
Polyphonic Music Composition with Grammars

Lukas Eibensteiner*

Supervised by: Martin Ilčı́k†

Institute of Visual Computing and Human-Centered Technology
TU Wien

Vienna / Austria

Abstract

Prior works on music composition with grammars tend to
focus on the generation of sequential structures, such as
melodies, harmonic progressions, and rhythmic patterns.
While the natural output of a grammar is a sequence, this
does not have to be reflected in the chronology of the com-
position. Shape grammar researchers have long internal-
ized this perspective and have used grammars to distribute
geometric entities across multiple spatial dimensions. We
take inspiration from these works and allow free place-
ment of musical entities on the timeline. With overlapping
entities we can model chords, preludes, drum patterns,
voices—polyphony on small and large scales. Beyond a
theoretic discussion of techniques for polyphonic compo-
sition with non-deterministic context-free grammars, we
present the results of a procedural music generator built
on these principles.

Keywords: procedural, music, composition, functional,
programming, context-free, non-deterministic, paramet-
ric, attribute-based, grammars

1 Introduction

The automation of musical composition certainly has in-
teresting implications. We can see its successful applica-
tion in computer games, which usually require more flexi-
ble soundscapes compared to non-interactive works. Mo-
tifs, themes, and sound effects are triggered by player ac-
tions and merge into something that has never been heard
before. Similar systems could be built for video platforms,
which could offer generative soundtracks that adapt to vi-
suals, dialog, cuts, and camera movements. We might
someday have procedural radio, that can be configured to
produce a lifetime of music in a personalized style, that
reacts to the listener’s mood, and from time to time plays
variations of their favorite melodies. Today, countless mu-
sicians and composers rely on automation in their work-
flow. Generative grammars—the subject of a large body
of research, including this work—are one of the tools in
the algorithmic and computer-aided composition toolbox.

*l.eibensteiner@gmail.com
†ilcik@cg.tuwien.ac.at

When we use grammars to analyze music, we break it
into its smallest components, then group them into notes,
bars, phrases, themes, or whatever higher-level patterns
we find. The premise of using grammars generatively is
that we can reverse this process of reduction, beginning at
an abstract representation and replacing the abstractions
until we get something concrete. For music this could
mean starting with a particular style or song structure, suc-
cessively adding themes, phrases, bars, notes, and finally
transforming the notes into an audible signal. In order to
create something that corresponds to our abstraction, we
have to make a series of informed decisions. Some of these
decisions will be guided by the model, for example the
rules of the musical genre. Other decisions will depend on
subjective taste. A composer is aware of these options, yet
is forced to make a decision once they write their score. A
system, such as the one presented in this work, uses a spe-
cial notation that allows the composer to state the options,
but defer the decision. The system, aware of all options,
can automatically collapse this superposition according to
user input or random chance. The result is a new song,
unheard even by its composer.

While parallels between language and music and their
corresponding theories are conspicuous, there is an im-
portant difference: we usually see language as something
strictly linear. A symbol comes after a symbol, a word
comes after a word, and a sentence comes after a sentence.
This might explain why research on grammars for com-
position focuses on the generation of melodies, harmonic
progressions, rhythms—all purely sequential structures.
Yet, within a sequential model the handling of polyphonic
aspects such as chords, preludes, or interdependent voices
is difficult and leads to generation pipelines that consist
of multiple heterogeneous components. In this work we
try to build a perspective where polyphony is the norm,
rather than an appendage, and thus tightly integrated into
the generation process. It is a perspective where we see
musical objects as volumes in a geometric space, objects
that can be divided, stretched, and moved. It is a graphical
application of generative grammars, and as such finds its
roots in shape and split grammar research. The musical in-
terpretation of these graphical principles is something that
we have not seen pronounced in similar works, and it is
the subject of this paper.

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)



2 Related Work

Within the context of algorithmic composition research,
grammars are just one model for the composition process.
Consider the survey by Nierhaus [14] and the earlier sur-
vey by Papadopoulos and Wiggins [15], who both use a flat
classification system, where generative grammars, evolu-
tionary methods, and machine learning are the common
clusters. Fernández and Vico [3] propose a detailed hier-
archical taxonomy of methods and provide a very useful
visualization.

With generative grammars we use a set of formal rules
to develop an abstract symbolic structure through iterative
refinement into concrete and detailed output. We mostly
rely on definition of a grammar hierarchy by Chomsky [1].
A prominent and early generative approach was conceived
by Schenker [23], who reduced many forms of music to
the Ursatz, a sort of fundamental, hidden structure. An-
other highly popular work in the field of generative music
theory is A Generative Theory of Tonal Music (GTTM) by
Lerdahl et al. [10], in which music is modelled as multiple
hierarchical aspects.

Holtzman [6, 7] defined the Generative Grammar Def-
inition Language (GDDL) which provides interesting
meta-level features, such as the selection of alternatives
based on prior rule applications. McCormack [11] pro-
poses a musical grammar system with stochastic rule
selection, numeric parameters, and nested grammars.
While the generations are primarily sequential, limited
polyphony can be achieved by marking multiple notes as
a chord.

