
Multiclass texture synthesis using generative adversarial

networks

Bc. Maroš Kollár*

Supervised by: Dr. Lukáš Hudec†

Faculty of Informatics and Information Technologies

Slovak University of Technology

Bratislava / Slovak republic

Abstract

Generative adversarial networks as a tool for generating

content is currently one of the most popular methods for

content synthesis. Despite its popularity, current solutions

suffer from a drawback of shortage of generality. It means

that trained models are usually able to synthesize only one

specific kind of output. The usual texture synthesis ap-

proach for generating N different texture species requires

training of N models with changing training data. In our

work, we present a synthesis architecture model constrain-

ing and forcing the optimization for generating multiple

texture types. We focus on the synthesis of realistic nat-

ural non-stationary textures. The solution allows users to

control the class of texture to synthesize. Thanks to the

controllable selections from feature space of synthesized

texture, we also explore the possibilities of transitions be-

tween classes of trained textures for potential better usage

in applications where texture synthesis is required.

Keywords: texture, GAN, multiclass, synthesis

1 Introduction

The definition of texture highly depends on the applica-

tion area, in which we use this term [10]. Nevertheless, in

general, textures describe surface properties of objects like

appearance, structure, consistency, or feeling from touch.

Textures are an essential component of computer vision

because of their usage in tasks like classification, detec-

tion, or segmentation used in medicine or the technical in-

dustry. Textures are also essential for the graphics and en-

tertainment industry since almost every animated movie,

video game, or other product depends on its visual appear-

ance.

We can sort textures based on their primary characteris-

tic into groups like smooth, rough, glossy, matte, et cetera.

There are also more general characteristics like stationar-

ity and homogeneity [25, 18] that profile textures. It is

possible to say that both of these features describe an as-

*maroskollar2@gmail.com
†lukas.hudec@stuba.sk

pect of texture complexity. Stationarity represents the reg-

ularity of structure. Homogeneity represents how many

elementary textures are included in the evaluated texture.

The more complex the texture structure is, the more diffi-

cult it is to synthesize it.

Texture synthesis is a process of creating artificial tex-

tures that can be used to augment datasets needed for

computer vision tasks or to replace texture photograph-

ing or painting with a more comfortable and less time-

consuming method in the process of content creation.

There are multiple texture synthesis approaches; how-

ever, current research orients on Generative adversarial

networks (GANs). GANs proved their advantages in qual-

ity of outputs and speed of generating. However, their dis-

advantages are long and challenging training accompanied

by problems like vanishing gradients or mode collapse.

Another drawback is that current solutions are trained to

synthesize one texture class, and multiple learned models

are required to synthesize multiple texture classes. That

results in higher disk storage requirements for storing the

network models and inability of transitions between indi-

vidual textures.

In this paper, after a general overview of image syn-

thesis approaches, we describe the architecture and train-

ing of our method for synthesizing multiple texture classes

by one model focused on synthesizing non-stationary tex-

tures.

We built our approach focused on multiclass generation

based on a generator proposed by work of Li et al. [14],

and network inputs inspired by Bergmann et al. [4] and

Li et al. [14] with our modification of obtaining texture

type information by pretrained classification network. To

ensure stable training and prevention from mode collapse,

we used approaches of progressively growing GAN [11]

and minibatch discrimination [21]. We also show the re-

sults of the proposed method, explore the possibility of

transition between texture classes and propose a promis-

ing approach with the siamese neural network as texture

type extractor for further improvement of our method.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



2 Related work

Texture synthesis has been an active field of research for

multiple decades. Many different approaches were intro-

duced and categorized to groups during these years based

on their main feature.

