Natural Reeb Graphs

Alexander Weinrauch*

Supervised by: Markus Steinberger!

University of Technology
Graz / Austria

Abstract

A high-level understanding of a 3D mesh is an essential
requirement for many applications in computer graphics
and vision. To obtain such a high-level understanding,
Reeb graphs are a well-researched option. Reeb graphs
rely on a mapping function defined on the surface of the
object, which is challenging to create without any user in-
put. To overcome this requirement, we propose a deriva-
tion of Reeb graphs, called Natural Reeb graphs. The ex-
plicit mapping function is replaced by an implicit function
formed by a natural diffusion process on the surface. Nat-
ural Reeb graphs correctly capture all branches and loops
of a surface, which is mandatory to provide a correct high-
level explanation. The proposed method to generate Nat-
ural Reeb graphs is designed to be executed efficiently on
the graphics processing unit (GPU).

Keywords: Reeb Graph, Shape analysis, GPU

1 Introduction

The Reeb graph [8] represents the topological skeleton of
an n-dimensional object and provids essential information
about the topology. Reeb graphs are generated by evaluat-
ing a continuous scalar function f : X — R on the topo-
logical space X. Tracing the connected components in
the level sets of f is the fundamental idea behind build-
ing the Reeb graph. The appearance of a new component,
splitting, merging, and vanishing of existing components
form the nodes of the Reeb graph. The correspondence
of the affected components to previously generated nodes
form the edges. Reeb graphs are a fundamental tool used
in computer graphics, computational geometry, geomet-
ric processing, data visualization, and image processing.
Some applications are object retrieval [2, 5], surface un-
derstanding [5] or shape segmentation [14], data skele-
tonization [4], topological morphing [6].

Due to recent developments of high-resolution 3D scan-
ners and big data applications, the demand for a fast algo-
rithm to compute the Reeb graph or more general topolog-
ical structures as a whole is increasingly growing. Con-
currency and parallelism are two main options to improve

*alexander.weinrauch@gmail.com
Tsteinberger@icg.tugraz.at

‘ =
P ~ 1
. T I L ] .e .
) + v
e o
AN | L
\ A /
S

Figure 1: Three Reeb graphs defined by the y-axis (left),
x-axis (middle) and z-axis (right) as mapping function.

efficiency, which are strongly supported by the most recent
hardware developments. More and more cores in a single
CPU which favors concurrency, but also the GPU has ma-
tured as a general-purpose highly parallel processor.

This paper focuses on parallelism and presents a method
to approximate the Reeb graph for unstructured grids,
which is designed to run efficiently on the GPU. Our
method does not produce the Reeb graph based on a user-
defined mapping function f, but it is motivated by a re-
cently published method called Layered Fields [15], which
simulates a natural diffusion process.

The scalar mapping function f on the topology is im-
plicitly extracted from the natural diffusion process on the
surface of a triangulated mesh, therefore, we deduced the
name Natural Reeb graphs. The level sets are extracted
from the energy states of each vertex during the simula-
tion. In contrast to other approaches, our method can-
not handle any arbitrary user-defined scalar mapping func-
tion on the topology. Therefore it should not be seen as
a replacement for existing methods to calculate the Reeb
graph.

Applications build on top of Reeb graphs rely on a well-
defined mapping function to produce useful results. In
Figure 1 three examples with different mapping functions
are shown. The Reeb graph shown in the left image of
Figure 1 provides a good description of the shape. The
second example does already add complexity, which low-
ers the semantic value of the Reeb graph. However, es-
pecially the third example has many critical points that do

Proceedings of CESCG 2020: The 24" Central European Seminar on Computer Graphics (non-peer-reviewed)



not help to get a global view. The Reeb graph will, there-
fore, have a low semantic value for further applied algo-
rithms. Shape matching based on the Reeb Graph would
be a good example for the low sematic value of the thrid
example compared to the example shown on the left. As
described by Bajaj et al. [13], finding a proper mapping
function is not trivial and is often the main difficulty when
applying Reeb graph-based methods.