Steedman [26] defined a context-sensitive grammar for
generating chord sequences for 12-bar Blues. The replace-
ment entities divide the time interval of the original entity
into equal parts, guaranteeing a monophonic and bounded
temporal organization. Steedman later revised the gram-
mar and showed that it can be expressed by an equiva-
lent context-free grammar [25]. Rohrmeier [21, 22] de-
rived harmonic substitution rules from various works on
harmonic theory. The grammar is context-free, except for
a special rule for pivot chords, which was later also re-
formulated without context-sensitivity. De Haas et al. [2]
remodelled Rohrmeier’s earlier grammar and applied it to
automatic parsing of jazz pieces.

Gilbert and Conklin [4] defined probabilistic context-
free grammars (PCFG) for melody generation which use
pitch intervals as non-terminals. Keller and Morrison [8]
defined another PCFG for generating jazz melodies. They
use the note type as a parameter to select non-terminals
of varying durations. Tanaka and Furukawa [29] model
polyphonic music as a list of voices, where every voice is
a list of notes. While the generated output is polyphonic,
rules still operate on a sequential voice model, replacing
one monophonic sequence with another, usually longer
one. Giraud and Staworko [5] used context-free paramet-
ric grammars to model Bach inventions. The ability to use
sequences of notes as parameters is a feature we also im-

plemented for the system presented in this paper.
Quick and Hudak used a relative time parameter for

splitting entities in their temporal generative graph gram-
mars (TGGG) [19] and later probabilistic temporal graph
grammars (PTGG) [18]. PTGGs are used in the com-
position tool Kulitta [16, 17] to generate harmonic pro-
gressions, based on production probabilities that were
learned from existing music. Melkonian [12] later ex-
tended PTGGs to melody and rhythm generation and gen-
eralized the harmony generation using a Schenkerian ap-
proach. Its capabilities are demonstrated by encoding var-
ious grammars from musicologist literature, including the
context-free variant of the Steedman grammar [25].

Finally, split grammars, proposed by Wonka et al. [30]
and preceded by the work on shape and set grammars by
Stiny [27, 28], were a significant inspiration for this work.
In a split grammar, shapes are generated by recursively
dividing spatial volumes, similar to the splitting of the
time dimension that is used in many works on algorith-
mic composition. The initial split grammar later evolved
into the popular CGA Shape grammar [13] and its suc-
cessor CGA++ [24]. The latter introduces shapes as first-
class citizens, allowing operations on generations of sub-
grammars, which is a feature we partially implemented.

3 Theory

The goal of this work is not to develop a particular pro-
gram that generates music, but rather the development of
a theoretic framework that facilitates the development of
such programs. This framework can be divided into the
general theoretic models surrounding context-free gram-
mars and the domain-specific musical models. The former
will be presented in this section, while the latter can be
found in Section 4, as the musical aspect is strongly inter-
twined with our particular solution to the stated problem
of polyphonic music generation.

3.1 Context-Free Grammars

Context-free grammars have been used by various re-
searchers for procedural generation, arguably because they
strike a good balance between power and simplicity. A
general discussion about different grammar types for mu-
sic generation can be found in the early survey by Roads
and Wieneke [20]. We will assume the use of context-free
grammars throughout this paper.

A context-free grammar G = (V,P,S) consists of a vo-
cabulary of symbols V , a set of rules P, and a dedicated
starting symbol S ∈ V . A rule in P can be written as
l : LHS −→ RHS, where the left-hand side (LHS) de-
scribes a subset of V and the right-hand side (RHS) de-
scribes a replacement string in V ∗, which is the set of
arbitrary-length sequences over V . l is an optional label
that we use to identify the rule. Consider the following
example:

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)



cadence

G7

G B D F

CM

C E G

Figure 1: Derivation tree of a context-free grammar

V = {cadence,CM,G7,A,B,C,D,E,F,G}
P = {p1, p2, p3}
S = cadence

p1 : cadence−→ (G7,CM)

p2 : G7−→ (G,B,D,F)

p3 : CM −→ (C,E,G)

We can interpret p1 musically as the fact that a cadence
can be realized by a G seventh chord followed by a C ma-
jor chord. Similarly, p2 (p3) could mean that a G seventh
chord (C major chord) can be realized by the notes G, B,
D, and F (C, E, and G). In formal grammar theory we
commonly differentiate between terminal symbols, which
only appear on the RHS, and non-terminals, that may ap-
pear in the LHS and thus are expected to be replaced by
other symbols. Albeit, this distinction is not as important
for context-free grammars as it is for other types in the
Chomsky hierarchy.

The one-to-many relationship between the elements of
V expressed by each rule is characteristic for context-free
grammars. If we trace the relationships starting at S, we
end up with a tree structure, like the one shown in Figure 1,
where S is the root, the internal nodes are non-terminals,
and the leaves are terminals. The sequence of leaves is
also called a sentence of the formal language defined by
the grammar. The process of generating a sentence from
the starting symbol is called derivation, and the resulting
structure is the derivation tree.

