A framework for textured Constructive Solid Geometry modelling

Botond Janos Kovacs*

Supervised by: Dr. Ldszlo Szécsi’

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics
Budapest / Hungary

SYMY {
SYMZ {
SYMX {
INTERSECT [
BOX AT POSITION (0.5, 0.5, .5),
BOX AT POSITION (6.5, 0.5, ©.5)
ROTATE AROUND (1, 1, 1) BY 45 DEGREES
]
}
¥
}

Figure 1: The framework in action. The code on the left
produces the geometry shown on the right. This is not
the complete code of the scene, as lighting and material
parameters have been stripped for clarity. The image has
been rendered using the application’s production render-
ing feature, using sphere tracing. Texturing is achieved
using triplanar mapping.

Abstract

We present a Java application and library that can be used
to create triangle meshes from textual constructive solid
geometry descriptions. The application can display scenes
created with constructive solid geometry methods, using
both triangle mesh approximation, and sphere marching.
We show how GLSL code generators enable the portability
of the signed distance functions, material property evalu-
ation functions, and lighting contribution calculations be-
tween the different stages of the rendering pipeline, even
between pipelines using different rendering techniques.

Keywords:
Graphics

Code generation, Optimization, Computer

1 Introduction

Three-dimensional scenes are described using many dif-
ferent types of objects, including geometric shapes, ma-
terials, or light sources. In computer graphics applica-
tions, we combine these objects to present an image of the
scene they describe. Three-dimensional modelling is the

*botondjanoskovacs @ gmail.com
fszecsi @iit.bme.hu

act of creating the geometry, and there are multiple ways
to create models. In production films or video games, tri-
angle meshes are often used, and software dedicated to
creating triangle mesh models operates on the polygons of
these meshes. On the other hand, CAD software, often
used in mechanical engineering or architectural engineer-
ing use constructive solid geometry as opposed to polygo-
nal meshes. The CSG representation of these models also
proves to be useful for performing simulations, or collision
detection.

Constructive Solid Geometry[10] models may be pre-
sented using direct techniques, such as ray tracing, or in-
direct techniques, such as triangle mesh approximation.
When using indirect techniques, a triangle mesh is usually
required. Using interface-extraction techniques a trian-
gle mesh can be produced for constructive solid geometry
models in a discretised space. For large enough data adap-
tive grids can be used to alleviate the memory and com-
putational time requirements of the interface-extraction,
while introducing some preprocessing overhead. Since
these algorithms have VRAM requirements in the giga-
byte range, for optimal runtimes GPU pipelining must be
utilised between the computational stages to avoid unnec-
essary copying of the data between RAM and VRAM.

In this paper, we show and compare methods for visual-
ising textured CSG models. After the brief introduction of
direct and indirect visualisation techniques, we describe
our own formulation of the problem, and outline the de-
tails of our solution. Our application is modular in the
sense that there exist multiple exchangeable implementa-
tions of the different stages of the pipelines. This allows
us to compare different types of grids, interface-extraction
algorithms or rendering techniques. We created a simple
language to store the CSG operations, and the material and
lighting properties of a scene. These scenes may be pre-
sented using one of the renderers, or exported as triangle
meshes to Wavefront OBJ or gITF files. Most stages of
these tasks are GPU-accelerated, and allow for efficient
hardware utilisation.

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics (non-peer-reviewed)

2 Previous work

2.1 Direct visualisation

There are multiple ways of turning a constructive solid
geometry description into a renderable format. We can
achieve the best quality using direct visualisation tech-
niques, such as ray tracing[11].

With ray tracing, we shoot imaginary rays through our
image plane, and check for intersections with the geom-
etry. To do so, we must find the mathematical equations
of our objects, and solve the equation system formulated
from the equations of these objects, and the ray’s equation.

Another approach is ray marching, finding this inter-
section point by starting from the ray’s origin, and tak-
ing small steps along the ray. At each step, we check if
the point is inside any of the objects in the scene. If at
any point we detect to have entered a shape, we can trace
the actual intersection point by taking smaller steps back-
wards, eventually leaving the object again.

