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Figure 1: (a) Computed signed distance field (SDF) d of the Bust of Max Planck mesh with voxel resolution 152×176×161, and (b)
Lagrangian evolution of surface F (with initial condition F0 as a geodesic icosahedron with subdivision level 3 with Nt = 150 time
steps of length τ = 0.01, and angle-based tangential redistribution with weight constant ωangle = 0.5.

Abstract

Evolution methods, widely used for shape simplifica-
tion and smoothing, are also used for shrink-wrapping tar-
get surfaces. Diffusion of curvature is usually the dom-
inant driving force behind the wrapping process, along
which the implicit representation of the target surface (e.g.
signed distance field) takes increasing control as it is ap-
proached by the evolving surface. This process, previ-
ously used for wrapping point cloud data with triangular
meshes as well as an experimental form of remeshing, can
take many forms. We compare their inherent properties,
versatility, and convergence rate, as well as their impact
on polygon quality. The key contribution of our research
is a shrink-wrapping tool for triangular to polygon target
meshes with an accelerated implicit field generator as well
as an analysis of mesh quality after incorporating multiple
methods of tangential redistribution.

Keywords: shrink-wrapping, mean curvature flow, sur-
face evolution, advection, fairing, signed distance field

1 Introduction
Diffusion is a well-known natural process with a multi-

tude of manifestations in which a system evolves towards
an equilibrium. Coupled with advection, this process pro-
vides means for better control of the evolving medium. If
we restrict our solution to a single curve or a surface we
refer to this type of evolution as Lagrangian. This process
has been used for various applications, such as numeri-
cal construction of minimal surfaces [14], Truss structure
design [10], point cloud meshing [2], and quad remesh-
ing of triangular meshes [5]. All of the above works use
an evolution model driven by diffusion of mean curvature,
that is mean curvature flow (MCF).

With promising results for quad surface patches [5],
and point-cloud reconstruction [2], Lagrangian evolution
model introduced by Mikula et al. [11] can be accompa-
nied by an advection function of an implicit (volumetric)
representation of input geometry. Control over the quality
of triangulation for the evolving surface is also required to
avoid the formation of degenerate polygonal elements in
regions with stronger MCF. Our proposed approach makes
use of two tangential redistribution techniques: volume-
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based [11], and angle-based [5], giving rise to an imple-
mentation of a mesh shrink-wrapping tool.

Our method utilizes the gradient of signed distance field
(SDF) d± of target geometry Γ as the driving force for
advection. To cover our computational requirements, we
implement a novel technique for filling the computational
domain with SDF values to mesh geometries with high
polygon counts. The problem of accelerating the compu-
tation of SDFs has a variety of solutions [6] with different
levels of technical difficulty. Our requirements for the dis-
crete distance field are global regularity to avoid unnec-
essary gradient field discontinuities and reasonable com-
putation time requirements for computing mesh SDF as a
pre-processing step.

1.1 Contributions

This paper provides an outline of a shrink-wrapping
algorithm of triangular meshes wrapping onto general
polygonal meshes, with a sequence of preprocessing steps
for computing the distance field. Since no real-time up-
dates were required for meshes with high polygon counts,
the procedure for SDF was implemented with a relatively
low technical difficulty for implementation under the ex-
perimental requirements.

Our implementation of Lagrangian surface evolution re-
lies on a semi-implicit finite volume scheme and is there-
fore subject to stability constraints. Our theoretical contri-
bution (outlined in Section 2.4) is the analysis of numeri-
cal stability based on time step size and finite volume mea-
sures of an evolving mesh with different levels of recursive
4-to-1 edge subdivision.

The first set of experimental results involves the perfor-
mance measurements of the SDF algorithm on a set of six
experimental triangular meshes (see Section 4.1), includ-
ing a performance comparison on three different CPUs.
Lagrangian evolution is first tested against ground truth
with three numerical experiments for verifying the con-
vergence rate with respect to a shrinking sphere solution,
as in [11]. Likewise, the model is tested on the former
experimental dataset of polygonal meshes for final results.

1.2 Related Work

Besides Mikula et al. [11] forming the basis of the La-
grangian finite 2-volume (area) method on triangular, and
Medl’a et al. [5] extending it to quadrangular meshes,
Daniel et al. [2] lay the foundation for the use of geom-
etry shrink-wrapping using Lagrangian evolution. Like-
wise, the use of the Fast-Sweeping algorithm for comput-
ing SDFs of input geometries is inspired by Kósa et al.
[9]. Both results were extracted from point cloud data.

In parallel, according to Sacht et al. [13], shrink
wrapping of polygonal geometries can be extended to the
construction of, so-called, nested cages which serve as
a multi-resolution hierarchy of polyhedra. The earliest
known use of the shrink-wrapping concept comes from
Kobbelt et al. [8] where deformed surface methods for

processing the geometry parametrization are used for lo-
cally adjusting the mesh quality in highly deformed re-
gions.

1.3 Limitations

As mentioned, the combined SDF algorithm is more
suited as a pre-processing step rather than for real-time up-
dates of implicit representations. Furthermore, since the
numerical stability of finite area formulation of the evo-
lution model depends (besides other contributing factors
discussed in Section 5) heavily on the time step size τ > 0,
additional considerations had to be made during the ex-
perimental setup. Namely, we compensated for the lack of
stability by scaling the input geometry, so that the average
finite area matches the time step size. In general, smaller
time steps are more favorable to the numerical solver, how-
ever, since shrink-wrapped geometries with more features
lead to increasing variance of evolving mesh triangle sizes,
a more robust approach would require additional analysis
of mesh vertex or polygon density.