Consider the sentence generated by our example gram-
mar, which is (G,B,D,F,C,E,G). There is no indication
that these seven symbols represent two chords. For now,
we will assume this knowledge is implicit, as the explicit
handling of the time dimension is central to our approach
and will be discussed Section 4.

3.2 Parametric Grammars

So far, our grammar generates only a single sequence of
seven notes, which is not very impressive. If we wanted to
generate a cadence in another key, we would have to add
three new rules. There are two underlying issues: (1) the
vocabulary consists of indivisible, nominal entities, and
(2) the rules can only describe replacement with constant
sequences of symbols.

(G,s)

(D,7)

(D, t) (F, t) (A, t) (C, t)

(G,M)

(G, t) (B, t) (D, t)

Figure 2: Derivation tree of a parametric grammar.

First, we generalize our vocabulary to an n-dimensional
space V = X1× . . .×Xn, which allows us to normalize the
information encoded in our symbols. For example, the
two-letter chord symbols G7 and CM encode the root note
of the chord (G or C) and the type of the chord (7 or M).
This implies a representation of a chord as a tuple, which
we can generalize to the remaining vocabulary by using s
for the starting symbol and t for the terminals:

V = X1×X2

X1 = {A,B,C,D,E,F,G}
X2 = {7,M,s, t}

Since the term symbol implies some degree of indivisi-
bility, we will use the term entity from here on when refer-
ring to the elements of a multi-dimensional vocabulary.

Second, we allow replacement sequences to be defined
in terms of the input entity. From here on the RHS can
be any function V → V ∗ from an entity to a sequence of
entities. An LHS can be any function V →{>,⊥}, which
returns > if the input entity matches the LHS, and returns
⊥ otherwise. Both LHS and RHS are parametrized by a
single entity, and we will assume an implicit binding of
the variables (x1, . . . ,xn) ∈V on either side of the arrow.

We can now redefine the rules (p1, p2, p3) using the
two-dimensional vocabulary with the implicitly bound pa-
rameters x1 and x2. Instead of explicitly specifying notes,
we calculate the replacement based on the input parame-
ters. Since all notes are now relative, we may pick any
tuple (x1 ∈ X1,s) as the starting entity and generate a ca-
dence in the corresponding diatonic mode. Figure 2 shows
the derivation tree for S = (G,s).

p1 : x2 = s −→ ((x1 +4,7),(x1,M))

p2 : x2 = 7 −→ ((x1, t),(x1 +2, t),(x1 +4, t),(x1 +6, t))
p3 : x2 = M −→ ((x1, t),(x1 +2, t),(x1 +4, t))

X1 represents the notes of the C-major scale, and we
can move between scale degrees by adding or subtracting
numeric intervals. Concretely, we can treat each pitch let-
ter as equivalent to its zero-based index in the sequence
(A,B,C,D,E,F,G) and define an addition operator. For
example, C+4 = G and G+2 = B.

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)



+ : X1×Z→ X1 : (x1,z) 7→ (x1 + z) mod 7

Compared to simple symbolic replacement, parametric
replacement reduces the number of rules needed to express
more complex languages. Yet, they suffer from another
kind of scaling issue. In practice our vocabulary will have
more than two dimensions, including parameters for me-
ter, scales, loudness, playback, and expressing custom se-
mantics. An explicit tuple representation for entities be-
comes increasingly unwieldy.

3.2.1 Attributes

Attributes solve scaling issues that arise from higher di-
mensional vocabularies. Their invention has been credited
to Peter Wegner by Knuth [9]. The idea is to gradually
change entities over the course of the derivation, rather
than explicitly replacing them at every step. We accom-
plish this with a setter function seti : Xi→ (V →V ) which
sets the ith element of the entity tuple, but keeps the other
entries.

For example, instead of (x1, t) in rules p2 and p3 we
could write set2(t) to change x2 but keep x1. This is hardly
an improvement in two dimensions, but in n dimensions
this will eliminate n− 1 redundant terms. We can further
use classic function composition to feed the output of one
setter to the next, which again allows us to set any subset
of parameters.

With a large number of dimensions, numeric tuple in-
dices will increasingly obfuscate the semantics of our
rules. We can instead substitute the numbers with explicit
attribute names. For example, we can address x1 with the
name note and x2 with type. The consistent use of setters
instead of the tuple representation allows us to eliminate
any dependence on the order of the dimensions in V .

The formalism is now parametric and supports any
number of dimensions. Yet, our grammar is still a flat list
of rules. With a growing number of rules it becomes in-
creasingly difficult to orchestrate their application, guar-
anteeing that they are applied in a certain order. We will
solve this next by splitting our grammar into multiple
nested sub-grammars.

3.3 Nested Grammars

Context-free derivation can be understood as a mapping
from a starting entity in V to a sequence of entities in V ∗,
which is exactly the definition we use for the RHS. Conse-
quently, we can use grammars as the RHS of a rule, which
allows us to divide complex grammars into smaller, main-
tainable sub-grammars. Grammars with sub-grammars are
also known as hierarchical grammars and have been used
for music generation by McCormack [11].

