
Using Game Engine to Generate Synthetic Datasets for Machine
Learning

Tomáš Bubenı́ček∗

Supervised by: Jiri Bittner†

Department of Computer Graphics and Interaction
Czech Technical University in Prague

Prague / Czech Republic

Abstract

Datasets for use in computer vision machine learning are
often challenging to acquire. Often, datasets are created
either using hand-labeling or via expensive measurements.
In this paper, we characterize different augmented image
data used in computer vision machine learning tasks and
propose a method of generating such data synthetically us-
ing a game engine. We implement a Unity plugin for cre-
ating such augmented image data outputs, usable in exist-
ing Unity projects. The implementation allows for RGB
lit output and several ground-truth outputs, such as depth
and normal information, object or category segmentation,
motion segmentation, forward and backward optical flow
and occlusions, 2D and 3D bounding boxes, and camera
parameters. We also explore the possibilities of added re-
alism by using an external path-tracing renderer instead of
the rasterization pipeline, which is currently the standard
in most game engines. We demonstrate our tool by cre-
ating configurable example scenes, which are specifically
designed for training machine learning algorithms.

Keywords: Computer vision, Dataset generation, Game
engines, Machine learning

1 Introduction

Augmented image data such as semantic segmentation
help machines separate parts in factory lines, using opti-
cal flow data for video compression reduces redundancy,
and depth and normals data are useful for approximating
a 3D scene topology. Acquiring these image data is often
very difficult, cost-prohibitive, or sometimes even impos-
sible. The state-of-the-art research uses machine learning
and neural networks to process images shot by a camera
and generate augmented data. Training such algorithms
requires a large number of ground-truth data, which is not
always available.

For some cases, such as object categorization, broad, of-
ten human-labeled, datasets are already publicly available.

∗tombuben@gmail.com
†bittner@fel.cvut.cz

However, for some augmented image data (such as optical
flow data), the real measured data is often sparse or not
measurable by conventional sensors in general. For this
very reason, synthetic datasets, which are acquired purely
using a simulated scene, are often used.

Several such synthetic datasets based on virtual scenes
already exist and were proven to be useful for machine
learning tasks, such as one presented by Mayer et al. [6].
They used a modified version of Blender 3D creation suite,
which was able to output additional augmented image data
such as optical flow information and segmentation. What
is missing is a way for others to create their data in an
easy-to-use environment, as the modified Blender suite is
not available, and it is not straightforward to add differ-
ent types of output to its rendering. This paper presents a
method of generating such datasets using a game engine
in a way where a game scene can be easily modified to
provide such outputs. We also present an example config-
urable scene specifically created for optical flow training,
BouncingThings.

In Section 2, we describe a selection of currently used
datasets and tools enabling synthetic dataset generation.
In Section 3, we discuss the needed features a tool used to
generate synthetic datasets should have. Finally, in Sec-
tion 4, we present our own implementation of such a tool.

2 Related Work

Data used for object segmentation are probably the biggest
and most common datasets currently available. For exam-
ple, the COCO (Common Objects in Context) [14] dataset
contains over 200 thousand human-labeled real-life im-
ages and is useful for training networks to recognize ob-
jects located in photos.

Less common, but still readily obtainable, are real-life
datasets containing depth, which can be useful for scene
reconstruction. A combination of LIDAR and camera
mounted on a car is usually the source of these datasets.
This type of measurement is the case for the KITTI
datasets [11][15] and the Waymo dataset [7], targeted
for autonomous driving car development. ScanNet [5], a
different dataset with depth information, uses a different

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



method of sourcing such data, using off-the-shelf compo-
nents such as a tablet and a 3D scanning sensor.

One segment where there are issues in obtaining real-
life datasets is optical flow information. Optical flow
data describes for each pixel in two successive frames the
change of position of the surface the pixel represents. Only
a very few datasets are containing real measured data, such
as the Middlebury dataset [8] released in 2007. The cam-
era shows small scenes covered with a fluorescent paint
pattern captured under both visible and UV light. Since
the fluorescent paint is evident under the UV lighting, the
ground truth data was recoverable. As this method is com-
plicated to reproduce, only eight short sequences using this
method exist.

