Accelerating Sparse Neural Networks on GPUs

Alexander Ertl*
Supervised by: Markus Steinberger| Mathias Parger*

Institute of Computer Graphics and Vision
Graz University of Technology
Graz / Austria

Abstract

Ever larger networks with parameters in the order of the
hundreds of millions are required to fit increasingly com-
plex and expansive datasets. In conjunction with ubiqui-
tous machine learning applications on mobile or embed-
ded platforms, this makes efficiency a vital property of ar-
tificial neural networks. Therefore we build upon work
on replacing fully connected dense layers with trainable,
evolving sparse layers in CSR encoding. This allows us to
train networks at sparsity levels of up to 97% while consid-
erably reducing the memory footprint as well as the num-
ber of computations thereby indicating that GPU acceler-
ated sparse layers are a viable alternative to dense layers.

Keywords:
Matrices

GPU Acceleration, Deep Learning, Sparse

1 Introduction

The abundance of neural networks and the ever-increasing
complexity of challenges they face has created the de-
mand for faster and more efficient approaches. Specifi-
cally, architectures like VGGNet [11] require training pa-
rameters in the hundreds of millions. The increased us-
age of neural networks on mobile platforms with tightly
constrained resources makes efficient networks, both in
terms of computational resources as well as memory us-
age, even more desirable. To this end, this thesis will con-
trast the accuracy and efficiency of sparse neural networks
to their dense counterparts as well as presenting a GPU
accelerated sparse network implementation. Furthermore,
we show that it is possible to train sparse neural networks
from scratch with a sparsity of up to 97%, suffering only
small penalties in accuracy while reducing the number of
computations as well as the memory footprint during train-
ing by a considerable factor.

“ertl@student.tugraz.at
Tsteinberger@icg.tugraz.at
*mathias.parger @icg.tugraz.at

1.1 Sparse Neural Networks

The bulk of the parameters comes from the weights. To be
specific, there are Nj, - N,,, weights per layer, where Ny,
is the number of input features and N, is the number of
neurons i.e. outputs, whereas there are only N,,, biases.
This means, that reducing the number of biases in a net-
work has little to no effect on the performance, however
introducing sparsity to the weights can greatly improve ef-
ficiency. Since the weights are centred around zero and
a large number of weights are very close to zero, many
of them can be removed, i.e. set to zero, without greatly
affecting the output of the neural network [12]. Pruning-
based approaches, which focus on training dense networks
and gradually removing weights close to zero have been
shown to achieve sparsity levels of up to 95% while main-
taining accuracy on par with dense networks [1]. Unfor-
tunately, pruning, although resulting in a sparse network,
does not actually reduce the cost of training. This hin-
ders the increasingly common objective of online train-
ing on systems with fewer resources. Training sparse ar-
chitectures from scratch has however proven more diffi-
cult, yet Mocanu et al. [9] have shown that networks with
quadratically fewer parameters can be trained without suf-
fering any penalty to accuracy and that sparsity can act as
a form of regularisation to prevent overfitting during train-
ing. They achieve this by allowing the network topology
to evolve after every epoch.

1.1.1 Sparse Matrix Representations

A sparse matrix is defined as a matrix where most of its
elements are equal to zero. Sparse matrix representations
store only values not equal to zero, are however only effi-
cient at high sparsity levels. In order to reduce the mem-
ory footprint during training, we store the sparse matrices
in compressed sparse row (CSR) form, which consists of
three separate arrays: the row pointers, column indices and
the values themselves. As illustrated in Figure 1, the row
pointer at index i is simply an offset into the column index
and values arrays and the number of elements in that row
is defined as n_elements = row_pointer;, | — row_pointer;.
The consequence of this format is that high levels of spar-
sity are necessary for it to be effective. While the format
requires sparsity levels above 50% to save memory since

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics

Sparse Matrix Row pointer array

1w[ofofo2] [o]z]4a]7ai]4]

31910]0|0 Column indices array

o|7]8f[7[o] [ofafof1][1][2]3]0]2]3]4]1]
3|10|8|7|5]| Valuesarray

[o[=[[s[7Ts[7[s[s 7[5 [8]5]

Figure 1: A sparse matrix in CSR form and the cor-
responding row pointer, column indices and values ar-
rays [5].

every value requires both the value itself and a column in-
dex, our empirical results show that in order to reduce in-
ference durations we require at least 30% and to reduce
training duration at least 82% to compensate for the worse
access patterns created by this format.