Natural Reeb graphs, on the other hand, do not rely on
finding a well-suited mapping function. The natural diffu-
sion process of Layered Fields provides a mapping func-
tion that adjusts to the local geometry during the evolution
process. Additional to meaningful Reeb graphs, this also
provides transformation invariant Reeb graphs, which is a
key feature required in skeleton creation and shape match-
ing based on the Reeb graph [13].

2 Background and Related Work

This chapter explains the idea behind Layered fields and
covers existing work about Reeb graph computation.

2.1 Layered Fields

The goal of the Layered Fields paper [15] is to mimic nat-
ural tessellation on surfaces by having cells growing on
the surface. These cells mainly start growing from a sin-
gle distinct start vertex, called seed, but defining a start
region is also possible. The boundary of a cell is modeled
as a smooth transition of the real-valued energy where the
value zero indicates no membership to the cell, and one
means full membership. Each cell may grow on a separate
layer, hence the name Layered Fields. As shown in Fig-
ure 2, cells on different layers block each other naturally
during their growth process. At intersection areas, both
cells have a smooth overlapping boundary. This formu-
lation avoids numerical problems and discontinuities that
would occur with sharp boundaries.

Layered Fields were designed to run fast and highly
parallel on the GPU. The energy states in the system are
stored in a m X n sparse matrix where m is the number of
vertices and n the number of layers. To update the system
state, the system matrix is multiplied by the Laplacian ma-
trix of the mesh. The Laplacian matrix holds information
about how the energy of a specific vertex should influence
the energy of adjacent vertices. This is a very simplified
explanation but covers all concepts which are needed to
understand our method which uses Layered Fields.

The GPU-friendly design and available implementation
were the motivation behind designing an algorithm which
does also run nearly entirely on the GPU to avoid costly
copy operations from the graphics card’s memory to the
system memory and synchronization points between CPU
and GPU.

o 8 & ( @

Figure 2: Growth of 3 layers on a plane. The light blue
dots represent the start seeds and the blue lines the sharp
boundary used to create Natural Reeb Graphs.

2.2 Reeb Graph methods

To our knowledge, there exists no method to compute or
approximate the Reeb graph for unstructured grids de-
signed for the GPU. Only algorithms for the contour tree,
which is a connected and circle free Reeb graph, on struc-
tured grids can be found in the literature [3]. The first
algorithm to correctly compute the Reeb graph dates back
to 1991 [10] and had a runtime of O(n?). Later, this was
optimized to have a runtime of O(nlogn) by maintain-
ing a sorted structure for the input vertices. Pascucci et
al. [7] published in 2007 an on-line algorithm that per-
formed very well in practice despite its worst-case runtime
of O(n?). At the time of writing, no faster algorithm can be
found in the literature. It streams the triangles of the mesh
and builds the Reeb graph on-line, by storing additional
data for each node in the Reeb graph they can merge local
Reeb graphs efficiently together if a new triangle connects
them.

Tierny [13] developed high-level Reeb graphs which do
not require a user-defined scalar mapping function. In-
stead, feature points are extracted, which are invariant to
rotation and scaling of the mesh. Each vertex is mapped
to the closest feature point based on the geodesic distance.
They introduce discrete level lines, which are traced dur-
ing a geodesic propagation algorithm starting from the fea-
ture points. The idea of tracking during propagation is
very similar to our method, resulting in transform invari-
ant Reeb graphs.

3 Natural Reeb graph computation
using Layered Fields

This chapter starts with a high-level explanation of the al-
gorithm and will afterward give an insight into the avail-
able implementation on the GPU.

3.1 Contour Lines for Natural Reeb graphs

Contour lines or level sets of a scalar function are sets of
inputs for which the function takes a constant value c.

