
Real-Time Rigid Body Simulation with Constraints

Zoltán Jakab*

Supervised by: László Szécsi†

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

Budapest / Hungary

Abstract

Rigid body simulation with constraints offers a well-
established and robust approach to a wide range of physi-
cal phenomena, offering great flexibility by allowing cus-
tom constraints. This includes elastic or plastic simula-
tions more commonly handled by mass-spring systems or
position-based dynamics. In this paper, we present a sim-
ple but functional real-time physics simulation based on
rigid body dynamics with pre-defined and contact con-
straints, and explore its applicability in cloth, hair, and
ragdoll simulation. We compare our results against those
achieved with position-based dynamics.

Keywords: Physical Simulation, Collision Detection,
Rigid Bodies

1 Introduction

When a high number of rigid bodies are connected using
constraints, we obtain dynamic systems akin to discretized
deformable bodies like ropes, hair, or cloth. While per-
forming the simulation of such systems using rigid body
dynamics is an expensive approach, it inherently provides
solutions for collisions, friction, or inextendibility. In this
paper, we describe a rigid body simulation framework
that supports constraints necessary for approximating de-
formable bodies, and we evaluate the performance and sta-
bility against an implementation of the most often used
position-based dynamics [12] approach. We also imple-
ment character animation, where jointed rigid bodies are
already the state of the art.

2 Previous work

The motion of rigid bodies can be modeled using La-
grangian mechanics. This framework allows us to use
both forces and constraints to control the motion of bod-
ies. Placing constraints on the velocities of objects can
prevent the simulation from transitioning into invalid po-
sition states, enabling the creation of stiff systems. How-

*zolija@freemail.hu
†szecsi@iit.bme.hu

ever, solving these constraints takes a significant amount
of calculation, and the stiffness often causes instabilities.

An alternative, used by PBD [12], is to only use po-
sitions in calculations. Velocities are computed from the
displacements in the previous time step, adding the ef-
fect of external forces. Positions for the next iteration
are first computed by forward Euler integration, and then
constraints are applied to them sequentially an iteratively,
making adjustments along the constraint function gradi-
ents one-at-a-time. This is more stable, but does not
directly support rotation constraints, and constraints are
characteristically elastic.

Real-time hair simulation is generally based on the
work of Müller et al. [13], supporting highly dynamic
simulation of a high number of inextensible hair strands,
but without interaction between hair strands handled only
through a density field.

For hair simulation, working with large numbers of
strands has become increasingly popular. Some special-
ized algorithms are capable of simulating each strand of
hair individually, whereas with rigid bodies, only a lower
number of guide strands can be simulated, since each
body requires a relatively large number of calculations.
In the video game industry, real-time performance, and
artist control over simulations is important. For this rea-
son, it is common to reuse existing skeletal animation and
rigid body simulation systems to control hair guide strands
through chains of bones [14]. The low resource consump-
tion of this method makes it suitable for lower-end (such
as mobile) devices, or as part of a LoD scheme even if
more expensive methods are used for characters close to
the camera.

3 Lagrange’s equations

In three dimensional space, the position of a rigid body
can be described with three Cartesian coordinates, and its
rotation with three Euler angles (or an equivalent rotation
representation, such as quaternions). Thus, given N in-
dependent bodies, we can describe them with 6N coordi-
nates. These are called maximal coordinates. To enforce
constraints, Lagrange multipliers are used, giving equa-

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)

tions of the following kind (Lagrange’s equations):

∂L
∂ rk

− d
dt

∂L
∂ ṙk

+∑
i

λi
∂ fi

∂ rk
= 0

where L is the Lagrangian, which describes the total en-
ergy of the system in terms of the positions (linear and
angular) rk and velocities ṙk of the rigid bodies, fi are con-
straint functions, which depend on the positions of rigid
bodies and have to evaluate to zero in valid configurations,
and λi are the Lagrange multipliers. An alternative to this
is the use of reduced coordinates, which are selected such
that all combinations of coordinates yield valid configura-
tions. This simplifies Lagrange’s equations to:

d
dt

∂L
∂ q̇k

=
∂L
∂qk

Unfortunately, except for the simplest cases, it is difficult
to find such coordinate systems.

