
Rendering Wet Roads in Driving Simulations

Giang Chau Nguyenová*

Supervised by: Jiřı́ Bittner†

Department of Computer Graphics and Interaction
Faculty of Electrical Engineering

Czech Technical University
Prague / Czech Republic

Figure 1: Images of the wet road simulation acquired via ray-tracing. The figure on the left displays a wet road flooded with shallow
puddles. The car’s headlights reflect on the puddle surface. Splashes of water projected from the tires can be seen in the central figure.
The last figure shows a close-up of the splash.

Abstract

Rain and its impact can significantly enhance the realism
and credibility of outdoor scene rendering. It further at-
tributes to the environment’s diversity by breaking the re-
peating patterns of a synthetic world. We describe our ap-
proach to visual simulation of the rain phenomena in driv-
ing simulations. We focus on varying intensity of the rain
effects (e.g. drizzle or heavy rain) seen on roads with driv-
ing cars. The simulation includes adjustable wetness of
the roads with puddle regions. When a car drives through a
puddle, splashes are generated according to an assessment
model. The puddles also react to contact with the tires,
creating tiny wavy movements based on the wave equa-
tion. The simulation is implemented in a game engine,
and we propose a way to render high-quality ray-traced
outputs using an external ray tracer.

Keywords: wet roads, rain simulation, traffic simulator,
outdoor environment, game engine, Octane renderer

*gcngia@gmail.com
†bittner@fel.cvut.cz

1 Introduction

Simulating various weather conditions can enhance the
environment’s diversity, especially for synthetic outdoor
scenes made for driving simulations. Of these natural phe-
nomena, rain is probably most frequently seen. Rain is
not defined only by raindrops. The surrounding area af-
ter it has stopped raining is also part of the occurrence.
A believable rain simulation has to take into considera-
tion numerous visual effects that involve complex physical
mechanisms. A rainy environment consists of raindrops,
puddles, splashes, ripples, fog, light glows, and even rain-
bows. The number of minor details that need to be simu-
lated exceeds current computational capabilities and ren-
dering these effects is challenging. For real-time applica-
tions, it is necessary to limit the simulation and use ap-
proximations instead.

We present and combine a set of rain-related phenom-
ena that mainly affect the roads and pavements to create
a realistic wet environment in driving simulations. The
implementation is made in a game engine with the use of
offline ray-tracing methods.

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)



2 Related work

Numerous proposals for simulating rain and its effects
have been made and developed. The techniques can be
classified into either rainfall simulation or visualisation of
the rain’s impact on the environment. Many introduced
works focus on combining both to achieve more compre-
hensive situations.

Tatarchuk [13] used multiple layers of textures to create
the illusion of countless raindrops in the Toyshop Demo.
The demo also incorporates raindrop splashes, ripples in
puddles, lighting and even water droplet animation on a
glass surface. In Chango et al. [2], a light source in the
scene determines the raindrop’s appearance. Countless
tiny raindrops in the air form fog, and when the density
of rain decreases, a rainbow is made. Multiple rendering
passes are performed to render the wet ground, including
reflection, refraction, environment mapping, and ripples
in the puddle. Creus and Patow [3] proposed a rain ren-
dering algorithm that creates particles in the scene using
an artist-defined storm distribution. Their method utilises
rain particles and a texture atlas (using Garg’s and Na-
yar’s database [5]). Phenomena such as fog, halos, and
light glow are added before the rendering of streaks and
splashes.

We chose to combine several rain-related phenomena
mentioned in those papers above. Our work focuses on
the rendering of road surfaces under wet conditions explic-
itly for driving simulators discussed by Nakamae et al. [9].
The influence of water on various materials is drawn from
the work of Jensen et al. [7]. They combine a reflection
model for surface water with subsurface scattering to repli-
cate the liquid on the surface and inside the material.

Some other works concentrate on the precipitation it-
self; for example, Rousseau et al. [12] reproduce the opti-
cal properties of a raindrop and its interaction with light.
Optimisation of repeatedly computed particles has been
studied by Puig-Centelles et al. [11]. The volume in which
the rain simulation occurs provides a continuous transition
between rainy and non-rainy areas and even supports some
level of detail. Weber et al. [14] focus on each rain streak’s
shape and size. Later they aimed at rendering complex
interactions between trees and rain in real-time [15]. Al-
though we do not present any simulation method for rain-
fall, these articles expose the potential future approach to
enhance the rainy environment visually.