Lo(f) ={(x1, oesx) | (f (X1, ey xn) =€)} (1

Existing methods analyze connected components while
continuously changing the constant c. Our method instead
uses Layered Fields as the function for which the level sets

Proceedings of CESCG 2020: The 24" Central European Seminar on Computer Graphics (non-peer-reviewed)



have to be defined differently. Layered fields can be seen
as a natural diffusion processed on multiple layers. The
diffusion process can be modeled as a function combining
n sub-functions, where n is the number of layers. Each
sub-function takes the timestep and a vertex as parameters
and returns the energy e of the given vertex at the given
time ¢ on its layer.

fvi)=fi(t,v)=e{ecR|0<e<1} )

The energy of a vertex is in the range of [0,1]. A value
of zero states that the vertex does not belong to the cell.
A value of one states complete membership to the cell.
Values in between form the smooth boundary of a cell.
Instead of changing the value of ¢, we are continuously
changing ¢ with a fixed c for all vertices of the unstructured
grid. Setting the constant ¢ between zero and one makes
the contour line follow the smooth boundary. This models
the contour line as a sharp boundary on top of the smooth
boundary provided by the Layered Fields.

The tracking is performed by looking at edges, more
specifically at the two energy levels of the vertices form-
ing the edge. The contour lines cross all edges, which have
one endpoint larger and one endpoint less or equal to c.
The exact crossing point can be computed by linear inter-
polation between the two endpoints based on their energy
level and the constant value c¢. For manifold meshes and
by the definition of the Fields, the contour line also has to
go through all faces which use an edge that is crossed by
the contour line. The point of the contour line on a face
can then also be calculated by linear interpolation on the
energy level of the vertices of the face. The exact contour
line location is only needed when embedding the Natural
Reeb graph into the mesh. For the calculation of the Nat-
ural Reeb graph alone, we only need the information if a
vertex is part of the contour or not.

3.2 Track connected components

For manifold meshes, the contour lines defined by the
sharp boundaries will always form one or more circles. In
Figure 3 the sharp boundaries are visualized as dark blue
lines. Before a circle splits into multiple circles, a vertex
will be part of multiple circles representing a critical point.
This can be seen in the highlighted section of the second
image in Figure 3 on the connection between the thumb
and the index finger. A circle in a graph is defined as a path
with the same start and end vertex. Manifold meshes with
borders can additionally form paths that end and start from
border vertices instead of forming circles. These paths are
caused by the fact that border vertices can be part of the
contour line at some time point but may only have one
adjacent face, which is also part of the contour. Figure 4
shows an example of a sharp boundary moving over a hole
in the 3D object. The circles or paths form the connected
components for each timestep . The problem of finding
those circles and paths is a connected component label-
ing problem. Connected component labeling will give the

2 S 7
7 & &
L\,/\,v S = 7 = 7
b i el
| \ | =t B NG
AL QAT A AL L
gy /
7 gs
\,i /
= 7 — 4 N/ = 7

Figure 3: Sharp boundaries (dark blue lines) traced over
the evolution of one cell. All brown vertices have higher
energy than the threshold c, light blue vertices have less
energy than c.

Figure 4: Shows the behaviour of a sharp boundary on a
sphere with a hole in it. Note that the circle degenerates to
a path while the hole is part of the sharp boundary.

same label to all faces that are part of the contour lines
and are reachable by traversing over the unstructured grid,
ignoring faces which are not part of the contour.

The behavior of the connected components when
changing ¢ generates the events signaling a critical point.
A relationship between connected components at timestep
t and t + A is required to track the components. The
naive way to track the connected components would be
to analyze the location of their barycenters. The closest
barycenter from the old iteration to the current iteration
should be the origin of a connected component. This only
holds for small movements of the boundaries between iter-
ations, which requires a small time difference A between
iterations. The naive way requires the calculation of the
barycenters of all connected components in each iteration
and comparison between all of them. Especially when
the number of branches on the surface is high, and there-
fore the number of growing boundaries is high in a given
timestep, the building and the comparing process might be
very expensive. To calculate the barycenters, we need to
compute all exact points of the level set and label them
according to the connected component. Connected com-
ponent labeling is a performance expensive operation on
the GPU. Our connected components also represent the
worst case for most algorithms because they form a cir-
cle without shortcuts. After computing the barycenters,
the distance between all of them needs to be calculated
and compared, resulting in O(n*) comparisons, where n
is the number of active boundaries. A more sophisticated
implementation would involve a spatial data structure like

Proceedings of CESCG 2020: The 24" Central European Seminar on Computer Graphics (non-peer-reviewed)



an Octree, but building and updating such a structure for
each iteration is also not ideal in terms of performance. To
avoid these expensive computations during all iterations,
we separate the advancing fronts into different diffusion
layers.

