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Abstract

Early diagnosis of breast cancer using microscopic anal-
ysis of tissue is a prerequisite for its treatment. This
process is time-consuming and difficult due to the inter-
intraclass variance of histopathology data, the vast size
of histopathology slides, and environmental influences on
pathologists. A robust, unbiased diagnostic assistance
tool, resistant to outside influences would be of utmost
help for pathologists performing the diagnosis.

We propose an end-to-end framework for processing
Whole Slide Images (WSI) and their analysis using meth-
ods of computer vision and deep learning.

Multiple deep learning models are used to apply their
knowledge to new WSIs, creating complex analyses,
which may be used to assist with diagnosis. Our system is
fast enough for everyday use and may speed up the work-
flow and ease up the workload of medical experts perform-
ing the analysis of tissue.

Keywords: Computer Vision, Deep Learning, Deep Con-
volutional Networks, Classification

1 Introduction

Cancer is a collection of related diseases that occur inside
the human body. Breast cancer is the most common form
of cancer among women. Early diagnosis is a prerequi-
site for its treatment. Microscopic analysis of tissue is re-
quired for its definitive diagnosis. This process is time-
consuming and difficult due to the inter-intraclass vari-
ance of histopathology data, the vast size of histopathol-
ogy slides, and environmental influences on pathologists.
All of these reasons lead to a need for an unbiased de-
cision support histopathology tissue analysis system, free
of environmental influence, capable, reliable, and robust
enough to assist pathologists with their analysis.

We propose a framework for automatic processing of
Whole Slide Images and subsequent use of the WSIs to
train deep learning models, with a focus on a specific task,
that, in the context of our framework, we call Experts. An
overview of our proposed framework is shown in Figure 1.
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Whole Slide Images are processed by a module we de-
sign, called WSI Analyzer, that manages matching anno-
tation to the WSI, and hierarchically organizing the data.
WSIs processed by WSI Analyzer are subsequently used
by another module we design - WSI Generator to produce
large sets of data based on multiple parameters.

WSI Analyzer may also be used to produce a completely
new analysis, using an Expert. The Expert is able to apply
their knowledge to a new WSI, creating an analysis. The
analysis may be used by doctors as a helping tool, or a
standalone diagnostic.

We also propose several Experts using binary and multi-
class classification, which when combined create such a
diagnostic and an Expert for enhancing the multi-class
classification results by bringing attention to different lev-
els of zoom for different inputs - tumor types.

We evaluate our approach against state-of-the-art meth-
ods in the domain, quantitatively, but also against each
other, with a focus on the enhancements, and empiri-
cally. Our contributions include: 1) An automatic uni-
versal framework for WSI processing, and data genera-
tion, able to handle large datasets - in the form of multiple
WSIs and help train deep learning models to achieve state-
of-the-art results. 2) Complex analysis of WSIs using mul-
tiple deep learning models, taking into account contextual
and detailed information, mimicking analysis performed
by a histopathologist. 3) A deep learning model with a
special architecture capable of enhancing multi-class clas-
sification prediction results.

2 Related Work

Classification of breast cancer histopathology visual data
and creation of automatic systems for breast cancer diag-
nosis is the focus of many recent works. As soon as it
was possible to scan and load medical images into a com-
puter, researchers have built systems for automated analy-
sis [5]. Over time, the systems became more sophisticated
and lately the most popular are the ones using Deep learn-
ing.

Spanhol et al. [6] create a large dataset called BreakHis
consisting of 7909 images, containing 8 breast tumor types
and also provide baseline results using traditional com-
puter vision methods for feature extractions and traditional
machine learning methods for classification. What Span-
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Figure 1: Overview of our system - Horizontal flow = training, vertical flow = analysis of new WSIs. The WSIs and their
annotations are processed using WSI Analyzer. Annotation regions are matched to WSI, bad quality regions are assessed
and windows of different zooms are selected from the WSI. WSI Analyzers are used to provide images with annotations
to WSI Generators, which are used to train Experts. Leveraging the flexibility and customizability of the Analyzers and
Generators, an Expert may be trained for numerous amount of tasks. The Experts are then used to produce complex
analyses of unknown WSIs by combining simpler analyses.

hol stresses is the complex nature of histopathology data
due to the large visual disunity of structures within tumor
types, thus making the classification task to be even more
difficult.

