0.862 0.869 0.920 0.941
20-30% 0.815 0.771 0.777 0.861 0.902
30-40% 0.739 0.686 0.685 0.799 0.863
40-50% 0.662 0.603 0.589 0.731 0.821
Fixed 0.818 0.814 - 0.823 0.892

PS
N

R
?

10-20% 24.36 23.49 28.02 27.95 30.85
20-30% 21.19 20.45 24.90 24.92 28.35
30-40% 19.13 18.50 22.45 22.84 26.66
40-50% 17.75 17.17 20.86 21.16 25.20
Fixed 20.65 21.34 - 21.75 26.52

FI
D
†

10-20% 6.16 11.84 - 2.32 2.25
20-30% 14.17 25.11 - 4.91 3.42
30-40% 24.16 39.88 - 8.91 4.87
40-50% 35.78 54.30 - 14.98 7.13
Fixed 8.31 8.42 - 8.16 3.24

Table 1: Quantitative results over Places2 with models:
Contextual Attention (CA) [53], Globally and Locally Con-
sistent Image Completion (GLCIC) [22], Partial Convolu-
tion (PConv) [28], G1 and G2 (Ours), G2 only with Canny
edges (Canny). The best result of each row is boldfaced ex-
cept for Canny. *Values taken from the paper [28]. †Lower
is better. ?Higher is better.
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Figure 5: Effect of mask sizes on PSNR and FID. (Places2)

mask sizes. Statistics for competing techniques are obtained
using their respective pre-trained weights, where available3

4. Results for Partial Convolution (PConv) [28] are taken
from their paper as the source code is not available at the
time of writing. Note that `1 (%) errors for PConv are lower
than those achieved by our method and those reported in
CA [53] and GLCIC [22]. While we are not sure why this
is so, we suspect PConv is computing this score differently
than how we compute it. Our statistics are calculated over
10, 000 random images in the test set.

3https://github.com/JiahuiYu/generative_inpainting
4https://github.com/satoshiiizuka/siggraph2017_

inpainting

6

Figure 3: An example for the inpainting process using EdgeConnect. From left to right: original image, masked input
image, edge image and inpainted image. In the edge image the black edges are detected by using an edge detection
algorithm and the blue edges reconstructed by the neural network. Image source: Nazeri et al. [9].

positioned on the right-side. The fourth one is larger than
the others and, hence, is the primary view. In these four
views the same CT scan volume is displayed in four dif-
ferent perspectives: a slice in each sagittal plane (from
the side), coronal plane (from the front) and axial plane
(from the top), as well as a three dimensional rendering,
where all three planes are displayed. By clicking on one
of the smaller views, the main view can be freely switched.
The UI controls for the different operations on input data,
like segmentation and inpainting, are located in a sidebar
menu.

3.3 EdgeConnect

The neural network used for the inpainting tool on the
StudierFenster website is based on EdgeConnect [9], a
deep learning model specifically designed for inpainting
tasks. EdgeConnect splits the inpainting process into two
phases. For both of them two pipe-lined generative ad-
versarial networks [4] are used, so overall EdgeConnect
is composed of four neural networks: two generators (G1
and G2) and two discriminators (D1 and D2).

The first stage acts as edge completion network; the sec-
ond stage as image completion network. This means that
during the first stage only the missing edges of the input
image are reconstructed. The edges of the unmasked re-
gion are detected with the Canny edge detection algorithm.
In particular, the mask image, the input image as a grey-
scale image and the edge map of the unmasked regions are
used as input for the first stage. In the second stage the re-
constructed edges and the incomplete color image are used
to compute a color image where the missing image parts
are filled in [9].

The images in Figure 3 illustrate this two-stage work-
flow. The images show from left to right: the original im-
age, the masked input image (which is an input for both
stages), the edge image (which is the result of the first
stage and one of the inputs for the second stage) and also
the final result (inpainted image) generated with the help
of EdgeConnect [9].

EdgeConnect is implemented in Python and utilizes the
machine learning library PyTorch [9]. For training Edge-

Connect on inpainting parts of the aorta, 75 CTA scans of
healthy aortae were used. These datasets were taken from
the CAD-PE challenge [1] (40 CTA scans) and from Ma-
soudi et al. [7] (35 CTA scans).