This process can be optimized if the distance function of
our objects is known[1]. The distance function maps the
shortest distance to the surface of the object to the input
point. If at each step we evaluate this function, and take
the minimum distance to all of our objects, a step with this
distance can be taken in any direction from the sampling
point, including our ray’s direction. This improvement can
dramatically decrease the number of steps required to find
the surface intersection point.

2.2 Indirect visualisation

There are also multiple indirect methods for visualising
these kinds of surfaces.

Point-based methods[13] may use a large number of
particles that are attracted towards the surface, and pushed
by other particles. These particles may than be drawn as
billboards to visualise the surface.

Another approach is to create a triangle mesh from
the surface: by discretising the space into grid cells, the
marching cubes[5] or the dual-contouring[2] algorithms
can produce an approximation of the surface constructed
of triangles. Both algorithms look for intersection points
between the surface and the edges of the voxels. The
marching cubes algorithm places points onto these edges,
by interpolating them according to the distance values
measured at the endpoints of the edge, and connects these
points placed onto the voxel edges to form triangles. The
dual-contouring algorithm uses a single point per voxel.
If an edge of the voxel intersects the surface, these sin-
gle points placed in the neighbouring voxels of the inter-
secting edge are connected to form a quad. The original
dual-contouring algorithm finds the optimal points inside
the voxels, by assigning a cost function to each edge in-
tersection point, and finding the parameters that minimise
the system of equations formulated from these cost func-
tions. Our approach to finding the optimal point is to use

the average of the edge intersection points.

2.3 Scene model

There exist many file formats for storing both triangle
meshes and CSG models. For polygonal models, some
of the most commonly used formats include the Stanford
PLY, Wavefront OBJ, or the gITF file formats. For CSG
models, OpenSCADI3] introduced a functional, human
readable language, that supports using variables, perform-
ing transformations, and operations on primitive objects. It
also provides support for coloring the defined primitives,
or CSG tree nodes. Our textual representation format is in-
spired by the OpenSCAD language, but uses a declarative
syntax as opposed to functional programming.

2.4 Signed Distance Functions

One of the most important features of our CSG evaluator,
is that it uses the signed distance functions of the primitive
shapes, operators and transformations it supports. This
simplifies the implementation of the union, difference and
intersection operators, and allows us to apply transforma-
tions by applying the inverse of the transformation to the
input point[7]. Methods for approximating distance to any
implicit surface[6], or fractals[8] exist, and although they
do not produce the exact Euclidean distance, the approx-
imation is good enough to allow for sphere tracing, or
triangle-mesh approximation.

3 Our work

We created a framework for describing three-dimensional
scenes that contain models, materials, and light sources.
The framework can be extended with new CSG operations,
material types, or light source types. We use signed dis-
tance functions to model the surfaces of the objects. We
use code generators to evaluate the CSG operation tree,
and generate GLSL code that implements the total signed
distance function of the CSG tree. The framework also
requires CSG operators (and all other evaluable compo-
nents) to provide a CPU implementation of the algorithms
they realize. We designed the interface of the framework
to allow for integration on two abstraction levels:

* Integrating on the application level means writing
SurfaceLang code, or another application that gen-
erates SurfaceLang code, and using our application
or high-level framework methods to create a triangle
mesh of the scene, or to create a rendered image of
the scene.

¢ Integrating on the framework level means using our
framework’s code generator (or evaluator) in an ap-
plication in order to realize any features relying on
the signed distance function, material function, or il-
lumination function of the scene.

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics (non-peer-reviewed)

Application level

Render using sphere tracer

Generate SurfaceLang code }(

Render / export models

Create custom operations }</~

‘ Create triangle mesh
Algorithm developer

generators

Integrate rendering engine

Generate illumination
GLSL/Java

Generate signed distance Framework user

function GLSL/Java

‘ Extend with new code }'
}' Integrate collision detection

vV WV WV W

Framework level

Figure 2: Overview of the framework use-cases

These abstraction levels are illustrated in 2.

3.1 Scene representation

The input of the application is a textual representation of
the scene, written in the application’s own language (see
Figure 3). This text is parsed, and a graph of the different
scene objects is created. There may be shapes, materials
or light sources in the scene.