Bayramoglu et al. [2] focus their research on magnifi-
cation invariant classification of breast histopathology im-
ages using a modern approach leveraging the power of
deep learning to replace the whole traditional pipeline.
Concluding their work, the authors remark that CNNs pro-
vide more promising results in breast cancer histopathol-
ogy image classification than handcrafted features.

Han et al. [3] use an end-to-end deep learning recogni-
tion method using a newly proposed model capable of not
only binary but also multi-class classification. Their moti-
vation and primary problems identified with histopathol-
ogy visual data are consistent with other works - dif-
ferences in multiple classes due to the broad variability
of high-resolution image appearances, high coherency of
cancerous cells, and inhomogeneity of color distribution.
They propose a class structure-based deep convolutional
neural network (CSDCNN) capable of overcoming the
problems mentioned above by optimizing the distance of
different classes’ feature space in the training stage. They

achieve state-of-the-art results both in binary and multi-
class classification. Concluding their work they lay em-
phasis on their work being the first time that automated
multi-class classification for breast cancer is investigated
in histopathological images. They also point out that CS-
DCNN is capable of classifying whole slide images by
preserving fully global information contained within the
images and therefore avoids the limitations of patch ex-
traction methods.

Li et al. [4] present a framework for epithelial cell de-
tection and Gleason grading based on histological images
using a two-stage model. Their work focuses on analyzing
histopathology images of prostate cancer which includes
stroma (tissue) and glands with stroma holding the glands
together. They propose a novel model that can automati-
cally diagnose prostate cancer and perform Gleason grad-
ing based on histological whole slide images. The model
consists of the Image parser - ResNet used to generate
feature maps, the Region Proposal Network - generates
region proposals, the Grading Network Head - used for
predicting class, box offset, and a binary mask for each re-
gion, the Epithelial Network Head - detects the presence
of epithelial cells in the image, and a post-processing step
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based on a conditional random field which is applied to the
prediction. They note that the model is inspired by Mask
R-CNN. Their approach achieves state-of-the-art perfor-
mance in both epithelial cells detection, with the accuracy
of 99.07%, as well as Gleason grading, with a mean IoU
of 0.7956

Being able to meaningfully assist doctors with the anal-
ysis would help speed up their workflow. Analyzing only
zoomed-in and detailed windows of tissue is not enough
help for the doctors, as often they are only presented with
an unexplained result of classification, produced by a deep
learning model, which is a black-box in its nature. The
task is also difficult for the network, as it is presented
solely with zoomed-in detailed images, and does not see
the context, which could provide useful additional infor-
mation. Using our framework, we aim to ease up the task
for the network by introducing contextual information for
every zoomed-in window, thus creating an analysis of the
whole WSI, which in turn may be used by the doctors. Fur-
thermore, we aim to employ a method to solve the inter-
intraclass variance, leveraging different levels of zoom.

3 Framework for WSI Analysis

Due to its vast size and multiple levels of zoom, the WSI
contains a gigantic amount of data. Accessing this data,
binding annotation to regions, and using it efficiently (gen-
erating a batch for training a model must not take too long)
is a challenging task. To address this challenge, we pro-
pose a two-stage universal framework for complex WSI
analysis consisting of Data Processing and Data Analysis
pipelines.

The data processing part consists of two main units - the
WSI Analyzer and the WSI Generator. WSI Analyzer is
used to manage WSI and its annotation, and, upon request,
produce images with annotations. These images may sub-
sequently be used by a WSI Generator to train a machine
learning model.