The decomposition of context-free grammars follows
from the properties of the derivation tree, where each

subtree can be seen as the result of a particular sub-
grammar. Still, more interesting to us is grammar com-
position, where we combine multiple grammars into a
super-grammar using higher-order functions. Context-free
grammars are just one possible strategy, albeit it is the
most general one in our framework.

We further define a square bracket notation [ f1, . . . , fn]
to concatenate the results of n right-hand sides into a sin-
gle sentence. A failing LHS can be used to ignore individ-
ual operands. For example, [ f1,⊥−→ f2, f3] is equivalent
to [ f1, f3]. Note that concatenation does not necessarily
affect the temporal arrangement of the entities; it simply
combines the sentences for further processing.

Another strategy is grammar chaining, where the termi-
nals of a grammar are used as starting entities for another
grammar. We use an angle bracket notation 〈 f1, . . . , fn〉 to
indicate that the input entity should be passed to f1, the
resulting entities to f2, and so forth. The base case 〈〉 is
equivalent to an identity mapping of the input entity. A
failing LHS can be used to break the chain. For example,
〈 f1,⊥ −→ f2, f3〉 is equivalent to 〈 f1〉 = f1. If we only
want to skip f2, we can wrap it in another pair of angle
brackets to get 〈 f1,〈⊥ −→ f2〉, f3〉, which is equivalent to
〈 f1,〈〉, f3〉= 〈 f1, f3〉.

Treating grammars and sentences as first-class citizens
opens up very interesting possibilities. For example, one
can define a parameter with a value space V ∗ and prop-
agate grammar results through the derivation tree. We
will later use this for synchronizing multiple independent
voices to a shared harmonic progression. Also consider
Giraud and Staworko [5], who pass motifs as parameters,
and Schwarz and Müller [24], who introduced the concept
to shape grammars.

The example below defines a super-grammar PIECE
that is composed of three sub-grammars. We store the re-
sult of the CHORDS grammar inside the chords attribute
and then pass the entity to the PAD and BASS grammars.
We assume that CHORDS generates some form of har-
monic progression, while PAD and BASS generate notes
based on the entities in chords.

PIECE : 〈setchords(CHORDS), [PAD,BASS]〉

While we can now use parameters, attributes, and func-
tional composition to develop complex grammars, their re-
sults will not yet be very surprising. Variation is the miss-
ing ingredient that elevates the formalism from a complex
tool for music notation to a powerful tool for automatic
composition.

3.4 Non-Deterministic Grammars

Some classic composers published musical games that al-
low the composition of new pieces by randomly select-
ing from a framework of predefined bars, most notably

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)



Mozart with his minuet generator [31]. The player of the
game needed no musical knowledge, only a pair of dice.
We will use a similar approach, where the grammar is the
framework, and the replacement decisions are delegated to
a non-deterministic selection process.

We differentiate between two types of variation. Struc-
tural variation directly affects the structure of the deriva-
tion tree and occurs when there are multiple rules that can
replace an entity. For example, our familiar rule p1 and the
new rule p1′ both match an entity type = s. The derivation
algorithm randomly picks one of them.

p1 : type = s−→ ((note+4,7),(note,M))

p1′ : type = s−→ ((note,M),(note+3,M))

In order to achieve this effect within a single rule, we
can define a function choice that randomly returns one of
its arguments. For example, the two rules above could be
expressed with a single LHS and a choice with two options
on the RHS.

type = s−→ choice(

((note+4,7),(note,M)),

((note,M),(note+3,M))

)

Parametric Variation directly affects the values of pa-
rameters and allows non-discrete randomization. A sim-
ple mechanism is a non-deterministic variable rand with
a uniform distribution over [0,1]. For example, in order
to simulate varying loudness of notes in a real-life per-
formance, we can randomize the value of a numeric gain
attribute:

type = t ∧gain = 0−→ setgain(rand)

We can also use random numbers for structural varia-
tion. For example, the pr function below applies an RHS
f with probability p ∈ [0,1]:

pr : (p, f ) 7→ 〈rand ≤ p−→ f 〉

The random numbers are sampled from a pseudo-
random number generator (PRNG) with an internal
counter. We propagate the PRNG downwards in the
derivation tree as a parameter, which means per default
the subtrees are all desynchronized from each other. If
we want to synchronize two subtrees, we can initialize
their PRNGs with the same value, which guarantees that

all random processes within both subtrees have the same
outcome.

Alternatively, we can calculate the result of a non-
deterministic sub-grammar before we branch into the sub-
trees, as we do with the chords attribute in the example
in Section 3.3. Either method works by providing shared
context to the subtrees. This shared context is especially
important for polyphonic composition, as we must guar-
antee that multiple voices fit together. We have now estab-
lished the theoretic foundation and will continue with the
discussion of our polyphonic composition model.