Non-parametric sampling is considered a traditional ap-

proach and, for a long time, was one of the most popular

synthesis methods. This approach uses copying parts of

sample textures to create a new one. Parts of sample tex-

tures are chosen based on the similarity of their neighbor-

hood and area of an already synthesized part of the tex-

ture. There are two main types of non-parametric sam-

pling based on the size of individual parts copied to syn-

thesized texture. Pixel-based synthesis [6, 24, 22, 3] that

creates texture pixel by pixel and patch-based synthesis

[19, 15, 13] that copies whole patches. These approaches

are intuitive and relatively easy to implement. On the other

hand, their synthesis is quite slow, and there is a possibil-

ity that synthesized textures will contain visually duplicate

parts.

In contrast to non-parametric sampling, parametric syn-

thesis [18] uses parameters to describe texture statistics.

The synthetized image is created by gradually changing

random noise [7]. Two textures should have identical

statistics to be considered similar [16].

In recent years textures have been synthesized mainly

by using neural networks. Gatys et al. [7] created a para-

metric approach that used convolutional neural network

VGG-19 [23] to extract Gram matrices at multiple layers

as texture statistics. The new texture is synthesized from

random noise. Noise is passed through the network and

edited by gradient descent to minimalize the difference be-

tween Gram matrices of example texture and new texture.

Variational autoencoders [12, 5, 17] are another ap-

proach that uses neural networks to synthesize textures.

Variational autoencoders are similar to autoencoders, but

their function is to create similar output, not identical.

They consist of an encoder part that maps input data to

low dimensional representation and a decoder part that re-

constructs this representation to output. A drawback of

this synthesis solution is the quality of output that could

be blurry.

Currently, the most popular approaches of texture syn-

thesis are based on generative adversarial networks intro-

duced by Goodfellow et al. [8]. Generative adversarial

networks contain two neural networks, discriminator and

generator, that train themselves by min-max two-player

game. That results in improved output quality of generated

output. The generator’s goal is to use random noise to cre-

ate output that the discriminator would not reveal as fake.

The goal of the discriminator is to determine which inputs

are real and which are fake correctly. Since the original

GAN solution introduction by Goodfellow et al., multiple

GAN modifications have been created. Proposed modifi-

cations changed architecture of generator or discriminator

[20], used different adversarial loss functions [2, 9], stabi-

lized training [11] or create new approach of training [26].

A few GAN solutions also focused on multiclass texture

synthesis [14, 4, 1] to synthesize multiple texture classes

with one model.

3 Method

The main goal of our work is to created a robust method

for multiclass texture synthesis with a focus on non-

stationary textures and maintaining the quality of gener-

ated textures. The architecture of our solutions is shown

in figure 1.

3.1 Generator

The core of our approach, generator, is based on the work

of Li et al. [14]. The architecture of the generator network

is constructed with two streams that help to synthesize the

required type of texture. The primary stream handles the

synthesis of the final texture. The secondary stream pro-

cesses information of which class of texture should be gen-

erated. Activations of secondary streams are merged as 32

channel image to activations of the primary stream after

every processed spatial upsample. This ensures that the

primary stream has additional information about a class of

synthesized textures at every resolution. Upsampling of

resolution in both primary and secondary streams is done

by upsample function with scale factor 2. The exception is

the first upsample of vector done by transposed convolu-

tion. After upsample, activations are processed by a set of

convolutional layers with instance normalization and leaky

relu activation functions.

Because of the difficulty of multi-class non-stationary

texture synthesis, the solution suffered from visual arti-

facts and had a problem learning all types of presented

textures even though there were only six. To deal with this

problem, we implemented the generator as progressively

growing GAN [11]. This approach helped to stabilize

learning thanks to the ability of the network to firstly learn

the color palette of synthesized textures and then increase

resolution and learn details of textures. The current imple-

mentation of our solution generates outputs of 128× 128

pixels. However, thanks to progressive growing GAN im-

plementation, more layers can be easily added to increase

the resolution of the final output. We also changed batch

normalization to instance normalization and added hyper-

bolic tangent as the final layer to improve the quality of

outputs. Hyperbolic tangent limits values of output pix-

els between -1 and 1 to prevent very high or low values.

The generated output is then used to train the discrimina-

tor without clipping to [0, 1] to force the generator to learn

the correct interval of pixel values.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 1: Visualization of the architecture of our solution.