The data analysis part produces analyses for new, pre-
viously unseen WSIs. WSI Analyzer is used for this task
as well, however, since the ground truth annotation is not
input (since it does not exist for a completely new WSI), a
machine learning model capable of analyzing images must
be used instead. Using this model, the WSI Analyzer is
able to infer annotations for different regions of the WSI
using multi-level analysis. Multiple models may be used,
producing complex combined analysis.

Analyzing the whole WSI using multiple zoom levels
yields a complex multi-level analysis capturing both high-
zoom details and also their lower-zoom context, and there-
fore is comparable to analysis performed by a human.

3.1 WSI Analyzer

The main function of WSI Analyzer is enabling easy ac-
cess to multiple levels of data contained within a WSI,

along with their annotations. When using the WSI Ana-
lyzer to process the WSI, it is split into smaller windows
using a complete Quadtree (T-pyramid), in order to as-
sess each of the windows’ quality and an in-memory data
structure containing information about the positions, sizes,
types, and quality of each window is created for future ac-
cess to the images.

To properly utilize the whole of the WSI and extract as
much information as possible, images across all zoom lev-
els are considered for analysis. Splitting for multiple lev-
els is visualized in Figure 2. We employ T-pyramid with
the aim to manage the images while keeping the pyramid
structure of different zoom levels. Using the T-pyramid
structure, we can easily combine specific information - ac-
quired from higher zoom level images, with contextual in-
formation - from lower zoom level images.

Figure 2: Visualization of first three levels of the T-
pyramid.

3.1.1 Annotation Using the R-Tree

With WSI and its annotation as an input, the WSI Ana-
lyzer constructs an R-tree of the regions contained in the
annotation. The R-tree is a search tree over axis-aligned
rectangular regions, mainly used for spatial indexing and
accessing geographical data, which are not dissimilar to
our annotated regions. Using such a structure provides a
convenient way of performing spatial queries on images,
in the form of square-shaped regions. Spatially intersect-
ing these square regions with the R-tree index, where an-
notation information about regions of the WSI is stored
(as shown in Figure 3), we achieve a fast way to assess
whether an image belongs to at least one tumor region, and
if so, how much area of the image belongs to each region.
Having access to such data, we can create actual annota-
tions for each image within the T-pyramid by assigning
each Quad a class.

3.1.2 Producing Images and Annotation

WSI Analyzers can select quads along with their assess-
ments to create a batch of images with their corresponding
annotations, based on multiple parameters: classes to use,
zoom levels, quality of images produced (we can exclude
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Figure 3: Visualization of first-level quads intersected with
annotation regions. Green windows represent quads, dif-
ferent colors of regions mean different tumor type.

images that we consider bad quality - i.e. regions that are
too white as they contain only background or fat), batch
size, custom preprocess function applied to each image,
size of generated images. To achieve the use of differ-
ent parameters, a Parametrized Batch Producer is created
for each class contained within the WSI. These producers
then manage the creation of parts of the batches by provid-
ing images and annotations of their assigned class, which
when combined produce a whole, perfectly balanced batch
containing samples from each class. Parametrized batch
producers may also be used with different, already men-
tioned, parameters, fine-tuning the batch production to all
our needs.

3.2 WSI Generator

We use WSI Generators to produce training data in a for-
mat accepted by the models. WSI Generators may use
multiple WSI Analyzers to request data from, and thus the
final model is allowed to train on a vast set of different im-
ages and therefore generalize well. When the Generator
unit is created, all classes from across all WSI Analyzers
used are considered and unified, ensuring that each WSI
Analyzer has the same classes present, which is needed
for consistent one-hot encoding of the labels.

The Generator unit is designed with different types of
machine learning tasks in mind - multiclass classification,
binary classification, and even segmentation, and is able to
produce data with different labels used by different mod-
els.