1.2 Our Contributions

We present a GPU accelerated sparse neural network with
evolving topologies. This entails:

* An entirely sparse implementation of inference as
well as backpropagation and weight updates.

* Advanced evolving topologies based upon SET [9].

This also enables us to directly compare GPU accelerated
dense and sparse networks and examine the levels of spar-
sity required in order to reach a speedup as well as a re-
duction of memory.

2 Related Work

Numerous recent papers focus on regularisation tech-
niques such as sparse variational dropout [10], L regular-
isation [8] or sensitivity-driven approaches [12] to reduce
the number of parameters during training. Molchanov et
al. [10] used an adaptation of variational dropout to create
sparse networks and were able to achieve state-of-the-art
sparsity on LeNet-300-100 on MNIST handwritten digits
while maintaining a similar accuracy to dense or pruned
networks. Louizos et al. [8] on the other hand, solve a
complex optimisation problem in order to minimise the Ly
norm, i.e. the number of parameters during training thus
reducing the number of FLOPs performed, resulting in a
speedup, while also maintaining similar levels of accuracy.
Finally, Tartaglione et al. [12] use a sensitivity term to rep-
resent how sensitive the network’s output is to specific pa-
rameters, i.e. how much a parameter influences the output
of the network, in order to nudge less sensitive parameters
towards zero, thus also resulting in sparse weight matri-
ces. While all of these approaches have shown to pro-
duce highly sparse networks with good performance, none
them achieve front-to-back sparsity while training, mak-
ing training large networks on single GPUs, or systems
with otherwise constrained resources difficult.

On another front, Chen et al. [3] utilise advances in al-
gorithms for maximum inner product search (MIPS), to
create SLIDE, an intelligent algorithm for training net-
works on CPUs. This approach uses MIPS sampling based
on locality sensitive hashing to efficiently sample large ac-
tivations that need to be computed. Every forward and
backward pass, only a small set of active neurons is used
for calculation of activations, costs and gradients. While
this reduces the number of necessary computations it does
not reduce the memory footprint.

Evci et al. [4] discuss the difficulties of training sparse
neural networks and the tendency of sparse nets with fixed
sparsity patterns to converge towards “bad” local minima
or saddle points and indicate that allowing for changing
network topologies during training might be necessary in
order to find sparse solutions with a performance similar
to dense solutions. A similar conclusion is reached by Al-
ford et al. [1]: while pruning may in fact increase accu-
racy, pruning acting as a form of regularisation, training
sparse networks with fixed topologies from scratch makes
the training process unstable, i.e. convergence is unreliable
and same accuracy levels can often not be reached, since
training then becomes very dependent on initialisation.
This is once again verified by Mocanu et al. [9] who there-
fore introduce sparse evolutionary training (SET). With
SET, the network is initialised with a random sparse topol-
ogy, however in addition to normal training procedure, af-
ter every epoch, a fraction of the smallest positive and
largest negative weights are removed and replaced by a
same number of new random weights, allowing the net-
work to better fit the data.

Finally Wang et al. [13] examine the performance of
sparse very deep neural networks on GPUs using cuS-
parse. They also use CSR to store the sparse matrices,
however they train their networks with a fixed topology
which has been shown to achieve relatively poor perfor-
mance at higher levels of sparsity when compared to evo-
lutionary variants [9]. Based upon GPU acceleration as
well as SET, we attempt to provide more detailed insights
into the behaviour and performance of evolving sparse
neural networks.

3 Sparse Neural Networks

Our sparse neural networks consist of multiple sparse lay-
ers which in turn are composed of a dense array of biases
and the sparse weight matrices in CSR form.

3.1 Inference

Sparse inference is identical to dense inference aside from
the number of weights. Since the weights not present in
the CSR representation are by definition zero, performing
inference with a fully connected network with a sparse ma-
trix or performing inference with a sparse network with the

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics

same sparse matrix represented in CSR format, are equiv-
alent.