Shapes expose a signed distance function, which is used
both in the sphere marching renderer, and the voxeliza-
tion. Shapes are CSG operation nodes, that fall into one
of three categories: operations, transformations, and prim-
itive shapes. Signed distance functions are functions that
take a point in the three-dimensional space as input, and
output a single signed value, which is the distance to the
closest point on the shape’s surface. SDFs make a distinc-
tion between inner and outer points, with negative distance
values being considered as being inside the shape, and pos-
itive values outside the shape.

The application uses 3D texturing, where materials de-
fine a boundary (a shape with a signed distance function)
and certain material properties. When evaluating diffuse
or specular components of the material at the surface point,
the properties defined by the material are applied to the in-
ner points of the boundary. Constant materials assign the
same constant properties to all points inside the boundary
values. Another material type in our solution is the tripla-
nar material, which uses triplanar mapping[4] to calculate
the diffuse and specular components of the material from
the corresponding input image textures.

Light sources expose their contribution function, which
can be evaluated at the surface points with the material
properties provided as input. Light source contribution is
calculated using the same set of calculations both in the
triangle mesh renderer, and the sphere marching renderer.
The light source contribution function implementation is
expected to include shadowing, although this is currently
only implemented correctly in the sphere marching ren-
derer.

light ambient {
energy: (0.2, 0.2, 0.2)
}
light directional {
energy: (0.6, 0.4, 0.15),
direction: (0.7071, 0.5, -0.5)
}
light directional {
energy: (0.2, 0.35, 0.4),
direction: (0.6325, 0.4472, 0.6325)
}
material constant {
boundary: EVERYWHERE ,
diffuse: (0.5, 0.5, 0.5),
shininess: 40
}
SUBTRACT {
A: SPHERE AT POSITION (-0.5, 0, 0),
B: SPHERE AT POSITION (0.5, 0, 0)
}

Figure 3: A simple scene represented in the application’s
own language

3.2 Scene portability

Since scenes carry information that is required in multiple
stages of the visualisation pipeline, the framework requires
components, that realize a certain algorithm, and can be
executed both on the CPU and the GPU. We called these
objects evaluators, and they have the single responsibility
of providing both the CPU and the GPU implementation
of a given function. Surfaces, or shapes are a type of eval-
uators, as they implement the signed distance function of
the encapsulated body. The CPU implementation of eval-
uators is available as a simple callable method, while the
GPU implementation is always a code generator, which
is a function that is expected to return the GLSL code re-
quired to implement the algorithm.

3.3 Visualisation

Our framework supports the direct and indirect visuali-
sation of scenes. The different supported techniques are
demonstrated in Figure 4, and the next sections describe
how our visualisation pipelines work.

(a) () (©

Figure 4: Visualisation of the example scene described by
Figure 3. Figure 4a) shows the marching cubes contour,
Figure 4b) shows the dual-contouring result, and Figure
4c shows the sphere traced image.

3.4 Creating triangle meshes

When using the framework, triangle meshes can be cre-
ated by executing the following process (illustrated in Fig-

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics (non-peer-reviewed)

ure 5):

* 1. Voxelization: The signed distance field must be
discretized, meaning it must be evaluated at certain
points in space, and the results are saved in the voxel
storage.

* 2. Interface-extraction: Using the voxelized data,
the triangle mesh of the data is created, which con-
tains vertices and faces.

The resulting triangle mesh can be used in a forward
or deferred rendering pipeline to create and image of the
object.

Voxel storage objects define an interface for iterating
voxels, and writing voxels: this enables us to create ex-
changeable voxel storage implementations, such as a uni-
form grid, or an octree. In the interface-extraction stage
the triangle mesh data is generated from the voxels. The
application supports interface-extraction using the march-
ing cubes or the surface nets algorithm. The presentation
stage is a simple forward renderer. By implementing con-
structive solid geometry operations in the form of signed
distance functions, this process creates a mathematically
more correct version of the models than methods that rely
on creating a triangle mesh of the primitives beforehand.

Output voxel data NIO Buter

Figure 5: Overview of the triangle mesh pipeline

This Voxel interface makes no assumptions about the
dimensions of the grid cell it corresponds to. This
means, that no modifications are required to the interface-
extraction algorithm in order to make it work in an adap-
tive grid. This comes with some runtime overhead, as the
length of edges must be calculated for each voxel.

3.5 Sphere tracing

When rendering using the sphere tracing renderer, the
signed distance function of the scene, as well as the light-
ing calculations and material property calculations are

placed into a single shader program, that is executed for
every pixel of the view. The renderer shoots a ray through
the image plane for every filled pixel, and calculates hit
points using the sphere marching algorithm. Normal vec-
tors at the hit points are approximated using the central
differences method. The renderer is capable of approxi-
mating soft shadows by using the distance values returned
by the scene’s SDF[9].

3.6 Hardware acceleration

We use code generators to generate GLSL code, that im-
plements a given evaluable. Figure 6 illustrates which
parts of the algorithms are replaced with evaluables. These
components are also implemented on the CPU, meaning
that voxelization, interface-extraction or even rendering
can also be implemented in CPU-only solutions.

We provided GPU implementation of the voxelization,
and the marching cubes interface-extraction algorithm in
the form of OpenGL compute shaders. With this com-
bination, we achieve an optimal graphics pipeline, as no
transfer is required between the RAM and VRAM during
the process.

When using the surface nets algorithm, GPU voxeliza-
tion can still be utilised to improve performance, but the
texture contents must be copied to RAM before running
the CPU-side interface extraction. Our interpretation of
the voxels allows us to efficiently copy voxel data be-
tween RAM and VRAM, as no transformation of the data
is needed. Our Voxel interface exposes methods that al-
low reading the position, distance and normal data of its 8
corners directly from the buffer copied from VRAM, and
also allow for modifying data in these buffers that can be
directly copied to VRAM. Data is stored in large Java NIO
Buffers, continuously, and without duplicate voxel cor-
ners. Voxels are merely a view for this data, that cache the
index of its 8 corners, and every time a corner read/write
is requested, the operation is carried out in the NIO buffer
directly at the cached corner index.

3.7 Texturing

When creating triangle meshes of parametric surfaces by
wrapping discretized planes around them, the so called UV
map of the resulting mesh is also implicitly generated, al-
lowing for easy texturing of the generated surface. When
the interface-extraction algorithm is running in a volume
however, there exists no trivial point-to-surface mapping,
which makes texturing the generated triangles a hard prob-
lem. We propose 3D texturing to solve the problem. With
3D texturing, materials define a boundary volume, and a
set of material properties. These material properties are
only valid inside the boundary volume of the material.
When a given point in space can be located in more than
one material’s boundary volume, the first evaluated ma-
terial’s properties are considered to be applicable to the
point.

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics (non-peer-reviewed)

SurfaceLang text
converted into
contains
SceneNode

Material
fed info
L Light
produces
SDF distance
GLSL code generator F—>| it o
SDF normal vector
eval e
Diffuse color
evaluator code
Material shininess
evaluator code

Light source radiance
evaluator code

‘ World

(a) Relation between SurfaceLang, the World interface,
and the GLSL code generators

| istance

wwwww

(b) Relation between the types of generated GLSL code,
and the pipelines that depend on them.

Figure 6: Visualisations of what becomes generated code,
and how is it used.

We implemented two types of materials in the system:
constant and triplanar materials. Constant materials apply
the same predefined set of material properties inside their
bounding volume, whereas triplanar materials use tripla-
nar sampling of a 2D image texture to calculate material
properties. Using triplanar sampling, we can project tex-
ture images onto our surfaces without the UV information,
using only the surface world position and normal vectors.
In triplanar mapping we sample our image texture three
times, by using the projection of the world position vec-
tor onto the XY, XZ and YZ planes as UV coordinates.
The normal vector of the surface essentially tells us which
plane’s image should contribute more to the given pixel,
thus the normal vector’s components are used as weights
for blending the three colors.

4 Implementation

Our application is written using the Java 11 language, and
uses Gradle for building and dependency management.
We use the LWJGL library for interfacing with OpenGL
and GLFW. The program can be run on Windows, Linux
or OS X computers that support OpenGL 4.6. The appli-

cation also comes with an editor for the scene files, that
allows for editing scene objects using a GUI, or editing
the code of the scene in a syntax-highlighting code editor.

4.1 SurfaceLang

SurfaceLang is the language created to represent CSG
scenes. We use the ANTLR4 tool to generate the lexer
and parser source code from the grammar definition files,
and this process is automated by using the ant1r Gra-
dle plugin. SurfaceLang supports the following language
features:

* Scene nodes are the geometric shapes in the scene.
Scene nodes reference a node template that defines
the input properties and the SDF of a CSG primi-
tive shape, operation, or transformation. Scene nodes
may have children, or named children.

* Materializers are the objects that apply certain mate-
rial properties inside a bounding volume. The bound-
ary is a scene node, and the fype of the material may
be constant or triplanar. Different types of materials
come with different sets of properties.

e Light sources can be defined. Light sources
have a trype (currently ambient and directional are
supported), and some radiant power density (3-
component float vector) associated with them.

* Prefabs are node templates defined by the user. They
take a single scene node inside their body, and can be
used as node templates in the scene.

* Resource textures are the texture files that can be
used by triplanar materials.

4.2 GLSL Poet

GLSL Poet is a module in our application that provides
the GLSLStatement class, as well as its implementations.
It also provides syntactic sugar in the form of public static
helper methods, that can be used in the classes of signed
distance functions, materials or light sources like a domain
specific language to aid in the GLSL code generation. The
syntax tree of GLSL programs is modelled as a set of
classes, that each contain a single function called render.
This function is responsible for generating the GLSL code
that is represented by the instance of the class. Code gen-
erators are expected to return a list of GLGL statement
objects, and this list of statements is considered to be the
implementation of the underlying algorithm. Figure 6b il-
lustrates how this allows us to use the same implemen-
tation of an algorithm in different pipelines, for example
how the direct illumination of a light source can be calcu-
lated in the sphere tracing renderer, or the triangle mesh
forward renderer.

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics (non-peer-reviewed)

5 Results

We created many test scenes to demonstrate the capabil-
ities of the CSG evaluator and the sphere tracing ren-
derer. The textual representation allows for high level
mesh generator programs, written in popular programming
languages. We chose JavaScript to implement two simple
mesh generator use-cases.

5.1 Trees

We employed the Space Colonization Algorithm[12]
to generate branching tree-like structures. This
program models the generated branch segments as
CAPSULE_LINE nodes in the CSG tree, and its output is
a SurfaceLang file. Figure 7 shows how a generated model
looks like in our application. In the example, our program
created 112 capsule_11ine objects, which represent the
structure of the tree. We measured frame rendering time
for both the triangle mesh renderer, and the sphere trac-
ing renderer, as well as the voxelization and triangle mesh
extraction time. This demo also demonstrates how scenes
can be optimized: by placing the entire tree structure into
a gate operator, we can skip the evaluation of the entire
branching structure if our point is far enough. In this case,
the sphere tracing renderer needs to evaluate the 112 cap-
sules only in a small set of pixels, that actually contain the
object (or are close enough). That is why we measured the
rendering time of the sphere tracer in both the short dis-
tance and long distance cases. Our measurements can be
found in Table 1 and Table 2.

(a) Sphere tracing result.

(b) Sphere tracing result.

(c) Marching cubes result.

(d) Marching cubes result.

Figure 7: The tree demo with different renderers.

Test Case Average frame time

Sphere tracing close-up 99 ms
Sphere tracing far 42 ms
128x128x128 Marching cubes 0.7 ms
256x256x256 Marching cubes 0.8 ms

Table 1: Frame rendering times while running the tree
demo.

Resolution Tyyepize(ms) Tgxiracr(ms) Triangles

1283 480 ms 85 ms 70340

256 3161 ms 327ms 284564
Table 2: Interface-extraction and voxelization perfor-

mance while running the tree demo.

5.2 Rooms

Using the prefab feature and JavaScript, we created a sim-
ple room generator, that creates a 2D tile-map of prede-
fined room structures, and outputs the prefabs correspond-
ing to the different predefined room types into a Surface-
Lang file. Figure 8a shows how the demo scene is ren-
dered using the application. Tables 3, 4 and 5 summarizes
our measurements of the room demo, including frame ren-
der times, and runtimes of the voxelization, and interface
extraction.

(a) 2553 marching cubes mesh

(b) Sphere tracing result

(c) 127° surface nets mesh,(d) 1273 surface nets mesh,

normal resampling off normal resampling on

Figure 8: The room demo scene.

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics (non-peer-reviewed)

Test Case Average frame time

Sphere tracing 75.2 ms
127x127x127 Surface nets 3.7 ms
255x255x255 Marching cubes 3.9 ms

Table 3: Frame rendering times for the room demo

Resolution Platf Algo R? T(@ns) Triangles
1273 CPU SN no 2403 133740
1273 CPU SN yes 78336 133740
255° GPU MC no 327 541974
1603 GPU MC yes 2488 261006
2553 CPU MC no 2552 541974
2553 CPU MC yes 47531 541974

Table 4: Inteface-extraction performance while running
the room demo. R? means if normal resampling was en-
abled during the benchmark. Normals may be resampled
from the scene’s SDF at the points where vertices were
placed by an interface-extraction algorithm, this generates
better normal vectors. It also has a high impact on vox-
elization runtime, as the SDF is evaluated 6 times during
normal approximation.

5.3 Smooth shadows

Another aspect we demonstrate is the soft shadowing tech-
nique used by the sphere tracing renderer. When using
the soft shadowing option, a constant parameter k can be
changed to make the shadows softer or sharper. Figure 9
shows how the renderer handles soft shadows.

5.4 Comparison

We compare the performance, quality, and use of our
modelling framework to OpenSCAD and Blender. Open-
SCAD - marketed as "The programmers solid 3D CAD
modeller” - is an application, that allows for modelling
3-dimensional objects in a functional programming lan-
guage, visualising these objects, and saving these models
as STL files. This file format is widely used for mod-
elling 3D-printable objects. Blender is an open-source
3-dimensional modelling, animating and rendering soft-
ware, designed to be used by 3D artists. The application is
widely used in the game, and production film industries.

The usage of our application is comparable to Open-
SCAD. We use a declarative language to store the scenes,
and currently do not have support for variables, or loops.
The function paradigm of OpenSCAD may be realised
with prefabs. OpenSCAD has basic support for coloring
the object, but SurfaceLang has support for not only de-
scribing the geometry, but also its material properties, and
light sources in the scene. This makes the available set
of tools comparable to Blender instead, but lacks support
features such as animation.

In Blender, CSG modelling can be achieved by using
the Boolean operator, while OpenSCAD is built around

Resolution Platf Runtime(ms)
127x127x127 CPU 97449 ms
160x160x160 GPU 2426 ms
255x255x255 GPU 9392 ms

Table 5: Voxelization performance while running the room
demo

)

(a) No soft shadows b k=1
4 4
J -'
© k=4 (d k=16

Figure 9: The soft shadowing demo scene.

the concept of CSG modelling. Both applications approx-
imate primitives with triangle meshes, and carry out CSG
operations on these meshes. Our framework on the other
hand handles the whole CSG tree as a single signed dis-
tance function, which means there is no intermediate ap-
proximation of the results, and when using large resolution
grids, or direct visualisation, the mathematically correct
surface is presented.

6 Conclusions

Modelling with CSG, as opposed to polygon meshes is
sometimes a more intuitive way of creating geometry for
scenes. Using SDFs, the process of turning a CSG scene
into a rendered image, or a triangle mesh is simple and
precise. The pipeline allows for parallelization and effi-
cient usage of the graphics pipeline, which makes polygo-
nization and voxelization orders of magnitude faster than
a naive CPU implementation, which allows for interactive
modelling workflows. We have also shown, that sphere
tracing is a viable technique for displaying CSG models
in good quality, in real-time. Our framework is extendable
with user implementations of CSG primitives, operators or
transformations, but comes without the usual overhead of

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics (non-peer-reviewed)

extensibility, as the resulting evaluator code is generated,
and creates no indirections, or unnecessary function calls
in the evaluation pipeline.