4 Deep Learning Experts

The WSI Analyzer unit may also be used to analyze WSIs
with unknown annotation. In this case, at least one Ex-
pert has to be provided when creating the WSI Analyzer.
The steps taken are the same as in the case annotation
is present, except the R-tree is not constructed. Instead,

along with assessing the quality of images, their type is
also assessed using the analyzing model or models.

After the WSI is analyzed, an analysis containing the
findings can be produced using results of the analysis
recorded within the T-pyramid Quads. When creating the
analysis, information from lower zoom nodes is combined
with higher zoom nodes. If multiple Experts are used, mul-
tiple assessments are contained inside each node. The fi-
nal analysis is, depending on the Experts used, a complex
analysis of the slide. Analyses may be also generated for
every Expert separately.

4.1 Dataset

ICIAR 2018 [1] dataset was used to train the Experts. The
dataset consists of 10 annotated WSIs, 9 of which were
used for training of our Experts and 1 was used for eval-
uation. The annotations associated with the WSIs contain
3 classes of damaged tissue - Benign, In situ, and Invasive
carcinomas. Visualization of the annotation may be seen
in Figure 10, right, with each of the RGB channels repre-
senting a single class. The annotation may also be used to
divide the WSI into damaged and non-damaged regions,
producing a binary analysis (shown in Figure 9, right).

4.2 Binary Classification Expert

The first Expert we design produces binary classification
of the WSI into regions that should be analyzed further
and ones that should not be. Inspired by the inner work-
ings of Mask R-CNN, specifically its region proposal part,
described and used by Li et al.[4] in a similar domain, we
use the T-pyramid with a simple binary classifier to divide
the WSI into two parts - one that contains diagnostically
important structures, and one that does not (this part would
then contain only healthy tissue and fat).

We train and use this first Expert to distinguish between
healthy and damaged regions. This alone theoretically
gives enough pointers to the doctor while deciding on a
diagnosis, but what is more important, it may serve us to
propose regions with suspected damage for further anal-
ysis using other, more specialized Experts. Furthermore,
the total area which needs to be analyzed gets reduced,
which in turn saves time.

4.2.1 Binary Classification Expert Design

After initial experiments using a simple convolutional net-
work, we decided to rely on a network with already ex-
isting and well-established architecture InceptionV3 with
1 Dense(512) layer and 1 Dropout(0.3) layer added at the
end of the network. Scheme of the architecture is shown in
Figure 4. Out of multiple experiments using different pa-
rameters and configurations, the best validation accuracy
achieved was 0.8662.

The optimizer used with the best run was Adam with
learning rate of 1e−6, the batch size used was 32, and the
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model trained for 29 epochs before early stopping.

256x256x3 InceptionV3 512 0.3 1

Input layer Dropout layerDense layer

Figure 4: Architecture of the Binary Expert.

4.3 Multi-Class Classification Expert

After filtering out redundant structures using Binary Ex-
pert, we can focus purely on regions marked as damaged
and analyze them further, more into details. For this pur-
pose, we design a Multi-Class Classification Expert. The
Expert is able to distinguish between 3 different tumor
types contained withing the dataset we use - Benign, Car-
cinoma in Situ and Invasive Carcinoma.

4.3.1 Multi-Class Classification Expert Design

Considering the problems present within histopathology
data of breast, mentioned by both Spanhol [6] and Han [3],
but also other authors, we once more opt for a robust ar-
chitecture - InceptionResnetV2. This architecture provides
enough capacity to work out the differences and similari-
ties between, but also within the classes and perform well
enough multi-class classification. Following the same pat-
tern as in the previous experiment, we added 1 Dense(512)
layer and 1 Dropout(0.3) layer at the end of the network.
The scheme of the architecture is shown in Figure 5.

The optimizer used was Adam with the learning rate of
1e−7. The batch size used was 18, the model trained for
167 epochs before early stopping, and achieved the best
validation accuracy of 0.62.

256x256x3 InceptionResnetV2 512 0.3

3

Input layer Dropout layerDense layer

Figure 5: Architecture of the Multi-Class Expert.