4 Inpainting Workflow

The inpainting workflow and tool introduced in this work
can be divided into different stages. As a prerequisite, the
user has to upload a NRRD file containing a dataset of a
CT scan, which is subsequently displayed in the Medical
3D Viewer. The rendering of the image data is thereby
handled by the Slice:Drop component. Then the user can
select the inpainting tool out of several tools for operating
on the uploaded dataset.

START

Set ROI params and draw ROI
rectangle

Click somewhere on image

Click somewhere on image

Click "Start Mask Creation"

Click "Confirm ROI"

Turn Mask Creation Mode on
(activate drawing tool)

Click "Execute Inpainting"

Execute inpainting

Click
"End Inpainting"

Click "Overwrite Slice with Result"

Write inpainted slice
back to NRRD volume

User draws mask with brush

END

Set Region of
Interest (ROI)

Mask
Creation

Display result

Result
Handling

Processing

ROI positioned correctly?

Yes

No

Figure 4: Simplified sequence of the inpainting work-
flow. The orange coloured items mark user inputs, the grey
items actions executed by the inpainting tool.
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The stages of the actual process are: definition of a re-
gion of interest, drawing a mask, executing the inpainting
and handling the result. The following sections will de-
scribe these four stages in detail. Everything except the
actual execution of the neural network for inpainting is
done purely on the client side. Hence, only during the
processing stage communication between the client and
the server happens. The chart in Figure 4 visualizes the
principle course of events during the inpainting workflow.
Options like resetting the inpainting workflow or cutting it
short are not included in this chart. The orange-coloured
items mark the interactions of the user with the inpainting
tool and the grey-coloured items mark the actions executed
by the inpainting tool in order to process the inputs and to
perform the inpainting.

4.1 Set Region of Interest

For the inpainting task only the image region, which shows
the aorta and its surroundings is relevant, but a chest CTA
scan usually shows a larger field of view. Additionally, the
implementation of the inpainting module in the back-end
is only capable of handling input images with a resolution
of 100× 100 voxels in the axial plane. Additionally, the
implementation of EdgeConnect, which is used for the in-
painting tool is only capable of handling input images with
a resolution of 100× 100 voxels in the axial plane. But
CTA scans have usually a higher resolution than 100×100
voxels. To gather input data with the required resolution,
the user has to set a region of interest (ROI): by clicking
on the image the user can place the ROI in form of a rect-
angle with a predefined size on the relevant image section
of the CTA scan. Visually the region of interest is marked
by a red rectangle overlaying the input image. The input
image and mask drawings outside the region of interest is
ignored in all further stages. Once the user has confirmed
the position of the region of interest it cannot be moved
without a re-initialization of the inpainting workflow.

4.2 Mask Creation

To apply the inpainting model on an image, a part of the
image has to be masked. The masked part of the input
image will be filled by the inpainting model, the remain-
der serves as context for the model. For creating the mask
the user can use a brush, which allows free drawing with
a variable brush size. This brush tool was already offered
as an extension for the manual segmentation tool [11]. For
the inpainting tool only adaptions of the functionality of
this brush tool were made. For visualization and storage
of the mask drawing a half transparent canvas is used. This
canvas overlays the canvas, which shows the current slice
of the CT scan. The brush tool also features an eraser
mode, which can be used to remove parts of the mask by
hovering over them.

4.3 Processing - Execute Inpainting

After setting up the region of interest and creating a mask,
all requirements for executing the inpainting model are
fulfilled. Until now, everything was done on the client
side; for performance and implementation reasons the in-
painting model is executed on the server. Some of the rea-
sons why it is not reasonable to execute it on the client
side are, that the execution of the inpainting model is a
computation-intensive task, the model definition files are
of the order of hundred megabytes large and EdgeConnect
is implemented in Python, which cannot be interpreted by
commercial browsers.

At the beginning of the execution stage, the data from
the input image and the mask underlying the defined re-
gion of interest is loaded from the corresponding HTML
objects. Afterwards, this data is sent to the server as
an AJAX request. AJAX requests are a technique in
JavaScript for the communication between a client and a
server using the XMLHttpRequest JavaScript object. On
the server side, the data is stored and the inpainting model
script is triggered in a new subprocess. After comple-
tion, the resulting image is sent back from the server to
the client as a response to the AJAX request.