KITTI [11][15], also containing real-life optical flow
data, calculated the data with the help of a LIDAR and ego-
motion of the car. Due to the way the calculation works,
the framerate of the flow data is tenth the framerate of the
camera itself and is only available for static parts of the
scene.

Capturing the optical flow in real-life scenes is a diffi-
cult task, so most other datasets build on synthetic gener-
ation. The first synthetic datasets used for evaluating opti-
cal flow estimation algorithms date back as early as 1994,
where Barron, J. et al. [1] used a Yosemite Flow Sequences
dataset showing a 3D visualization of the Yosemite moun-
tain range. In Middlebury [8], the eight remaining short
scenes available are synthetic scenes rendered using the
realistic MantaRay renderer. FlyingChairs [4] is an-
other noteworthy synthetic dataset, later extended into Fly-
ingThings3D [6]; Simple objects (e.g., chairs) floating
along random trajectories are rendered using a modified
version of the open-source Blender renderer, which allows
the reading of optical flow data. Surprisingly, this abstract
movement, which has no relation to the real behavior of
moving objects (the objects pass through each other), has
been shown as an effective way of training neural net-
works. The use of a modified Blender renderer also al-
lowed for datasets based on scenes from open-source an-
imated shorts, Sintel [2] and Monkaa [6]. Although the
use of the preexisting projects is excellent for more diverse
outputs, it can also cause issues – for some use cases, cam-
era behavior such as a change in focus may not be desir-
able.

A recent CrowdFlow dataset [16] shows aerial views of
large crowds of people rendered in Unreal Engine. This
dataset shows that for some uses, datasets specialized for
a single task could be beneficial. In this case, the dataset
targets tracking behavior in large crowds.

2.1 Synthetic dataset generators

The previously mentioned synthetic datasets were all pub-
lished only as final renders wihtout any tool for generat-
ing or modifying them, but several utilities for simplified
creation of computer vision datasets already exist. Some
of them are a part of more massive simulators, such as

CARLA [3], an autonomous car simulator, or AirSim [17],
a simulator for autonomous drones and cars. Both of these
utilities build on Unreal Engine and provide both C++ and
Python APIs to control vehicles in the scene, including
retrieving of synthetic image data from virtual sensors at-
tached to the vehicles. Their primary purpose is not the
generation of new datasets but simulating entire road or
sky scenes for virtual vehicles to move in, so the types of
augmented image data are limited mostly to basic types
such as depth or segmentation maps.

There are some preexisting plugins for game engines
that enable the acquisition of augmented image data. One
of which is NVIDIA Deep learning Dataset Synthesizer
(NDDS) [9], which, built on Unreal Engine, provides
blueprints to access depth and segmentation data, along
with bounding box metadata and additional components
for creation of randomized scenes. Another option built
on top of Unreal Engine is UnrealCV [10], which, com-
pared to NDDS, exposes Python API to capture the im-
ages programmatically and directly feed them to a neural
network. The API allows interacting with objects in the
scene, setting labeling colors for segmentation and retriev-
ing of depth, normal, or segmentation image data. The
system is virtually plug-and-play, where the plugin can be
added to an existing Unreal Engine project or game and
start generating augmented image data.

By default, the Unreal Engine does not provide access
to motion vector data, which represents backward optical
flow from the current to the previous frame. Nevertheless,
since the source code is available, such functionality can
be enabled by modifying the source code and recompiling
the engine. Unreal Optical Flow Demo [12] presents a
patch enabling the functionality used in Unreal based robot
simulator Pavilion [13].

The last generator analyzed is a simple plugin for the
Unity game engine. ML-ImageSynthesis [19] is a script
providing augmented image data for object segmentation
and categorization, depth and normal maps. In contrast to
other previously mentioned plugins, it also provides back-
ward optical flow data, which is obtained from Unity mo-
tion vectors.

3 Data creation framework

When designing systems to generate synthetic datasets,
the designers need to take special care. Jonas Wulf et
al. [18] present several issues that can arise when creating
a dataset containing optical flow output. As such, when
designing the utility, a platform on which we build on is
important. We have selected Unity game engine as the
platform to develop the application on, mainly because of
a straightforward access to motion vectors, ease of use,
and the possibility of an integration with third party path
tracing renderer OctaneRender.