4 Approach

We define polyphonic music as two or more interrelated
voices that play at the same time. They are independent,
in the sense that they can define their own movement and
rhythmic patterns, but are synchronized to a shared met-
ric and harmonic framework. In music notation individual
voices and instruments are often written in separate staves,
for example, the left and right hand of the piano piece in
Figure 3. Each stave spans the whole duration of the piece,
and the individual voices within are read sequentially.

To implement this model in a context-free grammar we
could derive each voice individually, then combine the re-
sults by playing them at the same time. Yet, without fur-
ther constraints this approach is insufficient as the voices
can become desynchronized due to non-determinism in the
derivation process. As soon as the algorithm branches
into different voices, sharing information between them
becomes difficult. Rather, we need to provide a shared
metric and harmonic context that allows the voices to ac-
tually fit together. Our solution to this is threefold:

1. We allow delaying the point of separation of voices
to arbitrary depths in the derivation tree. For this we
associate each entity with a time interval, in a way
that is reminiscent of the use of spatial volumes in
split-grammars, and allow layering, recursive split-
ting, and space-filling.

2. Using nested grammars we can generate musical tex-
tures, which we can use as a common substrate for
the voices of a polyphonic piece. For example, we
can generate a harmonic progression in an isolated
subtree and access it from an independently gener-
ated melody and bass line.

3. We define a relative measurement system, expressed
as a set of context-dependent temporal units, to align
voices in different subtrees. For example, using a
common tempo and time signature, we can guaran-
tee that beats of multiple voices coincide.

Polyphony is a phenomenon that relates strongly to the
time dimension. Since pitch and harmony are not central
to this work, we do not discuss these aspects in detail. For

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)



�
�
��

�

��
�
�

���
�
�
�

�

�

�

�
���

�
� �� �� 34

�

�

� �� 34

Lent et douloureux �

���
��

�
� �

Music engraving by LilyPond 2.20.0—www.lilypond.org

Figure 3: Score representation of measures five to eight of Gymnopédie No.1 by Eric Satie.

the practical evaluation we used a relative system based
on the key and diatonic mode for converting from scale
degrees to absolute pitches.

4.1 Temporal Scope

We can interpret an entity’s position in the sentence as its
position on the timeline, which is a simple and common
approach [11, 22, 25]. Adding a duration parameter al-
lows us to generate entities of different lengths and model
arbitrary rhythms, which has been demonstrated by Quick
and Hudak [19] amongst others. Yet, for polyphonic struc-
tures, the terminals must be allowed to overlap, which is
not possible when their absolute temporal offset is implic-
itly derived from their position in the sentence.

We borrow the concept of scope from split-grammars,
which makes the time interval of each entity explicit and
independent of the sentence. In graphics the scope is a
3D transformation of space, whereas in music it is a 1D
transformation of time. We encode this transformation as
a number pair (t0, t1) ∈ R2 and further define its duration
∆ = t1 − t0. The scope is passed as a parameter, which
means we can generate arbitrary interval arrangements on
any level of the derivation tree.

For example, we can interpret the temporal structure of
the score in Figure 3 as four levels of scope operations
visualized in Figure 4. In (1) we split the piece into a se-
quence of whole measure intervals. (2) replaces each mea-
sure with three parallel intervals for the voices, which we
split into notes and rests in (3). In (4b) we once again use
parallel placement to stack the chord notes. An alternative
interpretation would swap step (1) and (2) and generate the
voices on the first level and measures on the second.

4.2 Scope Operators

The scope is treated like any other parameter, which means
we can freely modify it on the RHS. When we do not
change the scope, the replacement entities cover the same
time interval, so polyphony can be considered the default
in our model. Similar to the + operator for notes in Sec-
tion 3.2, we can define operators that modify the scope, for
example simple linear transformations that stretch or move
the entity. We take further inspiration from split-grammars
and implement the following geometric operators:

• The repeat operator fills the scope with n intervals
of a fixed duration ∆′. We calculate n = b∆/∆′c to

Figure 4: A step by step construction of the temporal struc-
ture of the fifth and sixth measure of Gymnopédie No.1 by
Eric Satie.

generate zero or more entities that do not exceed the
original duration ∆. An optional weighting factor can
be used to distribute the remaining space.

• The repeat cover operator works similar to the repeat
operator, with the difference that it calculates n =
d∆/∆′e. It generates at least one entity, where the last
entity potentially exceed the original scope.

• The split operator divides the scope into n inter-
vals with durations (∆1, . . . ,∆n). Additionally, one
can specify numbers (ω1, . . . ,ωn) which are used as
weights to distribute any remaining space. Unlike the
repeat operator, it can generate irregular divisions of
an entity.

• The trim operator removes any part of an entity that
exceeds the scope of the current input entity. Enti-
ties that have an empty intersection with the current
scope are removed entirely. We can pass the result
of a repeat or split operation to the trim operator to
guarantee that the entities fit into the current scope.

• The query operator finds entities in a sentence that
overlap with the current scope. It is similar to trim,
but has different use cases. Queries allow us to treat
the results of sub-grammars as functions over time,
which is very useful when we need to share local in-
formation between voices. For example, we would
use query to synchronize multiple voices to the same
harmonic progression.