4.4 Weighing Predictions Expert

Features that can be used to determine the tumor type are
best visible using different zoom levels for different tu-
mor types. For some tumor types, contextual information
is more relevant, while in other cases, more detailed in-
formation from higher zoom levels is the most useful. To
leverage the use of multiple zoom levels to the full extent,
we can assign different weights to different zooms, which

in turn puts more emphasis on different structures for dif-
ferent tumor types.

As we do not know which tumor type is the best com-
prehensible on which zoom level, we once again use the
power of deep learning to solve this problem. We pro-
pose a Weighing Expert, which can learn to assign differ-
ent weights to different zoom levels based on the structures
present.

4.4.1 Weighing Predictions Expert Design

The Expert consists of 6 separate networks (networks do
not share weights), and a single concatenate layer to join
the final values produced by each network. The simplified
schema of the architecture may be seen in Figure 6. Each
of the networks has its input, therefore each network op-
erates on a single level of T-pyramids created within the
WSI Analyzer. The output is 6d vector - a weight for each
of the levels. A multiclass label of ground truth annotation
along with 6 softmax labels, containing predictions of the
previous Expert, are used to calculate loss.

The loss for N classes (3 classes are used in our work) is
calculated as follows: first of all, the weights are repeated
N times, to achieve the shape of 6×N. The predictions
of previous Expert are multiplied by weights, producing
6×N matrix of weighted predictions -

Wpred = weights� predictions

The predictions are then summed to produce a Nd vec-
tor representing weighted multi-class label - Wsum, with
each class represented in this vector having value from the
range < 0,∞). Softmax is then applied to these labels, pro-
ducing WSo f tmax, and finally the loss is calculated as a cat-
egorical crossentropy between the gt labels and WSo f tmax
values.

Loss =−
N

∑
i=1

gti.log(WSo f tmaxi)

The optimizer used was Adam with the learning rate of
1e−4. The batch size used was 128, the model trained for
55 epochs before early stopping, and achieved the best loss
of 0.5814, and the best evaluation loss of 1.154.

5 Results

In this section, we evaluate the Experts trained. First,
we perform Expert level evaluation, focusing purely on
whether the Expert performs the task it is assigned to well.
In the second part, we perform WSI level evaluation, tak-
ing the context into account. All the metrics used to eval-
uate the different Experts are shown in Table 1

5.1 Expert Level Results

We first present the results for the network that represents
each Expert. We evaluate the Expert regardless of the
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Input Convolution Residual block BatchNormConcat Dense

3 4 8 16 16 24 32 64
2561 6

6x

Figure 6: Simplified architecture of the Weighing Expert. The network shown is repeated 5 more times to produce the
final 6d vector of weights. The number within Conv layers represent number of filters contained. Conv layers have the
stride of 2, therefore the image is halved in size with each convolution.

Table 1: The best results achieved by our Experts. Note:
IoU scores for Multi-Class and Weighing Experts are
macro-averaged.

Expert Classes Accuracy Precision Recall IoU
Binary 2 88.3% 91% 96% 0.74

Multi-Class 3 62.5% 63% 62% 0.44
Weighing 3 75.8% 53% 74% 0.46

”context”, to assess how well the Experts handle the tasks
they were made to perform. All of the results, compared
to other, state-of-the-art approaches are shown in Table 2.

Table 2: The best achieved results of analyzed methods for
classification. Last row are the best results achieved using
our training strategy with state-of-the-art nets.

Authors Approach
Number

of classes Accuracy

Spanhol et al.[6]
PFTAS descriptor +

Traditional classifiers 2 83.33%

Spanhol et al.[7] DCNN 2 87.28%

Bayramoglu et al.[2] DCNN, magnification independent 2 82.1%
DCNN, magnification specific 2 80.66%

Han et al.[3] CSDCNN 2 96.25%
CSDCNN + Aug 8 93,88%

Our Solution
InceptionV3 2 88.3%

InceptionResnetV2 3 62.5%
InceptionResnetV2 + WeighingNet 3 75.8%

5.1.1 Binary Classification Expert Results

The Binary Expert achieved an accuracy of 88.3%, the
precision of 91%, and recall of 86% when evaluated us-
ing 20480 previously unseen images balanced across both
classes. Judging from these metrics, we can see that the
Expert is doing well in the task of distinguishing between
healthy and damaged tissue. These results are satisfactory
enough for the Expert to be used to filter out redundant and
diagnostically not important structures.