3.2 Generator inputs

As a consequence of two generator streams, the generator

requires two inputs. Input for secondary streams is real-

ized as a one-hot encoding vector. This vector is inspired

by the solution of Li et al. [14] and encoded as position

of a single high bit, that clearly describes which texture

should be synthesized. Primary input is inspired by the

solution of Bergmann et al. [4]. In contrast with their so-

lution, our input is not constructed as a matrix of vectors

but only as one vector. The input vector is concatenated

from three parts: random, texture, and selection.

• The random part is sampled from the uniform distri-

bution on the interval [0,1). This part provides vari-

ability between generated outputs.

• The selection part is a copy of the input for the sec-

ondary stream. One-hot encoding vector is included

in primary input to contribute information about se-

lected texture even at the first layers of the generator.

• The texture part is created from an example image

of the required texture class. Example image trans-

formed to grey-scale is used as input for our classifi-

cation network. We took input activations of the last

fully connected layer as a feature vector. We apply

principal component analysis on this vector to obtain

a representation vector of length five numbers. This

part of input assists to the selection part with infor-

mation about selected texture and brings variability to

input. To confirm that this vector carries information

about the selected texture type, we visualized part of

the vector in 3D space. As we can see in example

figure 2, every cluster of texture type could be ap-

proximately separated.

We selected the classification network and principal

components analysis approach for initial experiments be-

cause of relatively more straightforward network training

than the Siamese neural network for texture similarity.

The intention behind two different information of se-

lected texture was to exactly specify what texture type

should be synthesized (selection part) and systematically

control differences inside of generated class (texture part)

like color, sizes of visual features of content in concrete

texture type. Experiments showed that the currently pre-

sented architecture and texture part of input does not af-

fect output as expected. However, two texture control-

ling mechanisms helped learn all presented textures in rel-

ative quality. In the case of omitting one of the controlling

mechanisms, a significant problem with overall quality or

inability to generate some texture types occurred.

We developed a solution that is, thanks to the selection

part of input, independently similar to the solution pre-

sented by Alanov et al. [1]. However, our approach’s

main difference is using a pretrained classification network

and principal component analysis rather than an encoder to

gain information about texture type from example texture.

We expect better embedding due to supervised learning

of classification network, compared to unsupervised learn-

ing of auto-encoder, where is no guarantee that embedded

space is flattened enough to position two technically simi-

lar texture patches close to each other. We also merged this

approach with generator architecture presented by Li et

al. [14] to help retain information about the requested tex-

ture type during the whole synthesis process. In the end,

we changed networks to progressively growing to stabi-

lize training and improve results of non-stationary texture

types.

3.3 Discriminator

The initial discriminator used in our solution was inspired

by the DCGAN solution [20]. We changed it by adding

a sequence of batch normalization, leaky relu activation

function, and convolutional layer with kernel size 5, stride

1, and zero padding behind the last convolutional layer.

Because of the implementation of the progressive, grow-

ing generator, the discriminator also had to be imple-

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 2: A visualization of the clusters of 3 out of 5 values

from the texture part.

Note: Because of multiple texture types, two classes are

shown with blue color.

mented as progressively growing. That caused a change

of the parameters of the first convolutional layer to ker-

nel size 3, padding, and stride set to 1. A number of

the following sequences of convolutional, normalization,

and activation layers from the DCGAN solution is based

on the current step of progressive growth. We also added

a fade-in mechanism to handle adding new layers during

progressive growth. After the last convolutional sequence,

we added a flatten layer to create a 1D vector. To deal

with the problem of mode collapse, we concatenated the

final 1D vector of the discriminator with 1D vector from

minibatch discrimination [21] to help the network iden-

tify a batch of generated images. Minibatch discrimina-

tion compares all images in batch and creates a vector that

references how similar images are. In case of high similar-

ity, we can assume that images are synthesized and suffer

from mode collapse. Based on executed tests, we noticed

that minibatch discrimination helps mainly at the first two

steps of progressive growth, which correspond to images

of size 8×8 and 16×16. The final change was to switch

the sigmoid layer to a linear layer to constrain the output

vector values to interval (0−1).