Most physics engines use maximal coordinates, because
they are more flexible in their use, but some allow the
use of Featherstone’s algorithm for tree-like kinematic
chains [6]. In this limited case, using reduced coordinates
is feasible and can be more efficient. We have found that
using maximal coordinates provides adequate results for
most common systems, and have not pursued reduced co-
ordinate methods further for now.

Lagrange’s equations can be solved using the following
general method:

• Calculate the forces and constraints that affect the
bodies. This can depend on the state of the system
(that is the positions, velocities, and time).

• Apply an integrator to calculate the new state, and
repeat.

The most important properties of an integrator are its ac-
curacy, stability and computational efficiency. Accuracy
is usually measured by the order of a method (an integra-
tor has order p if its global error scales as O(hp) where
h is the time step). For real-time simulations, where in-
accuracy is acceptable, it is often sufficient to use a first
order method. As the user does not know the exact tra-
jectories that the rigid bodies should follow, the result will
look convincing as long as it is vaguely realistic, even if it
is not very accurate. Using a lower order method requires
less computation per time step, which is important given
the real-time constraints.

Considering only efficient, first order methods, the fol-
lowing three can be used to solve the equations of motion:

• Euler method

v2 = v1 +ha(x1,v1)

x2 = x1 +hv1

• Implicit Euler method

v2 = v1 +ha(x2,v2)

x2 = x1 +hv2

• Semi-implicit Euler method

v2 = v1 +ha(x1,v1)

x2 = x1 +hv2

While the implicit Euler method has good stability, it
would require an expensive, iterative equation solver, so
it is not used for rigid body simulation. The usual Euler
method and the semi-implicit Euler method only differ in
which velocity is used to update the position, but it turns
out that the semi-implicit method has much better stabil-
ity. The semi-implicit Euler method is also a symplectic
integrator, i.e. the Hamiltonian (which is equal to the total
energy in most cases) is approximately conserved (See [8]
for an overview). Note that energy tends to increase when
using the Euler method, which can lead to a simulation
“blowing up”. This makes the semi-implicit Euler method
the most reasonable integrator choice. Incidentally, it is
also the simplest to implement.

4 Physics simulation

4.1 Base equations

To solve Lagrange’s equation, let us start by considering
the Newton–Euler equations. Store the velocities (both
linear and angular) of all rigid bodies in the v vector the
following way:

v=(v1x,v1y,v1z,ω1x,ω1y,ω1z,v2x,v2y,v2z,ω2x,ω2y,ω2z, . . .)

That is, store the 3 linear and 3 angular velocities of each
rigid body in order. Analogously, we have the position and
rotation x, linear and angular acceleration a, and force and
torque F. Let the mass matrix M be the block matrix:

Mn =

(
mnE 0

0 In

)

M =


M1 0 · · · 0
0 M2 · · · 0
...

...
. . .

...
0 0 · · · Mn


where mn is the mass of the nth rigid body, and In is its
moment of inertia about the center of mass. We can now
write the Newton–Euler equations as: F = Ma+G where
G is the gyroscopic term in matrix form. This term is often
dropped, since gyroscopic effects are rarely apparent, and
simulating them reduces stability.