3 Impact of Water on Roads

The wet environment noticeably influences the appearance
of an asphalt road. This rough and porous material looks
different due to the water layer on top of the surface and
the absorbed wetness beneath. The presence of water on
the surface increases specularity and decreases the albedo.

3.1 Wet Roads

The leading cause for the darkening is the internal reflec-
tion at the boundary of air and water [7]. To correctly
simulate the thin water layer behaviour, we would need a
layered BRDF – layers for the water and the original road
material. The model used by Jensen et al. [7] takes into ac-
count the interaction of light with both the air-liquid inter-
face and the liquid-material interface (fig. 2). This method
could be somewhat costly, especially if we wish for a dy-
namic transition between the road’s dry and wet state. For
a driving simulator, we used a simple set of BRDF param-
eters capturing both dry and wet surfaces to imitate these
effects visually.

Figure 2: Jensen et al. [7] use a two-layer reflection model to sim-
ulate a thin liquid film on top of a material. The amount of light
transmitted through each layer can be computed using Fresnel’s
equation.

As noted in Lekner and Dorf [8], the darkening effect by
wetness is more significant if the albedo is low. When the
absorption is strong (with rough dark porous materials), a
larger fraction of the light is consumed on the first contact
with the surface. They described a connection between
wet and dry albedo based solely on the index of refraction
of the water and the road material. However, it would be
helpful to have the scaling factors for diffuse and specular-
ity part separated, to shift from dry to slightly wet and to
wet roads. Many other approaches consider the surface’s
porosity and roughness, or even some sets of real-world
measurements are available.

We chose to alter the parameters of a BRDF model
as proposed by Nakamae et al. [9]. They use the Cook-
Torrance model, and the factor by which they attenuate
the dry diffuse parameter into a darker wet material is be-
tween 0.1 to 0.3. The specular component is assumed
to be 5 to 10 times increased instead. These parameters
were empirically calibrated without considering the phys-
ical properties of the surface. We readjusted these num-
bers to our scenes within the driving simulation made in
the game engine (with a Torrance-Sparrow model). In par-
ticular, for a completely wet road effect, we multiply its
dry-state albedo by 0.3 and its smoothness by 2.5. These
values were found experimentally by visually evaluating
the appearance of the wet and dry roads. The partially wet
road is achieved by linearly interpolating the coefficients
mentioned above towards one based on the relative wet-
ness of the road (see section 5.1 for more details).

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)



3.2 Puddles

Another situation is when rainwater is present on the sur-
face of a material, but instead of getting absorbed, it gath-
ers in low areas creating puddles. Nakamae et al. [9] di-
vide the road surface into four types: dry, wet, drenched,
and a puddle region. The wet region is the type we de-
scribed above. The drenched regions contain some water,
but no puddles are formed. The authors constructed a two-
layer reflection model for the puddle region to simulate
a thin layer of water covering the road. Regions are de-
fined using several height data and height thresholds for
the classification. This data allows the creation of puddles
with different depth in each region, taking into account the
locality and scale of the road surface’s undulations.

4 Dynamic Simulation

A static wet surface covered with puddles and cars driving
through without any interaction does not provide a realistic
impression. When a car drives through a puddle, the water
stirs up, and ripples spread across the otherwise calm sur-
face. If the puddle holds enough water and the car drives
at a certain speed, the car wheels break the waves, which
results in splashing and spraying. In our approach, we split
these effects into two separate phenomena to reproduce —
ripple propagation on the water surface and the splash and
spray formation when the wheel interacts with the puddle
area.

4.1 Water Surface and Ripples

To simulate the interactive wave propagation, we use a
heightfield to represent the water surface. The surface is
then deformed in a vertical direction, creating an illusion
of a passing wave. The advantage of this technique is that
a shader can calculate the wave appearance, which is well
supported on GPU and therefore it is considerably fast.
The drawback might be that there is no information about
the water mass. This is not a significant disadvantage to
the shallow puddles occurring on the roadways.