3.4 Loss functions

To increase output quality and stability of training, instead

of the original loss function used in Goodfellow’s pro-

posed GAN solution, we used Wasserstein loss [2] with

weight clipping. That changed our discriminator to critic,

which does not determine real or fake textures but tells the

distance between the distribution of generated outputs and

training data. We combined Wasserstein loss with style

loss during the training process to speed up the training

process and bring a closer visual appearance of synthe-

sized and real textures. To calculate texture loss, we used

feature vectors of the first five convolutional layers of the

pretrained classification network VGG19. Feature vec-

tors of synthesized and real textures were compared using

Gram matrices. Style loss Lstyle is added to Wasserstein

loss W for generator loss Lg and could be controlled by the

weight factor β . Based on experimenting with the value

of β , we found that the ideal value in our setup is 1. In

the case of a higher style weight factor, the network learns

style relatively fast, but outputs suffer from strong mode

collapse and low quality. Formulas to calculate loss func-

tions for generator and discriminator are shown in equa-

tions 1 and 2 with Ld as discriminator loss.

Lg =−Wsynth +β ∗Lstyle (1)

Ld =Wreal −Wsynth (2)

3.5 Dataset

The dataset used for training our solution consists of

eleven different classes of textures. Concretely: slab, slab

wall, a stack of wood, a pile of rocks, bark, leaves on grass,

stone, tiles, straw, gravel, and grass. Examples of all tex-

ture types are shown in figure 3.

Figure 3: Example patches of 11 texture classes used in

the training dataset.

We gathered our own data by capturing close-up pho-

tos with textures of real environment objects and adding

two freely available textures from the Internet to balance

the number of photos in individual classes. Every texture

class contains 67 main images. Main images in the dataset

are used to create smaller cutouts of various sizes to aug-

ment the dataset. Because of differences of the scale of

base texel structures in the main images, we scaled var-

ious sizes of cutouts to generalize model to the variabil-

ity of input images. Cutouts positions are selected ran-

domly to get numerous different cutouts of training data.

Cutouts for training are then down-scaled to the size of

data in mini-batch, which is always smaller than the size

of created cutouts.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



During the creation of the dataset, our main goal was to

select non-stationary homogeneous textures. Because of

this condition, we mostly selected natural textures that are

separable from their surroundings and do not have any reg-

ular pattern. However, in a few cases, we violate our inten-

tion to gain information about the behavior of our solution

in special cases. These cases are represented by adding

texture of tiles that is stationary and texture of leaves on

grass that is heterogeneous. We also added two similar

textures, slab and slab wall, to determine how well our so-

lution will generate multiple very similar textures.

3.6 Training

During the training of multiclass synthesis, various tech-

niques that affect the alternation of classes could be used.

We decided to use a simple cyclic alternation that ensures

the change of texture class after every batch. We imple-

mented this alternation as a modulo operation of batch

number (count of batches) and a total number of texture

classes where the result corresponds to the currently syn-

thesized/learned texture.

It is usual practice to violate the symmetry of learning

and train the discriminator more often than the generator.

The typical learning ratio between discriminator and gen-

erator is 5:1 (the generator is updated every fifth update of

the discriminator). This helps the discriminator be trained

more than the generator and provides better feedback for

generator training. This technique is in our solution also

implemented as the modulo of batch number and learning

ratio. Because of that, it is necessary to ensure that the

generator is trained on every texture class. That could be

achieved by setting the learning ratio and the total number

of textures to be co-prime. Because of the typical learning

ratio (5:1), the easiest way to preserve all conditions is to

choose the number of texture classes indivisible by five.