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)

If we write the Lagrangian as a sum of kinetic and po-
tential energy (L = T −V), we get:

− d
dt

∂T
∂ ṙk

− ∂V
∂ rk

+∑λi
∂ fi

∂ rk
= 0

In a Cartesian coordinate system, this can be rewritten as:

−ma︸︷︷︸
−F

−∇V︸ ︷︷ ︸
N

+JT
λ︸ ︷︷ ︸

C

= 0

where the total force F is the sum of non-constraint (N)
and constraint (C) forces, J is the Jacobi matrix of the con-
straint function f , and λ is the vector of Lagrange mul-
tipliers. Taking the derivative of the constraint equation
(f (x(t)) = 0) using the chain rule, we get:

Jv = 0

From this, we can see that the constraint force does no
work (P = C ·v = CT v = (JT λ)T v = λ T Jv = 0). In prac-
tice, we can set the right hand side to nonzero (or equiva-
lently, Jv+b = 0) to model motors and other phenomena.
From this, we can solve for λ using the following scheme:

• Write the integration step as v2 = v1 + ha and the
Newton–Euler equations as N+C = Ma

• Substitute into the derived constraint equation to get

J(v1 +hM−1(N+JT
λ))+b = 0

• Rearrange to get

JM−1JT hλ =−(J(v1 +hM−1N)+b)

• This linear system can be solved in various ways. The
choice of solver will be discussed later.

• We can then calculate the new velocity vector as
(v1 +hM−1N)+M−1JT hλ

For simple shapes, the moment of inertia tensor can be
calculated with a simple integration. In most physics en-
gines, complex shapes are usually approximated with sim-
pler shapes, such as a boxes. It is also possible to calcu-
late the moment of inertia tensor (along with the volume)
for any convex polyhedron using the algorithm by [10].
The result is valid in the local coordinate system of the
body, and has to be converted to the global coordinate sys-
tem in each frame by using the rotation matrix of the body
(I = RI0RT). It is easy to see from the definition that the
moment of inertia tensor is symmetric. Since masses are
positive, it is positive definite. From this, it can be shown
that the JM−1JT matrix (also known as the K matrix) is
also symmetric and positive definite. This property can be
used to optimize some calculations. This also guarantees
the invertibility of the matrix, although it can still be near-
singular, which can cause numerical problems. One solu-
tion to this, introduced by the Open Dynamics Engine is

called Constraint Force Mixing [15]. The constraint equa-
tion is modified as follows:

Jv+b+ cλ = 0

where c is a new parameter. This leads to the following
equation for lambda:

(JM−1JT +
c
h
)hλ =−(J(v1 +hM−1N)+b)

Adding to the diagonal of the K matrix increases its eigen-
values, and thus reduces any numerical problems.

4.2 Derivation of constraints

Let us now examine how constraints can be derived. For
example, the contact constraint can be defined using an
anchor point p, and a normal vector n. If the anchor
point is a contact point of two rigid bodies, the contact
constraint can be used to prevent interpenetration between
them. We can transform the anchor point to the local co-
ordinate system of the rigid bodies by ra = p− xa0 and
rb = p − xb0. If we were to change the position of the
rigid bodies, we could recalculate the contact point as
xa + ra and xb + rb. These should satisfy the equation
((xa +ra)− (xb +rb)) ·n = 0. This allows sliding tangen-
tial to the normal vector, but does not allow the bodies to
move toward each other. Therefore, we can define the con-
straint function as f (xa,xb) = ((xa + ra)− (xb + rb)) · n.
The time derivative is then:

ḟ = ((va +ωa × ra)− (vb +ωb × rb)) ·n

Note that an infinitesimal change of the position of a point
p = xa + ra on a rigid body can be caused by either an
infinitesimal change in the position of the center of mass
(va), or an infinitesimal rotation around the center of mass
(ωa × ra). This can be expressed as the product of a Jaco-
bian matrix and the velocity vector in the following way:

ḟ = va ·n+ωa × ra ·n−vb ·n−ωb × rb ·n

ḟ = va ·n+ ra ×n ·ωa −vb ·n− rb ×n ·ωb

ḟ =
(
n ra ×n −n −rb ×n

)
va
ωa
vb
ωb


See [5] for a list of commonly used constraints and their
derivations.