3.2 Training

The essence of training our sparse networks for classifica-
tion challenges remained the same as for dense networks.
After performing a sparse forward pass we calculated the
costs and updated the weights with gradients computed by
backpropagation. However in addition to these steps per-
formed every iteration, after a certain number of epochs
the network topology is allowed to evolve: Weights close
to zero are thresholded and replaced by introducing the
same number of the highest gradient values as new con-
nections as illustrated in Figure 2. This evolution step im-
proves convergence behaviour and achieved performance.

3.2.1 Initialisation

The number of weights per layer is calculated as N,, =
Nin - Now - (1 — sparsity). The weights were distributed
evenly over all neurons of the layer, every neuron receiv-
ing exactly

Ny

Nout

ny, =

weights. Every neuron’s inputs were then partitioned into
n,, equally sized partitions and the n,, weights distributed
randomly in their respective partition.

The values arrays of the CSR representations were ini-
tialised using Xavier initialisation [6]: a normal distribu-
tion with a zero mean and

2
Vv Nin +Noul

However, our results show that a slightly higher variance
is beneficial to initial convergence. Therefore we modified
the Xavier initialisation, to encompass the level of sparsity
by changing o to

2
 \/Nin+ Now) - (1 — sparsity)

3.2.2 Backpropagation and Gradient Calculation

The backpropagation step is completely sparse and we
only calculate the gradients required to update the cur-
rently active weights. Since the number of required gra-
dients is equal to the number of weights in the layer, the
reduction of computations and the savings in memory re-
garding gradient computation and storage are proportional
to the sparsity, e.g. a sparsity level of 95% results in a re-
duction of 95% of the necessary computations and mem-
ory. It should be noted that it is not necessary to store the
gradients in CSR form, i.e. we only require the values ar-
ray.

3.2.3 Weight Updates

Since the calculated gradients are already in the correct
form, i.e. they are in the same order as the weights in the
CSR values array, updating them is a simple vector add-
multiply: w;; = w, — NV where 1] is the learning rate.

3.2.4 Evolving the Network Topology

The key to successful sparse training is to allow for chang-
ing network topologies. SET [9] accomplishes this by
thresholding a fraction { of weights close to zero in ev-
ery layer and replacing them with random new connec-
tions initialised to zero. We have implemented a more
precise algorithm, leading to faster convergence. As il-
lustrated in Figure 2, while we also threshold a percentage
of the smallest positive and largest negative weights every
layer, instead of replacing these connections with random
new connections, we instead insert the highest values of
the gradient as new connections.

The intuition behind this approach is that the largest
values of the gradient are the connections we should add
to most reduce the training error. Since the weights not
present in the CSR are zero, initialising these new weights
to w = —n -V is equivalent to performing dense training
on these weights: w;y| =w, — 1 -V since w;, = 0. If we
interpret the gradient as the “direction and rate of fastest
increase” and are only allowed to select a fixed number
of the gradient values as new connections, then we can
minimise the cost function most quickly by selecting the
largest values of the gradient. In this sense, this step is
comparable to dense training while only updating the most
important weights and setting less important weights to
Zero.

Instead of consistently thresholding a set percentage of
the highest weights in every layer which would require
sorting, we use an adaptive threshold 7. By comparing
the target percentage of weights to threshold to the actual
percentage computed after the thresholding step, we can
adjust the adaptive threshold by multiplying or dividing it
by a small factor. It is important to initialise 7 as well as
the adjustment factor to sufficiently conservative values,
since an initially large 7 could lead to an actual thresh-
olding percentage close to 100% and an adjustment factor
far from 1 could lead to a sudden blowup of the actual
thresholding percentage during training which would lead
to instabilities.

Once the number of thresholded weights has been deter-
mined, we perform quickselect to retrieve the same num-
ber of large gradient values. It is worth noting, that it is
possible to increase or decrease sparsity levels in this step
by selecting more or fewer gradient values than the num-
ber of thresholded weights.

The steps for calculating the costs in every layer are
the same as in normal training, see sections 3.1 and 3.2.2.
However, determining the fraction { of highest values of
the gradients would require computing as well as sorting

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics

0.05

(a) Before evolution.
zero.

(b) Threshold weights closest to

0.5

Q: . 0.2

(c) Calculate gradients.

(d) Introduce scaled highest gra-
dient values as new connections.