Whereas our solution is progressively growing, we also

needed to ensure a mechanism to control when network

layers to be trained are added. This issue is resolved us-

ing predetermined values assigned to each step of progres-

sive growth, indicating how many epochs each step will be

trained. This method, despite its simplicity, allows control

over the length of training steps because later steps of the

progressive growth need longer training than the first steps

with low output resolution.

Yet final training was trained for 1375 epochs unevenly

divided into 5 steps from 8× 8 to 128× 128 pixels (100,

200, 250, 375, 450 epochs). Resolution of every step is

double of the previous resolution. Every epoch consisted

of 275 batches of 64 images. The training takes about four

and half days on a single NVIDIA GeForce RTX 3090

GPU. As optimizers, we used RMSprop with a learning

rate set to 5×10−5 for the generator and 9×10−5 for the

discriminator.

4 Evaluation

Considering the problem of non-stationary texture synthe-

sis, one of the most quality accurate ways of evaluation

that works even on a low number of generated outputs is

empirical evaluation by human eye. This type of evalua-

tion is a qualitative technique based on human observation

and feelings of how accurate the texture is or how easily it

could be identified as fake. Thanks to this type of evalua-

tion, we were able to estimate the quality of our solution

from the very beginning of implementation and lead the

architecture to better results.

Based on results from the latest version of our solution,

which is described in this paper, and the current version of

the dataset, we are able to synthesize 7 out of 11 texture

types with tolerable quality. Examples of all 11 texture

types with labels are shown in figure 4. Textures that are

not considered of sufficient quality (wood, pile of leaves

on grass, and tiles) could be easily labeled as fakes at first

sight without closer examination. We also noticed that out-

puts of very similar texture types (slab and slab wall) could

not be separated on 100%, and the texture of slabs contains

vertical lines that indicate multiple slabs that form wall.

Figure 4: Examples of synthesized textures. Left section

from top to bottom: slab, stack of wood, bark, stone, straw,

grass. Right section from top to bottom: slab wall, pile of

rocks, leaves on grass, tiles, gravel.

Except for the synthesis of concrete learned types of tex-

ture, multiple texture controlling mechanisms of input in

our solution also allow the possibility of combining tex-

ture types on generator input to create new types of tex-

tures. Inspired by the work of Li et al. [14] we also tested

interpolation of texture controlling parts of input to create

transitions between two types of textures. Based on testing

of multiple merge operations on texture and selection parts

of two types of textures, we found out that the best tran-

sition between texture types is obtained by using equation

3 to both texture and selection vectors. A and B are pairs

of texture part vectors or selection part vectors. Alfa is the

weight of the first vector and is distributed on [0, 1].

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



C = α ∗A+(1−α)∗B (3)

This transition looks good between a pairs of textures

that are quite natural, and the probability of their transi-

tion in nature is higher than, for example, a transition be-

tween grass and tiles. However there are still artifacts that

visibly worsen the photorealism of the generated texture.

Examples of transitions are shown in figure 5.

Figure 5: Examples of transition between texture types.

From top: Straw to grass, stone to gravel, leaves on the

grass to grass.

5 Siamese network experiment

During our research, we experimented with the training

of the Siamese neural network as a tool for extracting the

texture part of input and learning of similarities between

textures. The network output was a vector of length three

that was scaled with a min-max scaler to range [-1,1]. As

shown in figure 6 network was able to separate texture

types into 3D space better than our original approach with

classification network and principal component analysis.

Figure 6: A visualization of the clusters from the texture

part obtained from a Siamese neural network.

Note: Because of multiple texture types, two classes are

shown with blue color.

As part of the experiment, we modified our architec-

ture and omitted the selection part of the input. Thus we

used only texture and random part for primary input and

assigned texture part for secondary input. With this ap-

proach, we identified that model is able to learn all types of

textures compared with a similar setup of our original tex-

ture part from the classification network. However, based

on evaluation with Fréchet Inception Distance, the over-

all output quality is lower than the original approach with

equal learning iterations and setup.