3.3 Layer Splitting

The number of layers of Layered Fields is not fixed dur-
ing simulation, so it is possible to add new layers on-line.
We exploit this functionality by splitting a layer as soon
as more than one connected component is detected on a
layer. In other words, we only want one layer of Lay-
ered Fields to host exactly one connected component. If
there are n > 1 components detected on a layer, we gen-
erate n new layers with the start region set to the vertices
forming one connected component. Since one layer can-
not overgrow another, the new layers will grow in the same
direction as the old layer would have been without split-
ting. When comparing the first two images of Figure 5
with the evolution shown in Figure 3, it is clearly visible
that the child layers behave the same as the parent would
have without splitting.

The old layer is marked as finished after splitting be-
cause it has no free space to grow further. Instead of split-
ting into n new layers, it is also possible to let one com-
ponent grow on the old layer and only create n — 1 new
layers. However, this does not significantly increase per-
formance and makes the Reeb graph edge extraction and
debugging a bit more complicated. Layer splitting also
provides direct access to the critical points at which one
connected component splits into multiple new ones.

Another advantage of layer splitting is that the corre-
spondence of triangles to connected components is only
needed in the case of multiple connected components on
one layer. Iterations without multiple components on one
layer will occur far more often, and iterations that require
splitting will be an exception. This plays an essential role
in the performance of the algorithm. Based on this idea,
we only need to perform connected component counting
and can do an early exit if we detect only one component
per layer. Connected component counting, in comparison
to the more often needed connected component labeling,
does only calculate the number of components, but does

Figure 5: The evolution of a cell with layer splitting en-
abled. The face colors represent the layer index. The red
contour lines show iterations where more than one contour
line was present on a single layer.

not tell which vertices form the components. Connected
component counting can be implemented faster than la-
beling as counting is a sub-problem of labeling.

3.4 Vanishing Components

Identifying a vanished connected component can also be
nicely handled by the idea of layer splitting. If no faces are
marked as part of the contour on a layer, the affected con-
nected component can be identified by the layer index. To
calculate the critical point for a vanishing component, the
contour triangles of the last iterations are needed because
there is no information left in the current state of Layered
Fields. This list is already computed for the connected
component counting and is therefore available without a
runtime cost.

3.5 Merging Components

The last category of critical points comprises merging con-
nected components. This type cannot be directly modeled
during simulation time like the other types. Instead, we
are calculating them after the natural diffusion process has
completed. When two layers are growing towards each
other, they do not overgrowth but instead, grow along-
side each other. After the simulation, both layers have a
contour line marking the border between those two layers.
The border is the path where they have grown alongside
each other. All vertices still part of a contour line are ex-
actly those border vertices. All layers which have some
amount of energy on those vertices should be considered
merged. For the Reeb graph, we then need to merge all
nodes of the layers which share energy on some vertices
after the simulation. Due to the fact that this only needs to
be done once after the simulation has finished, the perfor-
mance of this operation is not as critical as compared to a
procedure executed at every iteration of the simulation.