4.4 Result Handling

The inpainting result data returned from the server is
placed in a canvas layer on top of the original image.
Furthermore, the implementation includes the options to
download the inpainted slice as a PNG file or to overwrite
the original slice in the NRRD volume with the inpainted
slice. Thereafter, the updated volume can be downloaded
as a NRRD file by using an already existing function of
the Medical 3D Viewer.

5 Implementation

This section discusses the implementation of the inpaint-
ing tool. At first, the client/server architecture and the
communication between the front-end and the back-end
are described. Afterwards, this section focus on details of
the front-end and back-end implementation.

5.1 Client/Server Architecture

The implementation of the inpainting tool consist of a
back-end part, executed on the server, and a front-end part,
executed on the client. The communication between both
parts consists only of a single HTTP request, which is
needed during the processing stage. The request to the
server contains a JSON-object with data from the input
and mask image. Only the relevant pixels from both im-
ages, which are located within the region of interest, are
transferred in order to minimize the payload size. In prac-
tice, the expected size for the request is of approx. 200
kilobytes. Every incoming request triggers an execution of
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the inpainting module (EdgeConnect) on the server. The
request remains open during the execution and only after
the inpainting module has finished the response is sent to
the client. On success, the response contains a JSON ob-
ject with the new image data. If something fails in the
back-end, the response contains an error message for de-
bugging purposes. The error message includes the output
of EdgeConnect and potential exceptions, which are raised
in the Flask application. An example for the content of the
HTTP request and response is also given in Figure 5.

[{
  index: 90,
  maskdata: {
    0: 255, 1: 255, 2: 255, 3: 255,
    4: 255, ... , 39999: 0
  },
  imagedata: {
    0: 143, 1: 143, 2: 143, 3: 255,
    4: 142, ... , 39999: 255
  }
}]

POST /inpainting/{random_id}
Host: studierfenster.tugraz.at

Content-Type: application/json
...

[{
  msg: "",
  index: 90,
  imagedata: {
    0: 138, 1: 138, 2: 138, 3: 255,
    4: 140, ... , 39999: 255
  }
}]

HTTP/1.1 200 OK

...

Request Response

Figure 5: Schematic example of the HTTP request and
response for sending the input data to the server and re-
ceiving the inpainting result.

The diagram in Figure 6 shows the architecture of the
inpainting tool. The separation into front-end and back-
end is clearly visible and also the communication between
them is illustrated in the diagram. Furthermore, on the
back-end side also the communication between the Flask
application and the inpainting module is shown, which is
realized by read and write operations to the file system
(image data) and the Python module subprocess (invoke
inpainting module and wait for finishing).

HTML

Javascript

CSS

M
ed

ic
al

 3
D

 V
ie

w
er

HTTP request

Inpainting module
(EdgeConnect)

Server

File
System

Input and Mask as PNG File

Result as PNG File

Invoke

Signal when finished

Python
Flask

Server

Client

input and mask data

inpainted image

Figure 6: Architecture diagram of the inpainting tool
(Client-server-model).

5.2 Front-End

This section discusses the key points of the implementa-
tion in the front-end, which are the use of HTML canvases
for displaying the graphical elements and the JavaScript
code to load the user input and send it to the server.

5.2.1 HTML Canvas Element and Canvas Layout

For image data visualization (CT scan dataset, mask and
inpainting result), HTML canvas elements are used. A
canvas element is a container for displaying graphical con-
tents. The properties and content of the canvas is defined
by using JavaScript code and the RenderingContext object,
which corresponds to the canvas element. The Rendering-
Context object also offers an interface to get or set the im-
age content as an ImageData object. Thereby, the content
is represented as a one-dimensional array, which contains
the image data line per line. In case of images with multi-
ple channels (like RGBA images), the color channel values
for each pixel are stored consecutively.

Cursor Canvas

Medical 3D Viewer primary View Canvas

Region of Interest Canvas
Mask Drawing and Result Canvas

Si
de

ba
r M

en
u

Figure 7: Layout of the HTML Canvas elements used for
the inpainting tool. See also the screenshot in figure 2 for
better understanding.