6 Discussion

Based on the results, we analyzed possible problems and

proposed ideas on how our method will be improved in

the next iterations. Characteristics of some texture types or

features of images used in the training set could explain the

low quality compared to other synthesized texture types.

In the case of tiles and leaves on grass textures, these

textures do not belong to a specific group of non-stationary

homogeneous textures like the rest of the dataset. As the

human-created non-natural objects, tiles are strictly sta-

tionary because of their standard layout on roofs. Because

of training mainly on non-stationary textures, our solution

cannot reconstruct periodically repeating textures. The

solution’s full potential must be confirmed on a dataset

containing more stationary textures. Almost every tex-

ture type in the used dataset is homogeneous, unlike the

texture of leaves on grass that is heterogeneous. Even

though generated results of this texture class kept hetero-

geneity, leaves are not detailed enough. We assume that

more extended training of individual progressive growing

steps could help with this issue. That will be tested in fu-

ture iterations of work.

We assume that the problem with the texture of the pile

of rocks is caused by internal variation of images in the

training set for this class. It means that the dataset contains

a mix of rocks images with different sizes and colors of

rocks. During training with a subset of the dataset, where

the class of rocks contained only one type of rocks, the

model was able to synthesize quite satisfying results that

could be seen in figure 7.

Figure 7: Example of synthesized piles of rocks from a

model that was trained on a dataset where the class of piles

of rocks contained only one type of rock.

7 Conclusion and Future work

In this paper, we presented a multiclass texture synthesis

model based on generative adversarial networks. Our ap-

proach is tuned to synthesize non-stationary textures that

are problematically synthesized by traditional approaches.

Parts of existing solutions inspire the presented model and

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



GAN mechanics to obtain user controllability, preserva-

tion of information about selected texture along the entire

length of the generator, training stability, and reduction of

mode collapse. To the input of the generator, we added

information about the selected class from an example tex-

ture. However, this turned out to be unintentionally similar

to the technique proposed by Alanov et al. Nevertheless,

the method of obtaining information from example texture

is different.

We evaluated the results of our approach by the quali-

tative technique of human observation of synthesized tex-

tures. Based on this evaluation, we found that our solution

could synthesize 7 out of 11 training texture types with

sufficient quality. In the case of the majority of insuffi-

cient textures, we analyzed possible reasons for poor qual-

ity that led to a plan for future work.

In the subsequent phases of our work, we plan to focus

on improving our solution’s output quality and controlla-

bility. Our main idea is to improve the texture part of gen-

erator input by continuing with experiments with Siamese

neural network that is able to learn representations of tex-

tures and put textures from the same class closer and tex-

tures from different classes far apart. An interesting idea

is also to increase the dimensional space of the texture part

and force the Siamese network to distribute output that it

will be possible to transit between all types of textures.

We also want to improve the evaluation of our approach

by using quantitative metrics, not just qualitative. In the

case of qualitative human observation, we intend to create

a user questionnaire to evaluate our solution on the general

public.

References

[1] Aibek Alanov, Max Kochurov, Denis Volkhon-

skiy, Daniil Yashkov, Evgeny Burnaev, and Dmitry

Vetrov. User-controllable multi-texture synthesis

with generative adversarial networks. pages 214–

221, 01 2020.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bot-

tou. Wasserstein gan. 01 2017.

[3] Michael Ashikhmin. Synthesizing natural textures.

Symposium on Interactive 3D Graphics, 12 2000.

[4] Urs Bergmann, Nikolay Jetchev, and Roland Voll-

graf. Learning texture manifolds with the periodic

spatial GAN. 34th International Conference on Ma-

chine Learning, ICML 2017, 1:722–730, 2017.

[5] Rohan Chandra, Sachin Grover, Kyungjun Lee,

Moustafa Meshry, and Ahmed Taha. Texture synthe-

sis with recurrent variational auto-encoder. 12 2017.

[6] A. A. Efros and T. K. Leung. Texture synthesis by

non-parametric sampling. In Proceedings of the Sev-

enth IEEE International Conference on Computer

Vision, volume 2, pages 1033–1038 vol.2, 1999.