The utility consists of two parts: FlowGen, a reusable
component for generating augmented images and other

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



metadata, and BouncingThings, a scene useful for train-
ing optical flow detection. Optionally, we can use the Oc-
taneRender for Unity plugin to get path traced images with
realistic lighting and motion blur. The Figure 1 shows a
schematic overview of our tool.

We propose the following set of different outputs gener-
ated by FlowGen:

• RGB output. Camera data as generated by the Unity
rasterizer.

• Segmentation outputs. For each pixel, an ID of the
represented object is encoded.

• Motion segmentation mask. For each pixel, an infor-
mation whether the represented surface is moving in
world space is encoded.

• Optical flow (backward and forward). For each pixel,
an information how the represented surface moves in
the previous or next frame is encoded.

• Occlusion masks. For each pixel, an information
whether the represented surface is visible in the pre-
vious or next frame is encoded.

• Depth and normal map outputs. Per pixel information
provided by Unity z-buffer and geometry transform.

• Camera parameters. Metadata information including
the camera matrix, position, rotation and configura-
tion.

• Bounding box information. Metadata containing info
about select tracked objects.

When using a game engine, we can implement most of
the image outputs as relatively simple shader programs run
on the GPU. The metadata outputs are produced on the
CPU and saved as json files for easy parsing.

BouncingThings, the scene provided in the utility is
conceptually based on FlyingThings3D [6]. It contains a
set of flying objects which float in the scene randomly. In
contrast to previous datasets, it uses a rigid-body physics
simulation, so the objects do not intersect each other, and
allows user configuration. The user can change which ob-
jects are used, how many objects are used and what is their
minimum and maximum speed.

4 Results

This paper presents example outputs using the Bounc-
ingThings scene. Figure 2 shows different types of RGB
output generated using our system. We allow for Unity
to generate output with or without shadow maps, and the
OctaneRender for Unity plugin allows for the creation of
path-traced outputs.

In Figure 3, we show different possible segmentation
outputs. We provide outputs for motion segmentation, seg-
menting all GameObjects separately and segmenting ob-
jects sharing common meshes.

Unity Editor

Scene
FlowGen script

OctaneRender 
for Unity plugin

.ORBX 
file

OctaneRender 
Standalone

Rasterized 
outputs:

● RGB
● Flow
● ...

Path traced 
output with 
realistic lighting 
and motion blur

Figure 1: Diagram of data output sources.

Figure 2: Image outputs with increasing levels of light-
ing realism. Left to right: Unity rasterizer without shad-
ows, Unity rasterizer with shadow mapping, OctaneRen-
der path-tracer.

The Unity engine provides easy access to depth z-buffer,
per-pixel normals, and motion vectors (which represent
backward optical flow). These outputs are visible in Fig-
ure 4.

Figure 5 shows our implementation of optical flow and
occlusions computation. We provide our method of com-
puting forward and backward optical flow based on re-
membering the transformation matrices of all objects in
the previous frame and reprojecting them.

We configured the scene with a set of car models, both
static and physically simulated. It contains transparent and
specular materials. These properties can cause issues for
machine learning, and therefore we plan to extend the out-
puts with transparency and specularity masks.

Figure 3: A selection of segmentation masks outputs. Left
to right: motion segmentation, mesh segmentation, object
segmentation.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 4: A selection of Unity provided outputs. Left to
right: depth map, normal map, motion Vectors.

Figure 5: A selection of outputs calculated using reprojec-
tion from previous frames. Left to right: forward optical
flow, backward occlusions, backward optical flow.

5 Conclusions

We have introduced a utility simplifying the creation of
synthetic datasets and a scene suitable to train machine
learning algorithms to detect optical flow. Our motivation
is to create datasets used to train machine learning algo-
rithms and evaluate already existing algorithms. Although
we target the scene at optical flow estimation, the dataset is
useful to estimate other quantities, such as object segmen-
tation, depth information, or object tracking. We work on
verification of our data for motion estimation, segmenta-
tion, and 3D object detection and tracking. We plan to
publish our tool and the dataset in the near future and be-
lieve that our utility will boost machine learning research
for challenging tasks in computer vision, as it allows other
researchers to create additional datasets based on their own
needs.