Similar to other functionalities of the Medical 3D
Viewer, like segmentation and landmark detection, it is
only possible to use the inpainting tool in the primary view
of the Medical 3D Viewer. Furthermore, the tools can only
be executed on a slice in axial plane. Slice:Drop renders
the file data on a HTML canvas element. To display the
region of interest, as well as drawing the mask and dis-
play of the result, two more HTML canvas elements are
used. These canvas elements are located on top of the pri-
mary view canvas. In addition, the free drawing brush tool
utilizes another canvas for the visualization of the cursor.
Figure 7 shows a schematic representation of the HTML
canvas layout.

The earlier mentioned method to get the ImageData is
used in order to obtain the input image and mask data from
the canvas elements. The method for setting the Image-
Data is used to put the inpainting result data into a canvas
element for visualization. In addition, the HTML Canvas
API also offers methods for scaling images, which are also
needed for the inpainting tool. When rendering the file
data Slice:Drop performs an upscaling to display the CT
scans with a higher resolution than the underlying NRRD
file data. Otherwise, the CT scans would appear very
small. In return, when loading the data of the input im-
age and mask from the canvas elements, it is downscaled
to the original resolution. On the other hand, the result of
the inpainting module gets upscaled again for display on
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a HTML canvas. The ratio between the original resolu-
tion and the resolution of the rendered image must also be
considered for setting the region of interest. To achieve
a region of interest with a size of 100× 100 pixels of the
original NRRD dataset, the region of interest displayed in
the Medical 3D Viewer must be larger by the factor of the
scaling ratio. These scaling processes lead to a small dis-
placement of the inpainting result when writing it back to
the NRRD file, because the position of the higher resoluted
inpainting result does not exactly match the pixel grid of
the lower resolved NRRD file (see Figure 8).

Medical 3D Viewer NRRD Volume Slice

Figure 8: Data (inpainting result) displayed in the Medi-
cal 3D Viewer (left). Misalignment of data position when
writting it back to the lower resoluted NRRD file (right).
In practice, the red colored image region in the right sub-
figure corresponds to 100×100 pixels.

5.2.2 Data Processing

After successfully creating a mask, the user can trigger the
execution of the inpainting process. Therefore, the main
tasks are: loading the input image and the mask image
data, send them to the server and handling the result, which
is returned from the server. First off, an auxiliary canvas
with a size of 100 x 100 pixels is created. Then the stack of
slices is scanned with a for-loop, until a slice with a mask
drawing is found.

Next, the mask canvas data and input image canvas data
need to be downsampled, because, as mentioned earlier,
the images in the Medical 3D Viewer are upsampled dur-
ing the rendering. To accomplish this, the part of the mask
canvas, which is within the region of interest, is projected
onto the previously mentioned auxiliary canvas using the
drawImageData function of the HTML Canvas API. Af-
terwards, the image data of the auxiliary canvas is stored
to a new object and the same step is repeated for the input
image canvas.

Subsequently, a unique identifier is generated and the
object, which holds the mask and input image data is con-
verted to a JSON-object. Then, the data are sent to the
server using an AJAX request. If the server successfully
returns the image data of the inpainting result, it needs to
be put on a HTML canvas element. Therefore, the draw-
ImageData function and an auxiliary canvas are used again
for upscaling the image data.

5.3 Back-End

For the inpainting tool, the Flask application is extended
with a new route, which accepts HTTP POST requests.
The request contains the data of the input and the mask im-
age as ImageData arrays (which is described above). The
unique identifier is also part of the request as an URL pa-
rameter.

Both ImageData arrays are then converted into
greyscale images. In this case, the reduction from three
to one color channel does not lead to a loss of information.
Because all color channel values of the input images are
equal and for the mask images it is only relevant if a pixel
belongs to the mask or not. The reduction is done on the
server, because on the client-side an additional iteration
over the ImageData arrays would be necessary, while the
decrease of the communication overhead would not lead
to a evident improvement of the performance. In the same
step, the mask image is also converted to a binary mask,
which means it only contains two different values. A pixel
belongs to the mask, if it contains a part of the drawing
done by the user. That implies a pixel is part of the mask
if, for instance, the red color channel of the pixel is not
equal to 0. Therefore, to create a binary mask, all pixels
with a red color channel unequal to 0 are set to 255 (part
of mask) and the remaining pixels are set to 0 (not a part
of the mask).