3.6 Method summary

Figure 6 shows the steps described above applied on a dou-
ble torus. In the first image, the initial connected compo-
nent did create a node in the Reeb graph. The second im-
age features a split of layer zero into two new ones. Hence
two new nodes are created. Picture three shows one prob-
lem not discussed above. Layer one and two grow along-
side each other until they reach the second loop. When
reaching the second loop, both layers will have two con-
nected components, the one blocking the other layer, and
the new one advancing onto the loop. This triggers a split
for both layers into two new ones. However, layers three
and six start at the connected component representing the
blocking front and will, therefore, have no space to grow
and never build a contour line. Layers, which did not form
a contour line during its lifetime, are then removed as a
post-process-step. The last image has those two layers re-
moved, and also two new nodes were added to the Reeb

Proceedings of CESCG 2020: The 24" Central European Seminar on Computer Graphics (non-peer-reviewed)



graph due to merging regions. The introduced nodes are
created based on the detection of two merging regions.
Layer one and two have a merging region alongside the
connection of the two loops, and layers four and five are
connected on the top of the second loop. As previously
described and shown in the final Reeb graph, those newly
added nodes have incoming connections from the merg-
ing layers and do get all outgoing connections from those

O,
Figure 6: System state at different simulation stages com-
bined with the Reeb graph. Layer seven and eight are
caused by the detection of merging layers.

L (H g

4 Implementation

For simplicity and readability, the discussion in this sec-
tion does only describe the method for one layer. To sup-
port multiple layers, which is mandatory for the algorithm,
one can use a serial or a parallel approach. In the serial
approach, each layer is processed one after another in a
loop. In the parallel approach, all active layers are pro-
cessed at the same time. The parallel approach induces a
higher memory usage but may improve the utilization of
more compute units on a GPU. Especially if many small
contour lines are present on the layers, the graph during
connected component labeling may not be large enough to
utilize all multiprocessors available on the GPU. A pseudo
code of the complete Natural Reeb Graph extraction algo-
rithm is provided in Algorithm 1.

4.1 Contour edges

The first step in our method is to create a list with all faces,
which are part of the contour lines on a specific layer of
the given system state. As precomputation, a list of all
edges of the mesh containing the start and end vertices
and the two adjacent faces is created and transferred to
the GPU. To flag all contour triangles, an array (neighbor

array) with n items is created, where n is the number of
vertices of the unstructured grid. Each item can store two
indices of neighbor triangles, which are also part of the
contour line. Storing only up to two neighbors assumes
that each triangle on the contour has no more than two
neighbor faces, which are also part of the contour. The
assumption holds for manifold meshes with the addition
of borders, because for this kind of meshes, the contour
lines form circles or paths where no vertex is used more
than once. Initially, each neighbor index is set to zero,
which indicates that no neighbor lies on the contour.

For each edge, the energy value of the two vertices is
read from the system matrix. If precisely one vertex has a
higher value than the given threshold c, both faces of the
edge are part of the contour. In that event, the index of one
face is written into the neighbor list entry of the other face
and vice versa. To avoid race conditions during the writing
process of the neighbour index, an atomic compare and
swap (CAS) is used, where the new value is only written if
the old value was zero. In case the CAS operation on the
first item did not succeed, a regular write operation can be
performed into the second item.

After the iteration over all edges, every triangle which
does have a neighbour entry set in the neighbour list is
part of the contour. To generate a dense list of all contour
triangles, a linear array is allocated. The length of the array
is equal to the number of contour triangles. The contour
triangle indices are then written into the dense array using
an atomic counter to deduce the index into the dense list.

It is important to note that all helper structures, such as
the neighbor list or the contour triangle list, can be reused
in future iterations. This keeps the number of costly allo-
cations on the GPU to a minimum. Furthermore, the ca-
pacity of most helper structures is determined by the num-
ber of triangles on the contour, which stays relatively low
in comparison to the number of vertices. To even further
minimize the number of allocations during runtime, we in-
crease the size of the helper structure by additional 20% in
the case we need to enlarge them. This lowers the number
of allocations if the contour triangle count does raise again
in future iterations.

4.2 Component counting-labeling

Connected component labeling is a well-researched prob-
lem both on the CPU and GPU. However, most research
for algorithms suited for the GPU has focused on struc-
tured grids like a 2D image. Algorithms for the CPU for
unstructured grids are mostly based on breadth-first search
(BFS) or depth-first search (DFS), which are highly serial
approaches that do not perform well on the GPU. One al-
gorithm designed for the GPU was published by J. Soman,
K. Kothapalli, and P. Narayanan [11], which we used for
the implementation of our method. The algorithm is based
on previous work [9] for the CPU, but by reducing the ir-
regular memory accesses, it improves the runtime on the
GPU.