Figure 2: Network topology evolution. The absolute gradient values in Figure c are represented by the line thickness.

the entire gradient vector, which as well as being compu-
tationally expensive would also render the so far reduced
memory footprint useless. Since the gradient for the ith
neuron is however computed as V; = v; - ¢; where v; is the
input vector and c; is the ith cost, we have found that sort-
ing the costs and computing the gradient vectors for the k
highest cost neurons is a good approximation. The ideal
value for k strongly depends on the size of the layer, the
sparsity as well as the target threshold percentage since
the number of weights added to every neuron is given by
% and N; = Ny, - Nyy, - (1 — sparsity) - TTP where N, is the
number of thresholded values and TTP is the target thresh-
old percentage. Since the number of thresholded weights
per evolution step is constant (disregarding small oscilla-
tions induced by the adaptive threshold), setting

k=N ey

strikes a balance between distributing new weights over
as many neurons as possible and keeping the overhead
for gradient calculation small as illustrated by Figure 3.
Also, empirical analysis has shown that increasing k only
seems to increase the percentage of highest gradient val-
ues found in the k highest cost neurons significantly until
equation 1 holds. Furthermore, our results illustrated in
Figure 4 show that increasing k too much or even using
the entire gradient can be detrimental to convergence.

3.2.5 Update CSR

The final step is to update the CSR by removing the small
weights and adding the already computed highest gradient
values. This step is unfortunately difficult to parallelise
since the arrays of the CSR format are stored in consec-
utive memory and removing a single weight would shift
both the entire column index array as well as the values ar-
ray; therefore, this step is implemented on the CPU. For
efficient insertion, we pre-sort the highest gradient val-
ues according to their index in the new CSR. After sorting
this step consists of simply copying values and their corre-
sponding column index from the currently active CSR to a
new CSR if the absolute value is larger than the threshold
7 and inserting the negative highest gradient values multi-
plied by i as new connections.

200
] I k25=7

1751 k14 = 14
< p—
§ 150/ 1 k10 = 19
] 3 k1 =196
c
5 125
o
100
ie]
©
o 751
1)
=
© 50
(0]
z

251

04, — 1 :
0 10 20 30 40

Figure 3: Setting k = 1/N; = v/ 196 = 14 strikes a balance
between distributing new weights over as many neurons as
possible and keeping the overhead for gradient calculation
small.

100
98 1
96 1
0
© 941
o
o
© 92
]
E 90/
k10
— k25
86 —— full gradient

0 50 100 150 200 250 300 350
epochs

Figure 4: These results obtained on a 256x256x10 network
with a sparsity of 97% and TTP = 0.1 suggest that calcu-
lating k according to equation 1, while reducing the over-
head for gradient calculation, also benefits convergence.

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics

Table 1: An overview of the datasets used for our evalu-
ations including the number of classes and the number of
training and test samples.

Name Classes Training Test
MNIST 10 60k 10k
MNIST fashion 10 50k 10k
HIGGS 2 500k 100k

Table 2: The configuration and hyperparameters used dur-
ing the evaluations.

Global Parameters
Batch Size 512

Dense Parameters
n 1074

Sparse Parameters

1

n 2-batchsize
Target Threshold Percentage (TTP) 0.1%
T 0.01
k see equation 1

4 Evaluations

4.1 Datasets

The evaluations were performed on the MNIST [7], fash-
ion MNIST [14] and the HIGGS [2] datasets, also listed in
Table 1, with both the dense and sparse architectures with
varying levels of sparsity as well as a dense CUBlas imple-
mentation. Both the MNIST and MNIST fashion datasets
are image-based with 10 output classes and 28 by 28 fea-
ture vectors. The HIGGS dataset is a binary classification
challenge with 28 input features of which the first 21 are
based on measurements by particle detectors and the re-
maining 7 are derived features to facilitate classification.
Although the HIGGS dataset consists of 11.000.000 sam-
ples, due to a lack of computational resources, we only
used the first 600.000 samples split into 500.000 training
and 100.000 test samples.

4.2 Configuration

We used the ReLLU activation function for all hidden lay-
ers, the sigmoid activation for the final output layer and the
mean squared error (MSE) cost function. The activation
functions and cost function were kept consistent through-
out all evaluations.

We performed mini batch gradient descent with a batch
size of 512 and varying learning rates for dense and sparse
networks. While all of our sparse networks performed well
with n = m, dense networks did not converge so
we had to reduce the learning rate. For a summary of all
hyperparameters see Table 2.