Afterwards, these greyscale images can be written to
the file system as PNG files. Both files contain a unique
identifier in their file names and they have a resolution of
100×100 pixels. Then the EdgeConnect script is invoked
using the Python subprocess module. The data transfer be-
tween the Flask application and the EdgeConnect process
is implemented via the file system in order to keep the re-
quired changes to the EdgeConnect source code to a min-
imum. An analysis of the execution time (see section 6)
also showed, that the file operations only have a small im-
pact on the performance of the inpainting tool, since they
are responsible for only a small part of the time needed for
processing an inpainting task on the server. The file names
of the input image and the mask image are passed to the
EdgeConnect process as command line arguments.

The Flask application then waits for the termination of
the inpainting process. If it is successful, the result image
is processed in opposite manner to the input image and the
mask image. First, the PNG file, which contains a RGB
image, is read from the file system to a NumPy array and
then it is converted to an ImageData object. This Image-
Data object is then returned to the server as a response to
the HTTP POST request. In case of an error of the Edge-
Connect process or during the file system operations, only
debugging messages are returned to the client. Whether
the execution was successful or unsuccessful, in a final
step all files, which were created during the handling of
that POST request are deleted from the server’s file sys-
tem.
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6 Results

Following the description of the implementation of the in-
painting tool in the previous section, in this section the
outcome of this work is described. First, examples of in-
painting results are presented. Subsequently, the perfor-
mance of the inpainting tool is discussed by analyzing the
execution time.

Figure 9 shows axial CTA images of an aortic dissection
case. In both rows of this figure an example for executing
an inpainting with the inpainting tool is given. The im-
age section of all sub-figures is equal to the defined region
of interest. The sub-figures in Figure 9 show from left to
right: unedited CTA scan showing the aorta and surround-
ings, the mask used for the inpainting and the inpainting
result. The Sub-images (a) and (b) include a dissected
aorta, whereas the dissection is removed in the sub-images
(d) and (f).

(a) Original image (b) Masked image (c) Inpainting result

(d) Original image (e) Masked image (f) Inpainting result

Figure 9: Two examples for an inpainting of an aortic dis-
section utilizing the inpainting tool.

Only for the processing part of the inpainting workflow
(see section 4.3) a sensible timing analysis can be done
as the other stages are user-dependent, for instance, how
much time is spent on drawing the mask. The start of the
processing phase is marked by a click on the ”Execute In-
painting” button and it is completed after the result is dis-
played in the Medical 3D Viewer. Furthermore, it can be
broken down into five parts: preparing the input data and
creating the request (client-side), sending it to the server
(network), server-side part, send it back to the client (net-
work) and handling the result (client-side).

At first, the time consumption on the client-side be-
fore sending the server request and after receiving the re-
sponse was evaluated. This was done by calculating the
time difference between timestamps logged at four events
during the code execution: click on ”Execute Inpainting”
button, sending the AJAX request, receiving the response
to the request and completion of the processing function
(see also section 5.2). Different tests using two browsers

(Google Chrome and Mozilla Firefox) showed that the
code execution on the client-side only takes 40 to 60 mil-
liseconds.

For measuring the time needed to fulfill the request to
the server the network monitor tool of the Mozilla Firefox
browser was used. The results show that it takes between
3.7 and 3.9 seconds to fulfill the HTTP request. For calcu-
lating the share of each part (network, execution of Edge-
Connect and Flask application) thereto timestamps were
logged during the code execution on the server at these
events: request received, start of EdgeConnect subprocess,
end of EdgeConnect subprocess and request fulfilled (see
section 5.3 for reference). The measurements show that
the execution of the Flask Server code only produces a
small impact (3% of the whole request duration). In addi-
tion, the share of the data transfer (network) is also small
(5%), as the size of the request and response payload is
quite low in comparison to other modern-day web appli-
cations. The vast majority of the time needed to fulfill the
HTTP request is caused by executing EdgeConnect (92%).
Overall, processing an inpainting takes overall around four
seconds.

7 Conclusion and Future Outlook

As a result of this work, the Medical 3D Viewer on the
website StudierFenster (http://studierfenster.tugraz.at/ )
was extended by a tool for inpainting. All requirements
to accomplish this task, like the integration of an inpaint-
ing module to the server-side of the website and creating a
graphical user interface on the client-side, have been sat-
isfied successfully. By using this tool, it is possible to use
inpainting to remove the dissection from a dissected aorta
in a CTA scan, directly in a web browser without installing
any software. This functionality allows the creation of im-
age pairs before and with an aortic dissection, which are
in general unavailable from medical studies, by taking ad-
vantage of an intuitive graphical user interface. No knowl-
edge about executing command-line scripts is needed to
use the inpainting tool. In contrast to executing EdgeCon-
nect directly via the command line, the mask creation is
also simplified.