[7] Leon A. Gatys, Alexander S. Ecker, and Matthias

Bethge. Texture synthesis and the controlled gen-

eration of natural stimuli using convolutional neural

networks. CoRR, abs/1505.07376, 2015.

[8] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi

Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,

Aaron Courville, and Yoshua Bengio. Generative ad-

versarial nets. Advances in Neural Information Pro-

cessing Systems, 3(January):2672–2680, 2014.

[9] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky,

Vincent Dumoulin, and Aaron Courville. Im-

proved training of wasserstein GANs. Advances

in Neural Information Processing Systems, 2017-

Decem:5768–5778, 2017.

[10] Filip J. Haindl M. Visual Texture, chapter Motivation.

Advances in Computer Vision and Pattern Recogni-

tion. Springer, 2013.

[11] Tero Karras, Timo Aila, Samuli Laine, and Jaakko

Lehtinen. Progressive growing of gans for improved

quality, stability, and variation, 2017.

[12] Diederik P Kingma and Max Welling. Auto-

encoding variational bayes, 2014.

[13] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk,

and Aaron Bobick. Graphcut textures: Image and

video synthesis using graph cuts. ACM Transactions

on Graphics, 22(3):277–286, 2003.

[14] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang,

Xin Lu, and Ming Hsuan Yang. Diversified texture

synthesis with feed-forward networks. Proceedings -

30th IEEE Conference on Computer Vision and Pat-

tern Recognition, CVPR 2017, 2017-Janua:266–274,

2017.

[15] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and

Heung-Yeung Shum. Real-time texture synthesis by

patch-based sampling. ACM Trans. Graph., 20:127–

150, 07 2001.

[16] Randi Martin and James Pomerantz. Visual dis-

crimination of texture. Perception & Psychophysics,

24:420–428, 09 1978.

[17] Mehran Pesteie, Purang Abolmaesumi, and

Robert N. Rohling. Adaptive Augmentation of

Medical Data Using Independently Conditional

Variational Auto-Encoders. IEEE Transactions on

Medical Imaging, 38(12):2807–2820, 2019.

[18] Javier Portilla and Eero Simoncelli. A parametric

texture model based on joint statistics of complex

wavelet coefficients. International Journal of Com-

puter Vision, 40, 10 2000.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



[19] Emil Praun, Adam Finkelstein, and Hugues Hoppe.

Lapped textures. In Proceedings of ACM SIG-

GRAPH 2000, pages 465–470, July 2000.

[20] Alec Radford, Luke Metz, and Soumith Chintala.

Unsupervised representation learning with deep con-

volutional generative adversarial networks. 11 2016.

[21] Tim Salimans, Ian Goodfellow, Wojciech Zaremba,

Vicki Cheung, Alec Radford, and Xi Chen. Improved

techniques for training GANs. Advances in Neural

Information Processing Systems, pages 2234–2242,

2016.

[22] Seunghyup Shin, Tomoyuki Nishita, and Sung Yong

Shin. On pixel-based texture synthesis by non-

parametric sampling. Computers and Graphics

(Pergamon), 30(5):767–778, 2006.

[23] Karen Simonyan and Andrew Zisserman. Very deep

convolutional networks for large-scale image recog-

nition. arXiv 1409.1556, 09 2014.

[24] Li-Yi Wei and Marc Levoy. Fast texture synthesis

using tree-structured vector quantization. Computer

Graphics (Proceedings of SIGGRAPH’00), 34, 05

2000.

[25] Yang Zhou, Zhen Zhu, Xiang Bai, Dani Lischinski,

Daniel Cohen-Or, and Hui Huang. Non-stationary

texture synthesis by adversarial expansion. ACM

Transactions on Graphics, 37(4), 2018.

[26] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei

Efros. Unpaired image-to-image translation using

cycle-consistent adversarial networks. pages 2242–

2251, 10 2017.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)