Table 3: A comparison of the evaluated networks when
examining only the time per iteration as a factor.

Type/Sparsity Inference Training

ms Speedup ms Speedup
Dense 296 - 948 -
Dense CUBlas 291 1.0x - -
Sparse 90% 63 47x 5.83 1.6x
Sparse 97% 45 6.6x 2.87 3.3x
Sparse 99% 39 7.6x 221 4.3x

4.3 Results

Our sparse networks generally performed well and while
reducing both the duration per iteration of training and in-
ference and the memory footprint were also able to achieve
high levels of accuracy.

4.3.1 Computational Resources

Table 3, Figure 5 and Figure 6 contrast a dense network
to sparse networks with different levels of sparsity re-
garding inference and training durations. For inference
we measured the ms until all 10k test samples had been
classified and the training time specifies the amount of
time required for a single iteration in training. Inference
times were measured on a 512-512-512-512-512-10 net-
work and training times were measured on a 256-256-256-
10 network; both measurements were performed on the
fashion MNIST dataset.

While the dense CUBlas implementation was only
marginally faster than our own dense implementation, us-
ing sparse networks we were able to achieve a speedup of
almost 8x in inference and 4x in training at a sparsity level
0of 99%. In Figure 6 we also plotted a sparse network with
no CSR updates which led to an interesting finding: not
performing CSR updates actually increases training times.
This is likely due to our initialisation where we distribute
the weights over all neurons evenly. However, during evo-
lution, some neurons are entirely dropped, which although
not reducing the total amount of computations, makes our
GPU implementation more efficient.

In terms of memory consumption, the savings of sparse
networks are even more noticeable. Memory requirements
for samples, caching mechanisms or output were not con-
sidered since these remain constant regardless of the net-
work’s sparsity. The results displayed in Figure 7 were
normalized and show the memory usage in relation to a
dense layer. Our sparse layers reach break-even at a spar-
sity level of around 30% and sparsity levels of 99% result
in a 56 times smaller memory footprint than that of a dense
layer.

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics

ms for classification of all 10k samples

w

(S,

o
L

w

o

o
L

N

(&4}

o
L

ms per iteration
N
o
o

1501
1001 —— sparse
—— dense baseline
501 —— dense cuBLAS baseline

20 30 40 50 60 70 80 90 100
sparsity

Figure 5: Inference: ms for classification of all 10k test
samples.

Training Time

20.0
“ —— sparse

1759 s ---- sparse no updateCSR
> —— dense baseline

[N]
o N wu
o w o
!) ;
/
7/
/

7.51

ms per iteration

5.01

2.5

0.0 T T T :
70 75 80 85 90 95 100

sparsity

Figure 6: Training: ms for one iteration of training with a
batch size of 512.

Iy
=}

© o o
I o ©
| 1 A

o
N
)

normalized memory consumption

—— sparse
—— dense baseline

o
o
"

03 04 05 06 07 08 09 1.0
sparsity

Figure 7: The memory required for the weights, biases and
gradients by a 512x512 layer during training, normalized
by the dense layer.

100
98 1
96
z
o 94+
>
o
© 92
k7]
B 90 4
—— sparse@97%
88 1 sparse@97% no update
—— sparse@97% random zero init
86 —— sparse@97% full gradient

0 50 100 150 200 250 300 350
epochs

Figure 8: Training performed at a sparsity level of 97%
with varying CSR update methods (our algorithm in blue).

4.3.2 Accuracy

Figure 8 clearly shows the benefits of using the gradient to
determine new connections rather than randomly adding
new connections initialised to zero or not allowing for evo-
lution at all.

Although our sparse networks were able to converge
consistently at the tested levels of sparsity, the dense net-
work was able to achieve higher accuracies on both im-
age classification datasets. However the sparse networks
at 90% sparsity displayed faster convergence on the fash-
ion MNIST and HIGGS datasets. This behaviour was es-
pecially pronounced on the HIGGS dataset as can be seen
in Figure 9c where the sparse network was also able to
achieve an overall higher accuracy. The precise results are
all listed in Table 4.

The networks at 97% sparsity converged at accuracies
approximately 1% lower than the networks at 90% and
networks at 99% already show considerable drops in ac-
curacy. Furthermore, figure 9 shows that higher sparsi-
ties also result in strong oscillations in both training error
and test accuracy as the network evolves during the ini-
tial phase of training. The oscillations however flattened
out on all networks as training progressed resulting in a
smooth curve.