5.1.2 Multi-class Classification Expert Results

Evaluating the Expert using 20480 previously unused im-
ages, evenly distributed among all classes, accuracy of
62.5% was reached, along with 63% precision and 62% re-
call. Figure 7 shows confusion matrix for different classes
this model is trained to predict. These results show room
for improvement, but as previously stated, there is a limit
given by the difficult nature of breast histopathology data,

to the performance of any deep learning model. Contrary
to Han [3], who uses special architecture and loss function,
we try to deal with this limit using a Weighing Expert.

Figure 7: Confusion matrix for the Multi-Class Expert.

5.1.3 Weighing Predictions Expert Results

In order to evaluate whether the Weighing Expert is work-
ing correctly, we define the action of changing one class
to another as a flip, and the action of not changing the
class as a no flip. Using the non-weighted predictions, the
weighted predictions, and the ground truth annotations, we
may then count correct flips - the predicted class changes
from an incorrect one to a correct one (equivalent to true
positive), incorrect flips - the predicted class changes from
a correct one to an incorrect one (false positive), correct
no flips - the predicted class does not change and stays
correct (true negative), and finally, incorrect no flips - the
predicted class does not change and stays incorrect, or the
predicted class changes, but from an incorrect one to an in-
correct one (false negative). We can therefore calculate all
the metrics, as usual, using true positives, true negatives,
false positives, and false negatives.

We performed the evaluation using 12123 samples from
previously unseen WSI. The Expert achieved the accuracy
of 76%, the precision of 77%, and the recall of 36% in the
task of correcting the output of the previous Expert.

Focusing not on the flip itself, but on the end re-
sult, therefore comparing the weighted predictions to the
ground truth labels, the net achieved the accuracy of
75.8%, the precision of 53%, and the recall of 74%.
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Figure 8: ROC of the Binary Expert achieved on the Eval-
uation slide. The dotted line = random guessing.

5.2 WSI Level Results

In this part of the evaluation of our solution, we focus on
the whole of the solution and evaluate the predictions com-
bined using our framework, for each Expert. The metric
we chose as best suited for this evaluation is Intersection
over Union, calculated as IoU = gt∩predicted

gt∪predicted , but also try
to empirically evaluate each analysis result from the point
of view of a human expert using the analysis as assistance.

5.2.1 Binary Expert WSI Level Results

The Figure 8 shows the ROC of the Binary Expert. Judg-
ing from the ROC, with an area of 0.98, and IoU score
of 0.74, but also performing empirical evaluation using
the GT annotation, and the results of Binary Expert anal-
ysis, shown in Figure 9, we can say that the Expert is able
to distinguish between normal and damaged tissue, which
serves both as a filtering step - parts of stroma not contain-
ing any significant structures are removed, but at the same
time as a region proposal for more specific Experts.

Figure 9: Left: Analysis performed by the Binary Ex-
pert. Right: GT annotations of the Slide. Higher intensity
means higher confidence for the Expert.

5.2.2 Multi-Class Expert WSI Level Results

Figure 10 shows the analysis produced by the Multi-class
Expert along with the ground truth annotations used to
evaluate the Expert. IoU scores of the whole slide are
shown in Table 3, distinguished as ”Not Weighted”. Only
regions marked as damaged by the Binary Expert with

Figure 10: Left: Analysis produced by the Multi-Class
Expert. Right: the GT analysis that should be matched.
Red channel = Benign tumor type, Green channel = In Situ
tumor type, Blue channel = Invasive tumor type.

confidence >0.3 were analyzed by the Multi-Class Expert.
We can clearly see that the Binary Expert region proposal
works and is precise enough, helping make the area anal-
ysed by subsequent Experts smaller, thus saving time and
resources. Furthermore, we can see that the Expert is able
to pick up the differences between tumor types and create
a complex analysis.