The waves are represented by a wave equation which is
based on the propagation principle of mechanical waves.
We use a 2D partial differential equation to simulate the
liquid surface waves [6]:

∇
2 f (x, t) =

1
s2

∂ 2 f (x, t)
∂ t2 (1)

where s is the velocity of the wave spreading across
the surface, ∇2 is the Laplacian operator, f is the verti-
cal derivation function with parameters x, a spatial vector
(in this case a two-component vector) and t as time. The
discretization with finite-difference methods can be per-
formed using a 2D map zi, j = f (x), with i, j ∈ [0,N− 1],
and N describing the width of our square grid (see fig-
ure 3). With the central difference in space and time, the
equation is approximated to (eq. 2):

zt+1
i, j =

s2∆t2

h2 (zt
i+1, j + zt

i−1, j + zt
i, j+1 + zt

i, j−1)

+(2− 4s2∆t2

h2 )zt
i, j− zt−1

i, j

(2)

Figure 3: A heightfield with N points along each side used to
approximate the water surface.

with h being the size of a single step in the grid and t
denoting a relative frame number. Hence, the computation
of zi, j in the current frame needs only the value of its four
direct neighbours from the last frame and the value of zi, j
from the last two frames. The stability constraints are non-
moving boundaries of the grid and s2∆t2

h2 ≤ 1
2 otherwise, the

heightfield will grow exponentially [6]. The final z value
is scaled by a damping coefficient a < 1 to decrease the
wave’s energy. If the damping is not applied the wave mo-
tion will stay indefinitely. This coefficient can be locally
adjusted, so the wave behaves more naturally adhering to
some terrain features.

4.2 Splash and Spray

To add splashes into our simulation, we use an assessment
tool predicting splash potential for numerous road types,
and rainfall by Flintsch et al. [4]. This method primarily
provides useful information for supporting highway de-
sign. They started by developing a model for water film
depth (WFD) on a surface based on its drainage proper-
ties and rain intensity. From this, they established a model
for estimating the amount of water that is going to be pro-
jected by the wheel, given the WFD model, road proper-
ties, vehicle speed, and other factors.

The generation of water splashes and sprays is a com-
plex process, and it depends upon several independent
situational variables. Usually, splashes and sprays are
two separate processes characterized by the droplet’s size
(splashes consist of drops larger than 1 mm and sprays
are formed by droplets smaller than 0.5 mm in diame-
ter). Nevertheless, they are often referred together for sim-
plicity because it is challenging to monitor and measure
them individually (labelled plainly as splash). A splash

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)



can be deconstructed into four mechanisms: bow waves,
side waves, tread pickup, and capillary adhesion (Weir et
al. [16]). The bow and side wave consists of relatively
large drops while tread pickup and the capillary drips are
shattered into spray (see fig. 4). The amount of water
thrown also depends on the vehicle speed. Previous re-
search (Flintsch et al. [4], Pilkington [10]) mention that the
minimum speed before a measurable spray is formed is in
the range of 48 to 64 km/h. A maximum speed may exist
if the car starts to hydroplane instead of making splashes.

Figure 4: Primary splash and spray generation mechanism taken
from Weir et al. [16]. Water passing into the tire’s tread pat-
tern can be projected directly behind the wheel (tread pickup) or
lingers in as a thin capillary film. Bow and side waves are more
notable as the wheel drives into a deeper puddle.

The model by Flintsch et al. [4] determines the maxi-
mum amount of water (Mw) available for splash and spray
according to the equation 3:

Mw = v ·b ·WFD ·ρw (3)

where v is the car’s velocity (m/s), b is tire width (m),
WFD is water film depth (m), and ρw is water density.
They further calculate the amount of water for each mech-
anism separately (for example if the water from capillary
adhesion remains, it will be used for tread pickup). We
believe that this level of detail is not crucial for our visual
simulation, mainly because we would need to control ad-
ditional variables. One such variable is the aerodynamics
of a car or the tire geometry; the splash behaves differ-
ently for a worn-out tire as opposed to new tires with a
clear tread pattern.

5 Implementation

The implementation is done in the Unity game engine. The
state of the road can be changed dynamically with a few
parameters defining the amount of water present. Some
adjustments had been made in our approach to ray-trace
viable images in Octane Render.

5.1 Appearance of Wet Roads and Puddles

We believe that the physically-based BRDF of Unity is de-
rived from the Disney work [1] and based on the Torrance-
Sparrow microfacet model. We control the wet condition

of a road by a variable named wetness, a uniform variable
of Unity’s surface shader. The variable is the alpha for the
linear interpolation between the two values of coefficients
modifying the albedo and smoothness, as shown below:

albedo *= lerp(1.0, 0.25, wetness)
smoothness = min(1.0, smoothness *
lerp(1.0, 2.5, wetness))

It defines the drenching strength caused by rain, allow-
ing the control of progressive damping or drying of the
road.