Acknowledgments

This research was supported by Toyota Motor Europe and
by the Grant Agency of the Czech Technical University in
Prague, grant No. SGS19/179/OHK3/3T/13.

References

[1] John L Barron, David J Fleet, and Steven S Beau-
chemin. Performance of optical flow techniques. In-
ternational journal of computer vision, 12(1):43–77,
1994.

[2] D. J. Butler, J. Wulff, G. B. Stanley, and M. J.
Black. A naturalistic open source movie for optical

flow evaluation. In European Conf. on Computer Vi-
sion (ECCV), Part IV, LNCS 7577, pages 611–625.
Springer-Verlag, 2012.

[3] Alexey Dosovitskiy, German Ros, Felipe Codevilla,
Antonio Lopez, and Vladlen Koltun. CARLA: An
open urban driving simulator. In Proceedings of the
1st Annual Conference on Robot Learning, pages 1–
16, 2017.

[4] A. Dosovitskiy et al. Flownet: Learning op-
tical flow with convolutional networks. In
IEEE International Conference on Computer Vi-
sion (ICCV), 2015. http://lmb.informatik.uni-
freiburg.de/Publications/2015/DFIB15.

[5] Angela Dai et al. Scannet: Richly-annotated 3d re-
constructions of indoor scenes. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 5828–5839, 2017.

[6] N. Mayer et al. A large dataset to train convolutional
networks for disparity, optical flow, and scene flow
estimation. In IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR),
2016. arXiv:1512.02134. http://lmb.informatik.uni-
freiburg.de/Publications/2016/MIFDB16.

[7] Pei Sun et al. Scalability in perception for au-
tonomous driving: Waymo open dataset, 2019.

[8] Simon Baker et. al. A database and evaluation
methodology for optical flow. International Journal
of Computer Vision, 92(1):1–31, 2011.

[9] Thang To et al. NDDS: NVIDIA
deep learning dataset synthesizer, 2018.
https://github.com/NVIDIA/Dataset Synthesizer
.

[10] Weichao Qiu et al. Unrealcv: Virtual worlds for com-
puter vision. ACM Multimedia Open Source Soft-
ware Competition, 2017.

[11] A. Geiger, P. Lenz, and R. Urtasun. Are we ready
for autonomous driving? the kitti vision benchmark
suite. In 2012 IEEE Conference on Computer Vision
and Pattern Recognition, pages 3354–3361, 2012.

[12] Fan Jiang. Unreal optical flow demo, August 2018.

[13] Fan Jiang and Qi Hao. Pavilion: Bridging photo-
realism and robotics. In Robotics and Automation
(ICRA), 2019 IEEE International Conference on,
May 2019.

[14] Tsung-Yi et al. Lin. Microsoft coco: Common ob-
jects in context. In European conference on computer
vision, pages 740–755. Springer, 2014.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)



[15] Moritz Menze and Andreas Geiger. Object scene
flow for autonomous vehicles. In Conference on
Computer Vision and Pattern Recognition (CVPR),
2015.

[16] Gregory Schröder, Tobias Senst, Erik Bochinski, and
Thomas Sikora. Optical flow dataset and benchmark
for visual crowd analysis. In IEEE International
Conference on Advanced Video and Signals-based
Surveillance, 2018.

[17] Shital Shah, Debadeepta Dey, Chris Lovett, and
Ashish Kapoor. Airsim: High-fidelity visual and
physical simulation for autonomous vehicles. In
Field and Service Robotics, 2017.

[18] Jonas Wulff, Daniel J Butler, Garrett B Stanley, and
Michael J Black. Lessons and insights from creat-
ing a synthetic optical flow benchmark. In Euro-
pean Conference on Computer Vision, pages 168–
177. Springer, 2012.

[19] Renaldas Zioma. Image synthesis for machine learn-
ing, December 2016. https://bitbucket.org/Unity-
Technologies/ml-imagesynthesis/.

Proceedings of CESCG 2019: The 23rd Central European Seminar on Computer Graphics (non-peer-reviewed)