Looking at the results presented in Figure 9, one can see
that the depicted dissected aorta is successfully changed to
a healthy looking aorta. But it is also noticeable, that the
region reconstructed by the inpainting is slightly blurred,
which could be addressed by refinement of the EdgeCon-
nect model. The timing analysis in section 6 shows that
a call of the inpainting tool is completing in around four
seconds, wherein the majority is caused by executing the
neural network. This indicates the code of the inpainting
tool itself offers little room for speeding up the application.

Concluding the current work on the tool, there are still
several areas of improvement. Currently the tool only sup-
ports 2D drawings because only one masked slice is trans-
ferred to the server. On the client side the code basis for
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sending multiple slices to the server already exists, but it
is deactivated at the moment. For 3D support this code
section must be reviewed and in the back-end the inpaint-
ing route of the Flask application, and the model used for
EdgeConnect has to be updated.

In future, user feedback could be utilized for the refine-
ment of the model used for creating the edge map. There-
fore, the user should be given the opportunity to revise the
edge map created by the first stage of EdgeConnect. Sub-
sequently, the corrections made by the user can be used
for additional training of the model. Regarding the current
functionality the adaption of the region of interest when
rescaling the browser window is in an experimental stage
at the moment. Hence, in future work this feature should
be updated.

8 Acknowledgments

This work received funding from the TU Graz Lead
Project “Mechanics, Modeling and Simulation of Aortic
Dissection” and the Austrian Marshall Plan Foundation
Scholarship 942121022222019. In addition, the Austrian
Science Fund (FWF) KLI 678-B31. Further, this work
was supported by CAMed (COMET K-Project 871132),
which is funded by the Austrian Federal Ministry of Trans-
port, Innovation and Technology (BMVIT), and the Aus-
trian Federal Ministry for Digital and Economic Affairs
(BMDW), and the Styrian Business Promotion Agency
(SFG). Finally, we want to acknowledge the Overseas Vis-
iting Scholars Program from the Shanghai Jiao Tong Uni-
versity (SJTU) in China. StudierFenster tutorial videos,
also about the aortic dissection inpainting, can be found
under our StudierFenster YouTube channel.

References

[1] Madrid–MIT M+Visión Consortium. Cad-pe chal-
lenge. Website, 2013. http://www.cad-pe.
org/, accessed on 10.09.2019.

[2] NVIDIA Corporation. Inpainting demo. Web-
site, 2018. https://www.nvidia.com/
research/inpainting/, accessed on
23.03.2020.

[3] M. S. Elmahdy, T. Jagt, R. T. Zinkstok, Y. Qiao,
R. Shahzad, H. Sokooti, S. Yousefi, L. Incrocci,
C.A.M. Marijnen, M. Hoogeman, and M. Staring.
Robust contour propagation using deep learning and
image registration for online adaptive proton therapy
of prostate cancer. Medical Physics, 46(8):3329–
3343, 2019.

[4] I. Goodfellow, J. Pouget-Abadie, N. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Ben-
gio. Generative adversarial nets. In Z. Ghahramani,

M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 27, pages 2672–2680. Cur-
ran Associates, Inc., 2014.

[5] D. Haehn, N. Rannou, B. Ahtam, PE. Grant, and
R. Pienaar. Neuroimaging in the browser using the
X Toolkit. Frontiers in Neuroinformatics, no. 101,
2014.

[6] D. Haehn, N. Rannou, PE. Grant, and R. Pienaar.
Slice:drop. In IEEE VisWeek, SciVis Poster Session,
2012.

[7] M. Masoudi, H. Pourreza, M. Saadatmand-Tarzjan,
N. Eftekhari, F. Zargar, and M. Pezeshki Rad. A
new dataset of computed-tomography angiography
images for computer-aided detection of pulmonary
embolism. Scientific Data, 5:180180, 2018.

[8] G. Mistelbauer, J. Schmidt, A-M. Sailer, K. Bäumler,
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