To highlight the importance of network evolution dur-
ing sparse training, we trained multiple sparse networks
on the MNIST dataset at the sparsity levels 90%, 97%
and 99% while either using our algorithm, or not allow-
ing for the network topology to change. As illustrated in
Figure 10 our algorithm at 90% was only able to beat no
evolution at the same sparsity by 0.25%, however while
becoming more noticeable at 97%, at 99% the not evolv-
ing network converged extremely poorly but our algorithm
was still able to achieve good results.

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics

100

920

80

70

60

test accuracy

50 —— dense 30

sparse@90%

o ~ ~
a =} o

test accuracy

o
=}

—— dense
sparse@90

—— dense
sparse@90

w
o

40 —— sparse@97% 20 —— sparse@97 —— sparse@97
" —— sparse@99% 10 —— sparse@99 50 —— sparse@99
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 0 10 20 30 40 50 60
epochs epochs epochs
(a) MNIST test accuracy (b) Fashion MNIST test accuracy (c) HIGGS test accuracy

Figure 9: Convergence behaviour on the MNIST, fashion MNIST and HIGGS datasets. While the sparse networks with
a sparsity of 90% always came within 1% of dense networks and in fact outperformed the dense network on the HIGGS
testset and 97% was sufficient to come close, the 99% sparse network was not able to achieve similar performance.

Table 4: The results of our evaluations performed on the
test sets with the respective sparsity levels and “-” for
dense networks.

Dataset Sparsity Accuracy
MNIST - 98.34%
90% 97.30%
97% 96.16%
99% 92.88%
MNIST fashion - 89.40 %
90% 88.43%
97% 87.58%
99% 86.08%
HIGGS - 74.24%
90% 74.68 %
97% 73.74%
99% 70.46%
95-99-99-90% 72.64%
100
901 f’
80
9
g 701
E 60 1 —— sparse@90%
§ sparse@90% no update
501 —— sparse@97%
—— sparse@97% no update
40 1 —— sparse@99%
—— sparse@99% no update
0 50 100 150 200 250 300 350
epochs

Figure 10: A comparison of our algorithm and not allow-
ing the network topology to change on the MNIST dataset.
While not allowing for evolution at lower sparsity does not
greatly affect performance, it is vital at higher levels.

5 Conclusion and Future Work

We have shown that sparse layers are a viable alternative to
dense layers, both increasing performance by lowering the
number of necessary computations as well as reducing the
memory footprint while maintaining a high accuracy. Fur-
thermore, sparse layers can successfully be accelerated on
the GPU which opens up the possibility of larger networks
which are currently in demand.

5.1 Future Work

Techniques such as pruning have already shown that very
sparse networks can reach accuracies on par with their
dense counterparts. While the accuracies our sparse net-
works reached are respectable, further improvements to
the weight replacement algorithm could likely achieve
even better results. An interesting problem illustrated in
Figure 11 may also have contributed to the deterioration
of performance at higher levels of sparsity: large weights
of a neuron that has no further connections to the follow-
ing layer are essentially “lost” since the cost for the neu-
ron will remain zero and the weight is too large to be re-
moved by simple thresholding. This problem could be ap-
proached by removing weights of neurons whose cost is
exactly zero during backpropagation.

Our sparse networks were trained without optimizers
e.g. ADAM, which of course increased the number of
epochs until convergence. Implementing such an opti-
mizer while keeping the benefits of GPU accelerated train-
ing would further increase the usability of sparse layers
in practical applications. Simply keeping the second mo-
ment of a dense gradient in memory however defeats part
of the purpose of sparse layers: namely reducing the mem-
ory footprint during training.

References

[1] Simon Alford, Ryan Robinett, Lauren Milechin,

and Jeremy Kepner. Training behavior of sparse

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics

Figure 11: This graphic illustrates a problem random ini-
tialisation can lead to: The weight from A1 to B2 does not
contribute to the output of the network, will however never
be thresholded, thus leading to a “lost” weight.

(2]

neural network topologies. 2019 IEEE High Perfor-
mance Extreme Computing Conference (HPEC):1—
6, September 2019. pOI: 10 . 1109 / HPEC .
2019 .8916385. arXiv: 1810 . 00299. URL:
http://arxiv.org/abs/1810.00299.