The calculated Jacobian can be substituted into the con-
straint equation. If we leave the b and c parameters as zero,
the calculated velocities will satisfy the equation ḟ = 0.
However, any inaccuracies in the calculation of positions
could accumulate, and violate the equation f = 0 (which
is not directly enforced). The positions of rigid bodies
could be corrected by calculating the error, and applying
a mass-weighted correction term to the positions. How-
ever, there is no straightforward way to correct rotations

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)

in this way. A better solution to this is Baumgarte stabi-
lization [1], which sets the b parameter in the following
way:

b =
β

h
f

Usual values of β are between 0.1 and 0.3. This calcu-
lates the positional error, and sets up the constraint force
to decrease this error. This makes the constraint forces
do work. An alternative is to use pseudo-velocities. With
this method, the constraint force terms which would do
work are added to a pseudo-velocity. This is cleared each
frame, preventing corrections from accumulating energy.
In the systems that we have tested, Baumgarte stabiliza-
tion is stable without the use of pseudo-velocities.

If we consider a one-dimensional case using the con-
straint f = x (which would fix the position at zero), and no
external forces, we get the following equation for updating
the velocity.

v2 = v1 +
1
m

hλ

We can see that λ

m serves as the acceleration in this case.
The constraint equation is:

v+
β

h
x+ cm

λ

m
= 0

The similarity to a dampened harmonic oscillator is not
accidental. It is actually possible to select a frequency and
damping ratio of a spring, and calculate the β and c param-
eters which make the constraint behave as the spring [3].
We have already seen that β can be used to correct position
errors. If we only consider c, and solve for λ , we get:

λ =−
1
m N

1
m + c

h

If c is zero, the constraint force fully counteracts any ex-
ternal force. When nonzero, the constraint can be violated
to some extent, which helps stability. We have found that
a value of 0.1 works well for the systems that we have
tried. A value of zero is not recommended as it is not sta-
ble enough.

Other tricks to increase stability and reduce jitter in-
clude artificial dampening of velocities or clamping small
corrective forces to zero. In our testing, these have not
had a significant impact, but might be useful in some situ-
ations.

4.3 Solving for constrained velocities

Each row of the J matrix removes a single degree of free-
dom from the bodies it affects. Most constraints only af-
fect two bodies, leading to 12 nonzero elements in the row.
The other 6× (N−2) elements, corresponding to the state
of every other body, are zero. M and K are also highly
sparse. Calculating λ requires solving a linear system of
equations with K as the coefficient matrix. This requires

using some form of Gaussian elimination, which has a
complexity of O(n3). Even if we use sparse representa-
tions to compress the matrices, the execution time still in-
creases rapidly with the number of constraints and bodies.
These methods, which work on the whole matrix at once,
are called global solvers. They have the advantage of ex-
actly computing a solution that satisfies all constraints, but
are complex and slow. Instead, most physics engines (in-
cluding ours) use an iterative solver that only considers
one (or a few) constraints at a time. The simplest iterative
solver is called Sequential Impulses, and uses this algo-
rithm (see [2] for details):

• Apply non-constraint forces to all bodies (v2 = v1 +
hM−1N). The resulting velocity usually violates con-
straints.

• While the solution is not “good enough”, iterate
through constraints, and update v2:

(JM−1JT +
c
h
)hλ =−(Jv2 +b)