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)



unit factor base

second 1 second
minute 60 second
beat 1/T minute
measure N beat
whole B beat
half 1/2 whole
quarter 1/4 whole
eighth 1/8 whole
sixteenth 1/16 whole

Table 1: Conversion table for temporal units. Reading: A
minute is equal to 60 seconds.

4.3 Temporal Units

Time in music is usually not described in purely relative
and hierarchical terms, but rather through a temporal grid
established by the piece’s tempo and meter. We implement
meter in our system with three parameters. The tempo
parameter T ∈R+ is used for the conversion between beats
and physical time in seconds. We measure T in beats per
minute (BPM). The beat count parameter N ∈R+ specifies
the number of beats per measure. Finally, the beat type
parameter B ∈ R+ allows us to calculate the length of a
whole note as B beats.

The pair (N,B) has the same semantics as the two num-
bers of the time signature in musical notation. For exam-
ple, if N = 3 and B = 4, there are three beats per mea-
sure, and the duration of each beat is equivalent to 1/4 of
a whole note. We define the conversion factors of various
temporal units that can be derived from these parameters
in Table 1.

4.4 Example

Based on the presented theoretic constructs, we imple-
mented a simple polyphonic music generator. As stated
at the beginning of Section 3, the development of a partic-
ular generator is not the goal of this work. The following
example is just one possible application of the theory. Our
generator consists of the following sub-grammars:

• The piece grammar serves as the entry point. It first
randomizes global parameters such as tempo, beats,
beatType and key, then generates a chord progression
that is propagated to the voice layers.

• The layer grammar generates a binary tree that serves
as the skeleton for a chord progression or voice layer.
We can control the degree of synchronization within
a layer with the monotony attribute and the degree
of synchronization between layers with the diversity
attribute. The depth of the binary tree dictates the
total length of the song, as a leaf equals one measure.

           
Figure 5: Each measure shows a possible result of the
pad grammar (File: ) using four quarter notes per
measure and a C major scale.

interval boundsnotetime

(3)

(1)

(2)

Figure 6: A step by step construction of a possible result
of the pad grammar.

• The progression grammar assigns a random chord
from a chord pool to the leaves of a layer. We only
evaluate it once and pass the result as a parameter to
the voice layers.

• The orchestra grammar defines the voice layers: two
lead voices (violin and flute), one pad voice (piano),
one bass voice (contrabass), and four drum voices.
The two lead voices are constrained in such a way
that they either play an individual motif alone, or a
common motif in unison.

• The motif grammar queries the chord progression
layer and assigns the harmonic information to the cur-
rent entity. It then selects a dedicated sub-grammar
based on the voice type.

• The lead, pad, bass, and drum grammars generate the
actual notes within a measure. In these grammars we
frequently use the repeat, split, and trim operators to
fill measures with melodic, rhythmic, and harmonic
patterns.

Due to spatial constraints we cannot provide a complete
formal specification of the presented generator and will
instead confine our detailed discussion to one exemplary
component: the pad motif grammar.

4.4.1 Example: Pad Grammar

The pad grammar develops notes for a piano accompani-
ment. It adapts to the time interval, metric grid, and key of
the current entity. We first define a reusable helper func-
tion cut which splits an entity into two parts: a fixed part
with duration ∆′ and a flexible part that receives all of the
remaining space by setting the weight parameter ω = 1.
We use choice to randomize the order of these two parts.
The outer trim is useful when ∆′ exceeds the ∆ of the input
entity:

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)


14.315038



cut : ∆
′ 7→ trim(split(choice(

[set∆(∆′),setω(1)],
[setω(1),set∆(∆′)]

)))

We define the pad grammar using our angle bracket no-
tation from Section 3.3 to chain three right-hand sides: f1
applies cut with a probability of 0.5. We use choice to pick
a random duration for the fixed part. f2 generates three
parallel notes for every input entity, similar to the RHS of
p3 in Section 3.2. Finally, we apply f3 to each of the enti-
ties generated by f2. f3 is equivalent to f1, only this time it
is applied to three or six notes, depending on whether cut
was applied in f1:

pad : 〈
f1 : pr(0.5,cut(choice(hal f ,quarter,eighth))),

f2 : [〈〉,setnote(note+2),setnote(note+4)],
f3 : pr(0.5,cut(choice(hal f ,quarter,eighth)))

〉

This particular grammar does not use recursion or com-
plex matching criteria. Nevertheless, it demonstrates both
sequential and parallel note placement and the use of tem-
poral units. Figure 5 shows a selection of results. Figure 6
shows the intermediate results for one possible derivation
path. In (1) a quarter note is cut off from the beginning
of the input entity. (2) expands the two parts into chords
of three notes each. (3) applies the cut function to three
of the six notes. Either part of the three splits could have
been the flexible one in this example.

5 Implementation

We implemented the theoretic framework and our practi-
cal example using functional programming in TypeScript.
The type system is capable of statically checking most of
our higher-order functional constructs. For playback we
use the Web Audio API, which provides accurate schedul-
ing of sounds on a timeline. Since the grammar gener-
ates a symbolic score we rely on prerecorded instrument
samples. Grammar authors can develop new grammars in
their editor of choice, while a provided script compiles and
reloads the graphical interface in the web browser after ev-
ery change. Figure 7 visualizes ’song1.mp3’ from Table 2
in our browser-based interface.

file key mode bpm meter

C# minor 120 4/4
A major 136 6/8
E major 114 4/4
E minor 93 4/4
A# minor 108 2/8
G# major 87 3/8
A major 126 6/8

Table 2: Seven pieces automatically composed by our
polyphonic music generator. The audio files are attached
to this document and available online:
https://github.com/eibens/cescg-2021

6 Results

We implemented the example from Section 4.4 within our
browser-based framework and generated various pieces.
A selection of these pieces, their audio files, and initial
parameters are listed in Table 2. We will briefly contrast
our polyphonic model with the most relevant related works
and then summarize our subjective observations about its
practical applicability.

McCormack [11] achieves polyphony with both parallel
and sequential placement, but only for discrete symbols.
Since there is no explicit temporal parameters, moving, re-
sizing, or arbitrary splits are likely not possible. While our
model of time is more expressive, McCormack’s system
is more powerful in theory, as it allows context-sensitive
matching.

Tanaka and Furukawa [29] use rules that replace notes
in all voices at once. There is no split operator and the
piece grows in length with every replacement. While this
insertion of entities can be emulated with split operations
on the whole voice, it is arguably counter-intuitive to do so
within our temporal model. The system is further limited
to a fixed set of voices, while our model can add voices on
every level of the derivation tree.

Quick and Hudak’s PTGG [18] and its later extension
by Melkonian [12] are based on split operations with rel-
ative units and note durations, which are both available
in our framework. Polyphony is not integrated into the
grammar itself, and the presented scores do not suggest
that time intervals may freely overlap after the polyphonic
post-processing pass.

Our own model of time appears to be capable of ex-
pressing the temporal operations used in prior works. Its
recursive parallelism allows one to define pieces with an
unbounded number of entities within a temporal slice. We
believe this is an important feature since many types of
music require polyphony on at least two levels: voices and
chords.

Artifacts that arise from implicit temporal representa-
tions are eliminated. For example, a rest has no explicit
representation because we can discard an entity by replac-
ing it with the empty sequence.

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)


33.045162


43.38912


34.716915


42.318153


18.808125


34.14225


46.75874

https://github.com/eibens/cescg-2021


Figure 7: The controls to the left can be used to manipulate parameters on the starting entity. The score visualization to
the right shows time on the X axis, logarithmic pitch on the Y axis, and the scope of the terminal entities as colored bars.
Notes of the same color belong to the same voice, and the opacity encodes the loudness.

Temporal hierarchies, where the replacement entities do
not exceed the original scope, are common in music and
our model is well capable of describing them with the split,
repeat, and trim operators. At the same time, we can easily
break the hierarchy by moving or resizing entities. For
example, we can randomly offset notes in a drum beat, or
add a prelude to a measure. Although, after moving an
entity one should consider querying its new context.

Finally, synchronizing multiple voices to one or more
hidden layers intuitively mirrors how a human composer
may initially define a metric grid and harmonic progres-
sions, and develop the notes for the instruments in a sec-
ond pass. The integrated generation of parallel structures
such as chords allows us to use this information while the
derivation is still in progress. For example, we can query
the highest note in a voice and generate a second voice
that always stays above it. This is more difficult when
structures such as chords are only expanded in a post-
processing step.

7 Conclusion

In this work we presented a formal grammar approach
for generating polyphonic music. Each musical entity is
associated with an independent temporal scope, and re-
placement entities can be freely arranged on the timeline.
Placement of entities is facilitated by multiple scope-based
operators. Parallel voices can be supplied with common
context by retaining terminal strings of sub-grammars and
reading their entities with a time-based query mechanism.

While we can apply locally context-sensitive operations
by passing the result of a sub-grammar to a function, the

derivation process itself is still fundamentally context-free.
For example, we cannot specify an LHS that finds a pair
of chords that form a cadence, as this would require us to
match on entity pairs.

Further, the selection of scope-based operators that our
system provides out of the box is still limited. Additional
operations on entity sequences could be used for more
powerful effects, such as inferring a chord progression
from a generated melody and generating a corresponding
accompaniment.

As an alternative to random number generators, one
could integrate user input directly into the derivation pro-
cess. When an external input is required, the derivation of
the sub-tree could be suspended until the user makes a de-
cision. This would allow users to assume manual control
over any aspect of the generation.

References

[1] Noam Chomsky. Three models for the description of
language. IRE Transactions on Information Theory,
2(3):113–124, 1956.

[2] W Bas De Haas, Martin Rohrmeier, Remco C
Veltkamp, and Frans Wiering. Modeling harmonic
similarity using a generative grammar of tonal har-
mony. In Proceedings of the 10th International
Conference on Music Information Retrieval (ISMIR),
2009.

[3] Jose D Fernández and Francisco Vico. AI methods in
algorithmic composition: A comprehensive survey.