6.1 Limitations

There are a number of known bugs in the software. One
of the most notable problems in its current state is the
fact that during the dual contouring or marching cubes al-
gorithms the SDF is unknown, and these algorithms can
only use the input voxel data to generate triangles. This
means, that surface normals are trilinearly interpolated
between surface-edge intersection points, which in some
cases leads to poor normals in the output mesh. Our soft-
ware only uses uniform grids, and this substantially in-
creases the runtime and memory requirements of our pro-
gram, compared to industry-standard CAD modelling so-
lutions.

6.2 Future work

We aim to use the framework as a foundation for develop-
ing geometric effects, such as distortion. Another possible
future use-case of the framework is the development of
high-level mesh generator algorithms: these programs out-
put SurfaceLang files, that can be processed by out frame-
work. For this use-case however, a command line interface
would need to be created, and headless operation should be
supported to allow for integration into server-side applica-
tions.

Another future goal is to provide a virtual machine for
CSG nodes, and instead of having to program both the
CPUEvaluator and GPUEvaluator implementation
of the shape, operator or transformation, we could imple-
ment these functions by creating a single evaluable expres-
sion. To accomplish this, a large number of operations
realized in the GLSL language must be supported, such
as floating point arithmetics or matrix multiplication. The
virtual machine could be extended in a way to allow for
interpreted implementations, which would mean that the
SDF calculation can be embedded in the SurfaceLang file.

Optimisations, such as reordering of the CSG tree, or
the introduction of bounding volume hierarchies can have
great impact on signed distance function evaluation time,
and all visualisation pipelines depend on the SDFs. Both
sphere tracing and the voxelization performance could be
improved by optimising the CSG tree before generating
the GLSL code, or the CPU evaluator object. Recursion
can also be avoided by using code generation to create
the Java classes in runtime that evaluate the operation tree,
which leads to reduced stack usage, and faster CPU evalu-
ators.

7 Acknowledgements

The research presented in this paper, carried out by BME,
was supported by the Ministry of Innovation, and the
National Research, Development and Innovation Office,
within the framework of the Artificial Intelligence Na-
tional Laboratory Programme.

References

[1] John C Hart. Sphere tracing: A geometric method for
the antialiased ray tracing of implicit surfaces. The
Visual Computer, 12(10):527-545, 1996.

[2] Tao Ju, Frank Losasso, Scott Schaefer, and Joe War-
ren. Dual contouring of hermite data. In Proceedings
of the 29th annual conference on Computer graphics
and interactive techniques, pages 339-346, 2002.

[3] Marius Kintel. The OpenSCAD Language Reference,
2020.

[4] Eric Stephen Lengyel and John D Owens. Voxel-
based terrain for real-time virtual simulations. 2010.

[5] William E Lorensen and Harvey E Cline. March-
ing cubes: A high resolution 3d surface construc-

tion algorithm. ACM siggraph computer graphics,
21(4):163-169, 1987.

[6] Inigo Quilez. Distance estimation. https:
//iquilezles.org/www/articles/
distance/distance.htm.

[7] Inigo Quilez. Distance functions. https:
//iquilezles.org/www/articles/
distfunctions/distfunctions.htm.

[8] Inigo Quilez. Distance to fractals. https:
//iquilezles.org/www/articles/
distancefractals/distancefractals.
htm.

[9] Inigo Quilez. Soft shadows in raymarched
sdfs. https://iquilezles.org/www/
articles/rmshadows/rmshadows.htm.

[10] Aristides AG Requicha and Herbert B Voelcker.
Constructive solid geometry. 1977.

[11] Scott D Roth. Ray casting for modeling solids. Com-
puter graphics and image processing, 18(2):109—
144, 1982.

[12] Adam Runions, Brendan Lane, and Przemyslaw
Prusinkiewicz. Modeling trees with a space coloniza-
tion algorithm. NPH, 7:63-70, 2007.

[13] Kees van Kooten, Gino van den Bergen, and Alex
Telea. Point-based visualization of metaballs on a
GPU. Addison-Wesley Longman, 2007.

Proceedings of CESCG 2021: The 25" Central European Seminar on Computer Graphics (non-peer-reviewed)