P. Baldi, P. Sadowski, and D. Whiteson. Search-
ing for exotic particles in high-energy physics with
deep learning. Nature Communications, 5(1):4308,
July 2, 2014. 1SSN: 2041-1723. pDOI: 10.1038/
ncomms5308. URL: https://www.nature.
com / articles / ncomms5308. Number: 1
Publisher: Nature Publishing Group.

Beidi Chen, Tharun Medini, James Farwell, Sameh
Gobriel, Charlie Tai, and Anshumali Shrivastava.
SLIDE : in defense of smart algorithms over hard-
ware acceleration for large-scale deep learning sys-
tems. arXiv:1903.03129 [cs], February 29, 2020.
arXiv: 1903 .03129. URL: http://arxiv.
org/abs/1903.03129.

Utku Evci, Fabian Pedregosa, Aidan Gomez, and
Erich Elsen. The difficulty of training sparse neu-
ral networks. arXiv:1906.10732 [cs, stat], July 17,
2019. arXiv: 1906 . 10732. URL: http : / /
arxiv.org/abs/1906.10732.

Figure 4.9: a sparse matrix and its corresponding
CSR row pointer,... ResearchGate. URL: https :
/ / www . researchgate . net / figure /
A - sparse - matrix - and - its -
corresponding — CSR - row — pointer —
column-indices—-and-values—-arrays_
figll_274379571 (visited on 09/17/2020).

Xavier Glorot and Yoshua Bengio. Understanding
the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth Inter-
national Conference on Artificial Intelligence and
Statistics. Proceedings of the Thirteenth Interna-
tional Conference on Artificial Intelligence and

(7]

(8]

(10]

(11]

[12]

[13]

[14]

Statistics, pages 249-256. JMLR Workshop and
Conference Proceedings, March 31, 2010. URL:

http://proceedings .mlr .press/v9/
glorotl0a.html. ISSN: 1938-7228.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE,
86(11):2278-2324, November 1998. ISSN: 1558-
2256. por: 10.1109/5.726791. Conference
Name: Proceedings of the IEEE.

Christos Louizos, Max Welling, and Diederik P.
Kingma. Learning sparse neural networks through
10 regularization. arXiv:1712.01312 [cs, stat],
June 22, 2018. arXiv: 1712.01312. URL: http:
//arxiv.org/abs/1712.01312.

Decebal Constantin Mocanu, Elena Mocanu, Pe-
ter Stone, Phuong H. Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial
neural networks with adaptive sparse connectivity
inspired by network science. Nature Communica-
tions, 9(1):2383, December 2018. 1SSN: 2041-1723.
DOI: 10.1038/s41467-018-04316-3. URL:
http://www . nature .com/articles/
s41467-018-04316-3.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry
Vetrov. Variational dropout sparsifies deep neural
networks. arXiv:1701.05369 [cs, stat], June 13,
2017. arXiv: 1701 . 05369. URL: http : / /
arxiv.org/abs/1701.053609. version: 3.

Karen Simonyan and Andrew Zisserman. Very
deep convolutional networks for large-scale image
recognition. arXiv:1409.1556 [cs], April 10, 2015.
arXiv: 1409 . 1556. URL: http: / /arxiv.
org/abs/1409.1556.

Enzo Tartaglione, Skjalg Lepsgy, Attilio Fiandrotti,
and Gianluca Francini. Learning sparse neural
networks via sensitivity-driven regularization:11,
2018.

Jianzong Wang, Zhangcheng Huang, Lingwei
Kong, Jing Xiao, Pengyu Wang, Lu Zhang, and
Chao Li. Performance of training sparse deep neu-
ral networks on GPUs. In 2019 IEEE High Per-
formance Extreme Computing Conference (HPEC).
2019 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1-5, September 2019.
DOI: 10.1109/HPEC.2019.8916506. ISSN:
2643-1971.

Han Xiao, Kashif Rasul, and Roland Voll-
graf. Fashion-MNIST: a novel image dataset
for benchmarking machine learning algorithms.
arXiv:1708.07747 [cs, stat], September 15, 2017.
arXiv: 1708 .07747. URL: http://arxiv.
org/abs/1708.07747.

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics