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)



Journal of Artificial Intelligence Research, 48:513–
582, 2013.

[4] Édouard Gilbert and Darrell Conklin. A probabilis-
tic context-free grammar for melodic reduction. In
Proceedings of the International Workshop on Artifi-
cial Intelligence and Music, 20th International Joint
Conference on Artificial Intelligence (IJCAI), Hyder-
abad, India, pages 83–94, 2007.

[5] Mathieu Giraud and Slawek Staworko. Modeling
musical structure with parametric grammars. In
Mathematics and Computation in Music, pages 85–
96. Springer, 2015.

[6] SR Holtzman. Using generative grammars for music
composition. Computer Music Journal, 5(1):51–64,
1981.

[7] Steven R Holtzman. A generative grammar definition
language for music. Journal of New Music Research,
9(1):1–48, 1980.

[8] Robert M Keller and David R Morrison. A grammat-
ical approach to automatic improvisation. In Fourth
Sound and Music Conference, 2007.

[9] Donald E Knuth. The genesis of attribute gram-
mars. In Attribute Grammars and Their Applica-
tions, pages 1–12. Springer, 1990.

[10] Fred Lerdahl, Ray Jackendoff, et al. A generative
theory of tonal music. The MIT Press, 1983.

[11] Jon McCormack. Grammar based music composi-
tion. Complex systems, 96:321–336, 1996.

[12] Orestis Melkonian. Music as language: putting prob-
abilistic temporal graph grammars to good use. In
Proceedings of the 7th ACM SIGPLAN International
Workshop, pages 1–10, 2019.

[13] Pascal Müller, Peter Wonka, Simon Haegler, An-
dreas Ulmer, and Luc Van Gool. Procedural mod-
eling of buildings. ACM Transactions on Graphics,
25(3):614–623, 2006.

[14] Gerhard Nierhaus. Algorithmic composition:
paradigms of automated music generation. Springer,
2009.

[15] George Papadopoulos and Geraint Wiggins. AI
methods for algorithmic composition: A survey, a
critical view and future prospects. In Proceedings of
the AISB symposium on musical creativity, volume
124, pages 110–117, 1999.

[16] Donya Quick. Kulitta: A Framework for Automated
Music Composition. Yale University, 2014.

[17] Donya Quick. Composing with kulitta. In Proceed-
ings of the International Computer Music Confer-
ence, 2015.

[18] Donya Quick and Paul Hudak. Grammar-based auto-
mated music composition in Haskell. In Proceedings
of the 1st ACM SIGPLAN workshop on Functional
art, music, modeling & design, pages 59–70. Associ-
ation for Computing Machinery, 2013.

[19] Donya Quick and Paul Hudak. A temporal generative
graph grammar for harmonic and metrical structure.
In Proceedings of the International Computer Music
Conference, 2013.

[20] Curtis Roads and Paul Wieneke. Grammars as rep-
resentations for music. Computer Music Journal,
pages 48–55, 1979.

[21] Martin Rohrmeier. A generative grammar approach
to diatonic harmonic structure. In Proceedings of the
4th sound and music computing conference, pages
97–100, 2007.

[22] Martin Rohrmeier. Towards a generative syntax of
tonal harmony. Journal of Mathematics and Music,
5(1):35–53, 2011.

[23] Heinrich Schenker. Der Freie Satz. Universal Edi-
tion, 1935.

[24] Michael Schwarz and Pascal Müller. Advanced pro-
cedural modeling of architecture. ACM Transactions
on Graphics, 34(4):1–12, 2015.

[25] Mark Steedman. The blues and the abstract truth:
Music and mental models. Mental models in cogni-
tive science, pages 305–318, 1996.

[26] Mark J Steedman. A generative grammar for jazz
chord sequences. Music Perception, 2(1):52–77,
1984.

[27] George Stiny. Introduction to shape and shape gram-
mars. Environment and Planning B: Planning and
Design, 7(3):343–351, 1980.

[28] George Stiny. Spatial relations and grammars. En-
vironment and Planning B: Planning and Design,
9(1):113–114, 1982.

[29] Tsubasa Tanaka and Kiyoshi Furukawa. Automatic
melodic grammar generation for polyphonic music
using a classifier system. In Proceedings of the 9th
Sound and Music Computing Conference, 2012.

[30] Peter Wonka, Michael Wimmer, François Sillion,
and William Ribarsky. Instant architecture. ACM
Transactions on Graphics, 22(3):669–677, 2003.

[31] Neal Zaslaw. Essays in Honor of László Somfai on
His 70th Birthday. Studies in the Sources and the
Interpretation of Music, chapter Mozart’s Modular
Minuet Machine, pages 219–235. Scarecrow Press,
01 2005.

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)


	Introduction
	Related Work
	Theory
	Context-Free Grammars
	Parametric Grammars
	Attributes

	Nested Grammars
	Non-Deterministic Grammars

	Approach
	Temporal Scope
	Scope Operators
	Temporal Units
	Example
	Example: Pad Grammar


	Implementation
	Results
	Conclusion