Table 3: IoU scores achieved by the Multi-Class Expert
when evaluated using a previously unseen WSI, along with
IoU scores of the Weighing Expert applied to the Multi-
Class Experts’ predictions.

Micro Macro Binary

All classes Not Weighted 0.85 0.44 -
Weighted 0.87 0.46 -

Benign Not Weighted - - 0.11
Weighted - - 0.13

In Situ Not Weighted - - 0.15
Weighted - - 0.18

Invasive Not Weighted - - 0.57
Weighted - - 0.61

Similarly to the results of Multi-Class Expert evaluation
(Section 5.1.2), we see that although the Expert is often
able to correctly analyze regions, confusion of the classes,
caused by all of the mentioned problems is still present,
even on WSI level.

5.2.3 Weighing Expert WSI Level Results

Figure 11 shows the comparison of the analysis pro-
duced by the Multi-Class Expert and the same analysis but
weighted by the Weighing Expert. The change of the IoU
may also be seen in Table 3, comparing the rows marked
as ”Weighted” with the ones marked as ”Not Weighted”.
We see that the metric - IoU, is slightly enhanced by the
Weighing Expert.

Empirically evaluating the performance of the Weigh-
ing Expert, and therefore comparing the weighted analysis
(Figure 11, right) with the non-weighted one (Figure 11,
left), but also with the ground truth annotations (Figure
10, right), we see that the Weighing Expert corrects the
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Figure 11: Analysis produced by the Multi-Class Expert
and the same analysis weighted by the Weighing Expert.
Red channel represents Benign tumor type, Green channel
is In Situ tumor type and Blue channel is Invasive tumor
type.

class in the right areas - specifically - in the middle, large
area of the In situ type (green), and Benign (red) is cor-
rectly changed to Invasive type (blue), but also some mi-
nor changes may be seen in the top-left areas, upon closer
inspection. Such results suggest, that the Expert is work-
ing correctly, but the metrics of automatic evaluation tell
us that there is still room for improvement.

6 Conclusion

In this paper we presented a universal framework for com-
plex WSI analysis, using various methods of deep learn-
ing in the form of Experts. We also presented multi-
ple Experts: the Binary Expert for distinguishing between
healthy and damaged parts of the WSI and proposing dam-
aged regions to the other Experts for further analysis, the
Multi-Class Classification Expert for classifying regions
as different types of tumor and the Weighing Expert to
make the analysis more precise. As a result of using the
Experts combined, we achieve a complex and unbiased
analysis of the whole WSI, which may serve as a refer-
ence, or a helping tool to pathologists.

The binary classification results we achieved using our
method for data preparation and generation, and an al-
ready existing architecture - InceptionV3, are comparable
to other state-of-the-art approaches presented by Spanhol
[7], [6], and Bayramoglu [2].

Our multi-class classification results are not yet on par
with the likes of Han [3], but with a more thorough training
and parameter tuning of the InceptionResnetV2 we use for
this task, but also with further exploring the capabilities of
the Weighing Expert, and enhancing its capacity for learn-
ing by increasing the width of each individual network the
Expert contains, we are on the right track to achieve state-
of-the-art results in this domain as well in the future.

The universality of the framework allows for creating
any number of Experts, each analyzing a specific part of
the WSI, leading to even more complex and precise analy-
ses. An Expert for segmentation of the tissue, distinguish-
ing even better between the classes, especially around their
borders would be valuable, although hard to train due to

the nature of histopathology images of the breast. Another
Expert of value would be one for counting mitoses on the
WSI level, as this task is often required to grade the stage
of cancer.
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