Proceedings of CESCG 2020: The 24" Central European Seminar on Computer Graphics (non-peer-reviewed)



4.3 Layer splitting

The goal of this step is to create a new layer that will start
at the location of exactly one connected component. This
step requires the full connected component labeling.

Adding additional layers during runtime was not cov-
ered by Zayer et al. [15]. However, it turns out that increas-
ing the number of rows in the system matrix is sufficient
to create a new layer. Since the system matrix is stored
in the CSC representation, the linear data array does not
need any modification, only a single integer representing
the number of rows needs to be updated. The fields con-
tain a utility layer as the last row of the system matrix.
This layer has to be moved up by n rows to still be the last
layer of the system matrix. This is done by iterating over
the whole linear data array and just incrementing the row
index for elements of the old utility row index.

4.3.1 Transfer discrete boundary

The next step is to set the starting vertices for the new
layers. Each new layer represents one detected connected
component. The vertices of the triangles forming the com-
ponent are the starting points of the layer. Despite the sim-
plicity of changing the dimensionality of the system ma-
trix, inserting new data into a CSC matrix is an expensive
operation. It involves moving all data tied to a higher col-
umn index or tied to the same column but a higher row
index. All contour line vertices must have energy on the
parent layer, or otherwise, they would not be part of the
contour line. This implies that an entry for the parent layer
index in the system matrix has to be present for contour
vertices. Our implementation avoids insertion by shifting
the present energy values on the parent layer to the child
layer index. The correct new row index depends on the
membership to a connected component. The connected
component labeling provides this information.

This procedure only moved the sharp boundary defined
by the constant ¢ to the child layers. There will still be
energy smaller than ¢ on the parent layer behind the sharp
boundary. Those energy levels limit the growth of the child
layers and therefore have to be removed.

4.3.2 Transfer smooth boundary

After splitting a layer, contour tracking cannot be per-
formed for new layers, because the boundary will be un-
stable. To reduce the time where tracking cannot be per-
formed, the energy levels smaller than ¢ of the parent layer
are transferred to the child layers instead of setting them
to zero. The simple change in row index can be performed
again to avoid insertion, however, selecting the right new
layer index is not trivial. Vertices with smaller energy
levels than ¢ were part of one smooth boundary forming
the connected component. The contour lines are build by
using the sharp boundary defined by the constant ¢, so
there is no mapping between those vertices of the smooth
boundary and the connected components. Therefore, a

controlled flooding algorithm [12] is used to select the cor-
rect child layer for the vertices of the smooth boundary. It
starts from the vertices forming one connected component
and looks at all neighbor vertices. If a neighbor vertex has
an energy level smaller than c, it is considered as part of
the same connected component and is transferred to the
new layer of this connected component. Transferred ver-
tices are the start vertices of the next iteration. Vertices
with the energy level of zero are not part of the bound-
ary and are ignored. Those signal the end of the smooth
boundary. This is repeated until no more start vertices are
marked in the last iteration.

4.3.3 Removal of border between parent and children

After splitting, the child layer has two smooth bound-
aries. One boundary will advance further on the mesh,
and the second one will stay at the initial start vertices,
representing the border between the parent and the child
layer. This goes against the idea of having only one bound-
ary/connected component on a layer. This is solved by
modifying the Laplacian matrix to prohibit the diffusion
of energy over faces connecting the parent layer with the
child layers. By erasing all values corresponding to the
contour triangles and vertices, which have a higher value
than c, the diffusion is stopped between those layers. Ad-
ditionally, the edges going across these regions are re-
moved from the edge list used to extract the contour lines
by using the same controlled flooding algorithm. This re-
sults in not detecting the sharp boundary between the child
and parent layers.

Initialize fields with one starting layer;
add Reeb node;
while more than one active layer do
for each active layer i do
calculate the number (n) of connected
components;
if More than one component then
calculate exact connected components;
split into n new layers;
add n new Reeb nodes for each layer;
mark new layers as active;
mark current layers is inactive;
end
if zero components or layer growth halted
then
mark layer as inactive;
add Reeb node for layer;
end

end
end
check for merging connected components;

Algorithm 1: Overview of the Natural Reeb graph ex-
traction method

Proceedings of CESCG 2020: The 24" Central European Seminar on Computer Graphics (non-peer-reviewed)



Mesh(Triangles) Total | Fields update | Contour extraction | CCL
Hand Pierre (1.5M) | 23.183 17.332 32.87 1.232
Male (1.4M) 40.604 28.657 7.222 2.434
Dragon (900K) 21.973 15.319 3.075 1.445
Hand arc [1] (800K) | 15.147 11.009 2.086 1.170
Deer (100K) 3.079 1.240 0.546 0.789
Human (50k) 1.373 0.384 0.262 0.467
Table 1: Runtime in seconds for different sized meshes. Only important steps of the method, in terms of runtime, are
listed.
5 Results

To illustrate the Natural Reeb graphs more clearly, they
are embedded into the mesh by sampling the location for
a critical point as the barycenter of the respective contour
line. Additionally to the figures presented in this section,
a video! demonstrating this process is also provided. Fig-
ure 7 shows such embeddings for different meshes. The
start vertex was selected randomly. The effect of different
starting points is visualized in Figure 8. In each exam-
ple in Figure 8 the start vertex is highlighted with a red
sphere. These examples show that the Natural Reeb graph
is only influenced in the local neighborhood of the start
vertex. For parts of the mesh further away, the Natural
Reeb graph looks exactly the same as for different starting
starting vertices.

ttps://youtu.be/t sX8iVIRNEU

Figure 7: Natural Reeb graphs embedded into the mesh.
For each splitting nodes are inserted for the splitting layer
and all child layers.

Figure 8: Natural Reeb graphs embedded into the mesh.

Each example has a different start vertex highlighted in
red.

5.1 Runtime

Table 1 shows the total runtime and detailed information
about each runtime intesive step for various meshes. An
important observation is that the Natural Reeb graph ex-
traction only takes about one-quarter of the runtime the
update step of Layered fields needs. This lowers the pos-
sible gains in runtime when further optimizing the imple-
mentation of our method.

6 Memory consumption

The reported numbers in Table 2, do contain the complete
memory usage on the GPU, including Layered fields and
our method. The system memory usage stays below the
usage on the GPU and is therefore not reported. As ex-
pected, the memory consumption grows linearly with the
number of triangles. Our method only creates the edge
list for contour extraction, which scales linearly with the
number of triangles. The capacity needed for other helper
structures depends on the contour line size, which stays
well below the number of faces of the whole mesh.

Proceedings of CESCG 2020: The 24" Central European Seminar on Computer Graphics (non-peer-reviewed)


https://youtu.be/tsX8iV1RNEU

Mesh Memory consumption

Total | Per triangle
Hand Pierre (1.5M) | 424MB 0.26kB
Male (1.4M) 416MB 0.29kB
Dragon (900K) 294MB 0.32kB
Hand arc (800K) 262MB 0.32kB
Deer (100K) 86MB 0.86kB
Human (50k) 72MB 1.44kB

Table 2: Memory consumption on the GPU for various
meshes. This includes memory allocated by the Layered
fields implementation and our method.

7 Conclusion

To conclude, in this paper we introduce Natural Reeb
graphs, which avoid difficulties existing Reeb graph based
applications are facing. By replacing the explicit mapping
function of traditional Reeb graphs, Natural Reeb graphs
can be used in an automatic application setting because
no user input is required. Different start vertices only in-
fluence the local neighborhood. Therefore, Natural Reeb
graphs provide a meaningful representation of the mesh
independent of the exact start vertex. For future work
we want to further explore the indepence of Natural Reeb
Graphs to their starting position. Combining multiple Nat-
ural Reeb Graphs from different starting regions to remove
the areas influenced by the starting positions might im-
prove our results.