v2 := v2 +M−1JT hλ

where J,M,v2, etc. only store the elements relevant to the
current constraint (e.g. M is a 12-by-12 matrix if the con-
straint connects two bodies) One way to look at this is
that each constraint defines a hyperplane in the velocity
space that the solution must lie on. By iteratively project-
ing the velocity onto each of these hyperplanes, the result
converges to their intersection, where all constraints are
satisfied. The number of iterations performed determines
the accuracy of the result. One can iterate until some er-
ror bound is met, the time allocated for physics simulation
per frame runs out, or simply for a fixed number of itera-
tions. While this works well in practice, the speed of con-
vergence can be low in some cases. Consider for instance
a fixed constraint, which prevents movement between two
bodies, removing six degrees of freedom. If we iteratively
solve this as six different constraints (each with a one row
Jacobian), we have found the result to be very soft. That is,
the bodies tend to move away from each other, despite the
constraint. On the other hand, if we only use one constraint
(with a six-row Jacobian), we get the expected result in
one iteration. Grouping constraints that affect the same
objects into blocks, solving each block as a single system
of equation and letting different blocks interact only across
iterations (block solvers) is an efficient combination. Each
iteration only has to process a small K matrix. Given that it
is positive definite, we can use Cholesky decomposition to
solve the system of equations in roughly half the time that
would be needed for LU decomposition. We have found
that numerical imprecisions can cause the Cholesky de-
composition algorithm to attempt to take the square root
of a small, negative number, leading to errors. This can be
avoided by using the LDL decomposition, which avoids
this problem and is also slightly more performant. If the
size of the K matrix is fixed, it is possible to precalculate

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)

and reuse it across iterations. Moreover, calculations can
be optimized to use efficient SIMD instructions. This has
significantly improved the performance of our solver.

Throughout the iteration, we can keep track of the to-
tal impulse applied by a constraint in a given frame. We
can use this to limit the maximum or minimum constraint
force. This allows a contact constraint to prevent the inter-
penetration but allow the separation of two bodies, and can
also be used to model static friction or implement break-
able constraints. We have had difficulties with this, as
clamping the total impulse resulted in jitter or instability.
We have been unable to determine the cause of this despite
comparing the implementation at the source level with that
of multiple open-source physics engines.

4.4 Rotational constraints

There are multiple alternatives for representing the ro-
tation of a rigid body. In our engine, all computations
are quaternion-based, as they are efficient to compute,
and avoid the many problems inherent to Euler angles).
We recommend the following method for rotational con-
straints:

• Define a constraint coordinate system, with a rotation
qc. Rotation limits will apply to the rotations around
this coordinate system’s axes.

• Store the initial rotations of the two bodies: qa0,qb0

• For each frame, calculate the difference between the
current relative rotation and the initial relative rota-
tion:

r = q∗aqb(q∗a0qb0)
∗

• Calculate the axes around which rotation will be con-
strained. This can be done by converting a quaternion
to a rotation matrix (note that the columns of this ma-
trix are exactly the axes of the constraint coordinate
system, transformed to the local coordinate system of
the first body):

R[qa0q∗c]

• For each axis computed in the previous step, we can
calculate the error as the dot product of the rotation
axis and the computed axis. Note that the error is zero
if these are orthogonal.

• By taking the time derivative, applying the usual
quaternion derivative formula, and rewriting opera-
tions into matrix form, we can determine the Jaco-
bian.

This method is similar to that of [16], but allows us to
define rotation limits in an arbitrarily selected coordinate
system.

5 Collision detection

To use the previously presented contact constraint, we
have to find contact points between the bodies. In theory,
it is possible to determine exact collision points and times
using continuous collision detection, but this is very ex-
pensive to compute. As long as the velocity of rigid bod-
ies is small relative to their size, using discrete collision
detection is adequate. This involves updating the positions
of bodies, then checking if they overlap. If the time step
is small, these overlaps will be too small to be noticeable,
and will be corrected by the generated contact constraints.
Collision detection for concave shapes is a complicated
problem, and is usually approximated using multiple con-
vex shapes. Two main algorithms are in use for convex
collision detection: one based on the separating axis the-
orem (SAT), and one on the Gilbert–Johnson–Keerthi dis-
tance algorithm (GJK). We have implemented both meth-
ods, and found that GJK has better performance in three
dimensions. In a lot of cases, SAT can quickly find a sep-
aration if one exists (i.e. prove that two shapes do not in-
tersect), but all possible axes need to be checked to prove
that the shapes do intersect. For two-dimensional poly-
gons, all edge normal vectors have to be tried (the number
of which scales linearly with the complexity of polygons),
but for three dimensional polyhedra, not only all face nor-
mals, but all cross products of edge vectors have to be tried
(which scales quadratically). In addition, SAT cannot han-
dle spheres and similar non-polyhedral shapes. For this
reason, the current version of our engine uses GJK. Our
implementation is based on [11], with various simplifica-
tions. GJK can compute the distance between shapes, but
to get the normal vector, collision points, and the depth
of overlap, the Expanding Polytope Algorithm has to be
used. Our implementation uses the simplification sug-
gested by [9]. In the case of polyhedra, after determin-
ing the colliding simplices, at most four points of colli-
sion are determined as described by [7]. These algorithms
work well in most cases, but numerical issues can appear
in some situations (e.g. near-parallel edges).

Collision detection can be optimized with a broadphase
step, which quickly discards pairs of bodies that definitely
do not intersect. This can be quickly checked using axis
aligned bounding boxes. This is fast enough for small
numbers of bodies, but since all pairs need to be checked,
the cost scales as O(n2). For larger scenes, bounding vol-
ume hierarchies can be used, but this is likely only needed
as the number of bodies approaches the hundreds.

Our physics engine only supports rigid bodies made of
convex polyhedra at the moment, allowing efficient mo-
ment of inertia and collision calculations. To approxi-
mate concave bodies, multiple convex polyhedra can be
attached to the same body. The automatic calculation of
mass properties also allows us to specify the densities of
rigid bodies rather than their mass, which is instead com-
puted using the volume.

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)

6 Applications to soft body simula-
tion

We have examined the application of rigid body physics
to simulate soft bodies (such as cloth or hair). While this
usually provides a less precise approximation (since a lim-
ited number of rigid bodies can be used), it does have some
advantages compared to e.g. per-vertex spring-mass mod-
els. For example, friction between rigid bodies is simple
to implement, while a position-based spring-mass model
usually cannot relate the friction force to the normal force.

Using rigid body simulation to approximate soft bodies
also allows a wide variety of constraints to be applied to
the soft bodies, allowing a larger degree of artist control
over the results, and integrates seamlessly with existing
physics systems. One downside, however, that we have
experienced is the slow convergence of the Sequential Im-
pulses solver for long, stiff chains. This is usually not a
problem for soft bodies, as they have low stiffness, but
one should be aware that there are cases (some of these
are documented by [4]) where different solvers are needed
for fast convergence.

7 Results

To create a convincing soft body simulation using this
method, the positions of the rigid bodies should be used
to deform a triangle mesh, usually through a skeletal an-
imation rig. Our implementation can import scenes from
Blender, an open source 3d modeling software, with all the
necessary meshes, textures, and rigs aside from the rigid
bodies and constraints. This allows us to rapidly prototype
simulations in Blender, and then evaluate them in our en-
gine. We have used this pipeline to create simple simula-
tions of hair, cloth, ragdolls, and conventional rigid bodies,
with varying degree of success.

Figure 1 shows a physically animated skeletal model.
The grey objects with black wireframes are visualizations
of rigid bodies used for debugging. The red deformed
cylinder is driven by skeletal animation. The model con-
sists of 5 rigid bodies, and the solver took 0.4 ms per
frame.

Figure 2 shows cloth simulation. The model consists
of 32× 32 rigid bodies, and the solution of the constraint
system took 111 ms per frame. In contrast, Figure 3 shows
a capture from our position-based dynamics implementa-
tion for cloth simulation using the same number of points,
but only taking 1 ms per frame. While the PBD algorithm
is much faster, it supports less features, and does not inte-
grate seamlessly with classical rigid body simulations.

Figure 4 shows a situation where self-collision and fric-
tion can influence the results. While rigid body simulation
handles these phenomena, we have found that a further in-
crease in rigid body count would be required for realistic
behavior.

Figure 1: Example soft body simulation created using
rigid bodies and skeletal animation.

Figure 2: Visualization of a fabric deformed after collision
with a cube.

In Figure 5 three dimensional soft-body simulation is
illustrated. For 125 rigid bodies connected by 300 con-
straints, the solver took 13 ms per time step.

A simulation of hair-like strands can be seen in Figure 6.
Each strand strand can collide with others and the envi-
ronment. Figure 7 shows a similar setup, but with a much
larger number of points.

8 Conclusion

Our measurements show that rigid-body simulation with
generic constraints can achieve interactive performance
even for relatively large element and constraint counts,
realizing complex dynamic models. However, position-
based solutions vastly outperform this approach. There-
fore, rigid body simulations are only warranted if exact
control over rotational constraints or collisions are needed,
as is the case with physically animated skeletal ragdoll
models.

On current consumer devices, real-time simulation can
only provide approximate results. While these are unsuit-
able for most engineering purposes, there are many ap-
plications in physics assisted 3d modeling, visualizations
(conventional or VR), and video games.

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 3: Baseline PBD simulation.

Figure 4: A sheet of fabric being rolled up.

References

[1] Joachim Baumgarte. Stabilization of constraints and
integrals of motion in dynamical systems. Com-
puter methods in applied mechanics and engineer-
ing, 1(1):1–16, 1972.

[2] Erin Catto. Modeling and solving constraints. In
Game Developers Conference, page 16, 2009.

[3] Erin Catto. Soft constraints: Reinventing the spring.
In Game Developer Conference, 2011.

[4] Erin Catto. Understanding constraints, 2014. URL:
https://box2d.org/files/ErinCatto_
UnderstandingConstraints_GDC2014.
pdf.

[5] Daniel Chappuis. Constraints derivation for rigid
body simulation in 3D, 2013.

[6] Erwin Coumans. Exploring MLCP solvers and
Featherstone. In Game Developers Conf, pages 17–
21, 2014.

[7] Dirk Gregorius. Robust contact creation for physics
simulations. In Game Developers Conference, page
947, 2015.

[8] Ernst Hairer. Long-time energy conservation of nu-
merical integrators. Foundations of computational
mathematics, Santander 2005, pages 162–180, 2006.

Figure 5: A three dimensional soft body deformed after
collision with a cube.

Figure 6: Hair simulation with rigid bodies.

[9] JessT. EPA simplification - side-stepping
robustness issues, 2008. URL: https:
//pybullet.org/Bullet/phpBB3/
viewtopic.php?f=4&t=2931.

[10] Brian Mirtich. Fast and accurate computation of
polyhedral mass properties. Journal of graphics
tools, 1(2):31–50, 1996.

[11] Mattia Montanari, Nik Petrinic, and Ettore Barbieri.
Improving the GJK algorithm for faster and more re-
liable distance queries between convex objects. ACM
Transactions on Graphics (TOG), 36(3):1–17, 2017.

[12] Matthias Müller, Bruno Heidelberger, Marcus Hen-
nix, and John Ratcliff. Position based dynamics.
Journal of Visual Communication and Image Repre-
sentation, 18(2):109–118, 2007.

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 7: Hair simulation with PBD.

[13] Matthias Müller, Tae-Yong Kim, and Nuttapong
Chentanez. Fast simulation of inextensible hair and
fur. VRIPHYS, 12:39–44, 2012.

[14] Witawat Rungjiratananon. Physics simulation R&D
at square enix. In SIGGRAPH Asia 2015 R&D in the
Video Game Industry, pages 1–2. 2015.

[15] Russell Smith. Open Dynamics Engine v0.5 user
guide, 2006. URL: http://www.ode.org/
ode-latest-userguide.html#sec_3_8_
0.

[16] Marijn Tamis. 3d constraint derivations for impulse
solvers.

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)