We further used the approach of Nakamae et al. [9]
to create the puddle areas on the road. We omitted the
drenched region in our approach and instead interpolate
the current model (dry or wet road) with the puddle re-
gions to simulate water accumulation in lower areas. A
traditional heightmap is used to regulate where a puddle
will form in place of elaborate undulation data. Depending
on the heightmap form, the water might fill smaller gaps
and cracks in the road. A large greyscale texture repre-
sents the placement of puddles itself called a puddle map
to break the repetition of puddle patterns on a tiled road
(which occurs if only the height information is used). This
puddle map texture is locally blended with the heightmap,
so the puddles reflect the road’s uneven shape (in figure 5,
we demonstrate such a blending method). We control the
amount of water in the puddle areas by another shader uni-
form variable waterLevel. The variable visually simulates
a puddle’s depth – if the final blended area is lower than
the specified water level, it will be filled with puddle water
accordingly. The amount of water regulates the puddle’s
intensity and could be considered the intermediate condi-
tion between wet and puddle region. It is possible to have
another water level variable to adjust the flooding or dry-
ing rate for small holes or cracks in contrast to the puddle
areas.

The water layer which fills the puddles is smooth, and
with the normal vectors facing straight up, the puddle
should be highly reflective. Note that the puddles are still
altogether merely a flat surface. These puddles remain fea-
tureless and straight like a mirror surface. We added ambi-
ent waves by mixing two normal maps that are shifted and
scaled in time using the Unity game time variable. Lastly,
planar reflections are incorporated to create an impression
of real-time water surface using a render texture. The tex-
ture is distorted together with the animated bump maps
making these reflections moving with the waves.

5.2 Interactive Puddles

The wave effect simulated in the 2D array is created in the
engine using a custom render texture. The calculation it-
self is handled in a fragment shader with a double-buffered
texture. This texture-based viewpoint efficiently gives us
the bounding conditions implicitly (the grid’s edges are
still). The last frame is stored in the red channel, while
the frame before last is stored in the green channel. This

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 5: On the left is a puddle map generated from a Perlin noise, a figure in the middle displays the road’s height texture (multiple
lanes with rutted tire marks). On the right is the result of the screen blending of those two textures. Notice how the puddles slightly
aligned to the lower areas of the heightmap.

Figure 6: (left) A texture storing two frames of data (in R and
G channel) regarding the water surface’s height. This texture
is used to calculate the height of the wave for the next frame.
(right) The displaced water using a normal map generated from
such heightfield.

manner of storing the heights begets a black and yellow
coloured texture shown in figure 6. Finally, this height-
field is passed as a wave texture to the custom shader for
the roads, from which we generate a normal map and blend
it with the already existing ambient waves.

To generate the actual wave at the wheel-puddle contact
position, we detect where the wheel collides with the road
and use ray cast to determine the heightfield texture’s UV
coordinates. We then set the height value to 1 at this con-
tact point with an update zone method available from the
Unity engine’s custom render texture. The engine’s dis-
crete collision detection should be taken into account, so
the ripples are connected into a reasonable looking wave
motion (for example, linearly interpolating between the
two contact points), as seen in figure 7.

As for splashes, we replaced the empirical WFD model
of Flintsch et al. [4] with our straightforward method for
forming puddles on the road. We do not deal with the
drainage properties. Therefore, the water film depth can
be obtained only from the puddle map blended with the
road’s heightmap and the water level variable. Of course,
this approach only determines where a splash is likely to
occur given the puddles’ placement (and the depths) we
set. The depth of a puddle is calculated in millimetres with
a maximum depth of 10 mm for the shallow puddles.

Figure 7: The green lines depict ray casts done at the contact
points between the tire and the road. At each point, we disturb the
water surface and start a wave at the calculated UV coordinates
of the heightfield.

We apply the findings from Weir et al. [16] to the splash
particle system provided by the game engine. We put to-
gether threshold values for each of the four splash com-
ponent based on WFD and vehicle speed. The maximum
amount of water (eq. 3) is then used to fine-tune the prop-
erties of each splash mechanism described above. We ad-
just the emission rate, shape, and angle of the water projec-
tion to match the amount of water and the vehicle’s actual
speed. Each wheel of a car has its ”splash” game object
assigned and will emit the particles when it drives into a
puddle. We detect puddles with the same method as cal-
culating the wave heightfield’s UV coordinates, and this is
executed in the same pass. The simulated water surface on
the road does not react to the generated splash particles,
nor is there any particle-particle interaction.

5.3 Ray-Traced Outputs

Besides the rasterized version from the engine, we can also
obtain path-traced images with the Octane render plugin
for Unity. The render is unbiased, offering photorealistic
quality that is by far superior to what any real-time en-
gine based on rasterization can achieve. However, Oc-
tane render does not have complete access to the game

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)



engine’s rasterization pipeline, so we had to make some
adjustments to achieve visually pleasing results.

Octane does not recognize the custom shader since only
the standard shaders of Unity are supported. Hence, we
assembled a new road material as a PBR Override Ma-
terial shader – the OctaneRender-specific material type.
We chose a combination of different materials instead of
a single material type. The material is made of a mix of
a diffuse road and specular water material using the Oc-
tane’s node graph tool. The material has roughly the same
properties and is controllable by two variables wetness and
waterLevel specified from Unity. The wetness variable ad-
justs the diffuse colour of the road material (using gamma)
and the roughness parameter, which controls the specular
highlight’s distribution on the road. The waterLevel reg-
ulates the gamma of the puddle map. The puddle map
blending and mapping were executed with an OSL shader
(Open Shading Language) through a scripted graph node.
The puddles need to be placed roughly at the same spot,
similar to the rasterized outputs, because we calculate the
splashes directly from the game engine (see fig. 8). The
puddles in Octane do not react to the wheels’ contact as
they do in the game engine; however, they display the am-
bient waves on the surface with an animation node to sim-
ulate time.

Figure 8: The puddles are mapped roughly the same way for both
Unity (left) and Octane (right). We coloured the puddle areas in
Octane blue for demonstration purposes (otherwise they are too
subtle to notice with weak reflections).

Octane has no support for Unity’s particle system either.
We dealt with this drawback by baking the particles into a
mesh, and we do so every frame. One wheel of a car can
emit a maximum of 2000 particles to generate a splash.
We pack those particles into four game objects, each with
a single baked mesh. The splash particles from Unity are
rendered as billboards, so we bake them faced to the render
target camera (as seen in figure 9). We opted for the PBR
Override materials for the splashes to get more realistic
water behaviour.

6 Results

We evaluated the wet road simulation in the Unity ver-
sion 2019.3.12f1 and Octane Render version 2020.1.5.

Figure 9: The splash particles are baked as textured billboards
aligned to the render target camera. We replaced the standard
Unity material for the Octane specific specular material.

We constructed a simple testing scene in the game en-
gine composed of a long straight road with two lanes, and
pavements on each side. There are four cars in total, each
driving at a slightly different speed to showcase distinctive
splashing amounts.

We set the resolution of both rasterized and ray-traced
outputs to 1920x1080. For the ray-traced version from Oc-
tane, we render using a path-tracing kernel with 350 sam-
ples and denoise the image after the frame is finished ren-
dering. The close-up visuals from Unity can be seen on
the left while the outputs from Octane are on the right in
figure 10.

6.1 Performance

The performance was observed on a computer with:

• CPU: Intel XEON E5-2630 v3 @ 2.4GHz,

• GPU: NVIDIA GeForce GTX TITAN Black.

The simulation running in Unity works in real-time, with
an average of 100 fps (9.8 ms). On the other hand, the ren-
der of a single frame in Octane might take considerably
longer as the number of cars and splashes increases. It is
mainly affected by the number of samples per pixel, reso-
lution and whether adaptive sampling is used. The Octane
Render plugin enables only one GPU for calculation. The
plugin allows exporting the whole scene into an ORBX
file, which is possible to render in the Octane standalone
version utilizing more GPUs. The main bottleneck is the
exporting of objects generated during the runtime of Unity
into the scene graph of Octane Render, which takes part
before the ray-tracing and might take as much time as the
rendering itself. It takes an average of 7-10 minutes for
our configuration to get one frame rendered (excluding the
export); therefore, we only use it for offline sequences.

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) Unity (b) Octane

Figure 10: Images on the left show how the simulation looks in the Unity game engine, using only standard particle shaders to render
splash. We put the ray-traced version from Octane on the right side for visual comparison.

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)



6.2 Problems and limitations

There are still a few unresolved problems in our approach.
Some limitations of the methods were already mentioned
in the sections above. The tricky part is integrating the ras-
terization methods into the ray-tracer without completely
changing the simulation already done in Unity. We cannot
use our wave simulation effectively in the ray-tracer with-
out adding more workload toward the exporting part into
the scene graph inside Octane. We are also motivated to
find a better way to update the generated particles, so the
final ORBX file is compact in terms of filesize (300 frames
long sequence of our scene takes up about 0.8 GB). An-
other problem is assembling a plausible PBR water mate-
rial to render the splashes in Octane since our particles are
flat objects without volume.

7 Conclusion

We proposed a set of methods that can enhance visual di-
versity by rendering rain effects on roadways. We focused
only on the phenomena seen on the roads and other rough
surfaces made of asphalt or concrete. We designed and
implemented a varying road surface according to the inten-
sity of rain, and we regulate the amount with two variables.
Furthermore, the puddles on the road react to driving cars
dynamically. Still, other wet conditions and details can
further be implemented to construct a believable rainy en-
vironment. We think that precipitation or fog would bene-
fit the overall visual quality of the artificial rainy environ-
ment. We plan to add these into our scene using the tools
provided by the Unity game engine and the Octane ren-
der plugin. Our focus is also to address the imperfections
emerging from the fundamental problem in bridging the
gap between a rasterizer and a ray-tracer.

References

[1] Brent Burley and Walt Disney Animation Studios.
Physically-based shading at disney. In ACM SIG-
GRAPH, volume 2012, pages 1–7. vol. 2012, 2012.

[2] Wang Changbo, Zhangye Wang, Xin Zhang, Lei
Huang, Zhiliang Yang, and Qunsheng Peng. Real-
time modeling and rendering of raining scenes. The
Visual Computer, 24:605–616, 2008.

[3] Carles Creus and Gustavo A. Patow. R4: Realistic
rain rendering in realtime. Computers & Graphics,
37(1):33 – 40, 2013.

[4] Gerardo W. Flintsch, Brian Williams, Ronald Gib-
bons, and Helen Viner. Assessment of impact of
splash and spray on road users: Results of con-
trolled experiment. Transportation Research Record,
2306(1):151–160, 2012.

[5] Kshitiz Garg and Shree Nayar. Photorealistic ren-
dering of rain streaks. ACM Trans. Graph., 25:996–
1002, 2006.

[6] Miguel Gomez. Interactive simulation of water sur-
faces. In Mark DeLoura, editor, Game Programming
Gems, pages 187–194. Charles River Media, 2000.

[7] Henrik Wann Jensen, Justin Legakis, and Julie
Dorsey. Rendering of wet materials. In Dani Lischin-
ski and Greg Ward Larson, editors, Rendering Tech-
niques’ 99, pages 273–281. Springer Vienna, 1999.

[8] J. Lekner and M. C. Dorf. Why some things are
darker when wet. Applied optics, 27 7:1278–80,
1988.

[9] Eihachiro Nakamae, Kazufumi Kaneda, Takashi
Okamoto, and Tomoyuki Nishita. A lighting model
aiming at drive simulators. SIGGRAPH Comput.
Graph., 24(4):395–404, 09 1990.

[10] G. B. Pilkington. Splash and spray. Surface Char-
acteristics of Roadways: International Research and
Technologies, 1990.

[11] Anna Puig-Centelles, Oscar Ripolles, and Miguel
Chover. Creation and control of rain in virtual en-
vironments. The Visual Computer, 25:1037–1052,
11 2009.

[12] Pierre Rousseau, Vincent Jolivet, and Djamchid
Ghazanfarpour. Realistic real-time rain rendering.
Comput. Graph., 30:507–518, 2006.

[13] Natalya Tatarchuk. Artist-directable real-time rain
rendering in city environments. In ACM SIGGRAPH
2006 Courses, SIGGRAPH ’06, page 23–64, New
York, NY, USA, 2006. Association for Computing
Machinery.

[14] Yoann Weber, Vincent Jolivet, Guillaume Gilet,
and Djamchid Ghazanfarpour. A multiscale model
for rain rendering in real-time. Comput. Graph.,
50(C):61–70, August 2015.

[15] Yoann Weber, Vincent Jolivet, Guillaume Gilet,
Kazuki Nanko, and Djamchid Ghazanfarpour. A
Phenomenological Model for Throughfall Rendering
in Real-time. Computer Graphics Forum, 2016.

[16] David H. Weir, Jay F. Strange, Robert K. Heffley,
et al. Reduction of adverse aerodynamic effects of
large trucks, volume 1. Technical report, United
States. Federal Highway Administration, 1978.

Proceedings of CESCG 2021: The 25th Central European Seminar on Computer Graphics (non-peer-reviewed)