This combination might be especially useful for shape
matching, because the produced shape description would
be invariant to the orientation and trasformation of the
mesh.

References

[1] 73d hand scan” by artec3d.com, licensed under cc by
3.0, 2019.

[2] Waleed Abbas and A. Hamza. Reeb graph path dis-
similarity for 3d object matching and retrieval. The
Visual Computer, 28:305-318, 03 2012.

[3] A. Acharya and V. Natarajan. A parallel and mem-
ory efficient algorithm for constructing the contour
tree. In 2015 IEEE Pacific Visualization Symposium,
pages 271-278, April 2015.

[4] Xiaoyin Ge, Issam I. Safa, Mikhail Belkin, and
Yusu Wang. Data skeletonization via reeb graphs.
In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. Pereira, and K. Q. Weinberger, editors, Advances

in Neural Information Processing Systems 24, pages
837-845. Curran Associates, Inc., 2011.

[5] Masaki Hilaga, Yoshihisa Shinagawa, Taku Komura,
and Tosiyasu Kunii. Topology matching for fully
automatic similarity estimation of 3d shapes. pages
203-212, 01 2001.

[6] P. Kanonchayos, T. Nishita, S. Yoshihisa, and T. L.
Kunii. Topological morphing using reeb graphs. In
Proceedings of the First International Symposium on
Cyber Worlds (CW’02), CW ’02, page 0465, USA,
2002. IEEE Computer Society.

[7] Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bre-
mer, and Ajith Mascarenhas. Robust on-line compu-
tation of reeb graphs: Simplicity and speed. In ACM
SIGGRAPH 2007 Papers, SIGGRAPH ’07, 2007.

[8] Georges Reeb. Sur les points singuliers d’une forme
de pfaff completement integrable ou d’une fonction
numerique [on the singular points of a completely
integrable pfaff form or of a numerical function].
Comptes Rendus Acad. Sciences Paris, 222:847-849,
1946.

[9] Yossi Shiloach and Uzi Vishkin. An o(logn) paral-
lel connectivity algorithm. Journal of Algorithms,
3(1):57 - 67, 1982.

[10] Y. Shinagawa, T. L. Kunii, and Y. L. Kergosien. Sur-
face coding based on morse theory. IEEE Computer
Graphics and Applications, 11(5):66-78, Sep. 1991.

[11] Jyothish Soman, Kishore Kothapalli, and P J
Narayanan. Some gpu algorithms for graph con-
nected components and spanning tree. Parallel Pro-
cessing Letters, 20(04):325-339, 2010.

[12] Andrew S. Tanenbaum.
Prentice-Hall, 1981.

Computer Networks.

[13] J. Tierny, J. Vandeborre, and M. Daoudi. Invariant
high level reeb graphs of 3d polygonal meshes. In
Third International Symposium on 3D Data Process-
ing, Visualization, and Transmission (3DPVT’ 06),
pages 105-112, 2006.

[14] Naoufel Werghi, Yijun Xiao, and Jan Siebert. A
functional-based segmentation of human body scans
in arbitrary postures. Systems, Man, and Cyber-

netics, Part B: Cybernetics, IEEE Transactions on,
36:153 — 165, 03 2006.

[15] Rhaleb Zayer, Daniel Mlakar, Markus Steinberger,
and Hans-Peter Seidel. Layered fields for natural tes-
sellations on surfaces. ACM Trans. Graph., 37(6),
December 2018.

Proceedings of CESCG 2020: The 24" Central European Seminar on Computer Graphics (non-peer-reviewed)



	Introduction
	Background and Related Work
	Layered Fields
	Reeb Graph methods

	Natural Reeb graph computation using Layered Fields
	Contour Lines for Natural Reeb graphs
	Track connected components
	Layer Splitting
	Vanishing Components
	Merging Components
	Method summary

	Implementation
	Contour edges
	Component counting-labeling
	Layer splitting
	Transfer discrete boundary
	Transfer smooth boundary
	Removal of border between parent and children


	Results
	Runtime

	Memory consumption
	Conclusion