2 Method

Figure 2: Distance field d to surface Γ Utah Teapot with resolu-
tion 1203 and an evolving surface F driven by advection using
the gradient field −∇d.

In essence, surface evolution is governed by equation:
∂tF = vN + vT , (1)

where F is the immersion of an evolving 2-manifold into
R3, and vN with vT are the normal and tangential velocities
respectively [11]. In our model, inspired by Medl’a et
al. [5], evolution in the normal direction is controlled
by mean curvature, and a preferred gradient field in R3

of the (signed) distance function d± of the original mesh.
Evolution equation (1) then takes form:

∂tF = ε∆gF F +ηN + vT , F(·,0) = F0, (2)
where F is the time-dependent evolving surface solution
with initial condition F0 (see Fig. 2), ∆gF is the Laplace-
Beltrami operator1 with respect to the current surface met-
ric gF , N is the outward-pointing unit normal to F , and
ε,η are control functions for the two main components of

1a Laplace operator (sum of 2nd derivatives), confined to surface F .
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evolution in the normal direction (summing up to velocity
vN in (1)). In particular, we use:

ε(d) :=C1
(
1− e−d2/C2

)
, C1,C2 > 0, (3)

η(d) :=Cd
(
(−∇d ·N)−D

√
1− (∇d ·N)2

)
,

C > 0, D≥ 0, (4)
where d is the distance field of input surface Γ ⊂ R3.
Contrary to Medl’a’s outward-evolving formulation, in our
model, there is no distinction between signed d± or un-
signed d+ distance function to the input surface Γ. In fact,
our SDF preprocessing approach (outlined in Section 2.1)
automatically degenerates to computing unsigned distance
field (DF) for input surfaces Γ with holes.

It should be noted that for ε ≡ 1 and C = 0 the ηN com-
ponent vanishes and we are left with MCF only:

∂tF = ∆gF F =−HN, F(·,0) = F0, (5)
where H is the mean curvature of F . The only known com-
pact exact solution to (5) in Rn is the shrinking n-sphere:

r(t) =
√

r2
0−2(n−1)t, (6)

which will be used for numerical convergence tests in Sec-
tion 4.2.

The complete model (2) with η ̸= 0 is an advection-
diffusion model where the diffusion component comprises
of mean curvature diffusion and the advection is driven by
a negative gradient vector field −∇d of the distance func-
tion d. In fact, without full advection η with C,D > 0
there would be no force to drive surface evolution in re-
gions where ∇d ·N = 0. Hence model (2) with control
constant D = 0 in η corresponds to a 3-dimensional ob-
stacle problem [15] with the Laplace-Beltrami operator.

Figure 3: Shrink wrapping a deformed cube mesh with holes we
refer to as bent chair with D= 0, leads to the formation of surface
membranes over concave regions. The values on vertices of the
triangulated limit surface F∞ correspond to −∇d ·N where −∇d
is the negative gradient of SDF, and N the outward-pointing unit
normals to F∞.

Because MCF minimizes mean curvature locally, once
points of F approach Γ, the MCF component vanishes with
ε = 0. The protruding regions of input geometries Γ then
serve as the limit boundary condition for the solution F as
t → ∞ while the surface patch with zero advection contri-
bution η when ∇d ·N = 0, diffuses to a minimal surface
[1] (see the bent chair example in Fig. 3). For D > 0

points of F locally rotate with respect to their neighbors,
since the right-hand side of (3) can actually be interpreted
as incremental rotations into alignment between ∇d and
N.

According to [11], for simple MCF (5), point density
tends to accumulate in areas with high curvature. For this
reason, we chose two mechanisms for computing tangen-
tial velocity vT : angle-based and volume-based for the
control of mesh vertex density. Although the latter notion
extends to general n-dimensional volumes, for surfaces we
consider 2-volumes, that is: area elements covering the
evolving surface F .

2.1 SDF Mesh Preprocessing

Since distance and intersection queries are best per-
formed on geometric primitives such as points, line seg-
ments and triangles, given an input surface Γ (a piecewise-
linear approximation of Γ) we extract independent tri-
angle vertex triples (v0,v1,v2) as a triangle soup T =
{T0, ...,TNT }. This approach extends the set of possible
input geometries Γ to non-manifold meshes. Of course,
to generate a large-enough domain G of distance field d
containing Γ we expand the bounding box B

Γ
by offset

o > 0. The subsequent processing steps are outlined by
Algorithm 1.

Algorithm 1: Computing SDF of input mesh Γ

Data: A mesh Γ with extractable triangle soup T ,
offset value o.

Result: A set of (signed) distance values di, j,k
sampled over regular grid G.

1 T
Γ
← generate an AABB tree from T ;

2 generate O
Γ

given minimum cell size cmin,G > 0;
3 create grid G⊂ R3 with dimensions of the

bounding box of Γ and given cell resolution;
4 expand G by given offset o;
5 set exact distance values dexact

i, j,k to grid points
gi, j,k ∈ G that are centroids of octree O

Γ
’s leaf

cells;
6 set di, j,k← ∞ everywhere else;
7 fastSweep(G,di, j,k);
8 compute sign of (G,di, j,k) using voxel flood fill;

The AABB (Axis-Aligned Bounding Box) tree T
Γ

is a
binary bounding-volume hierarchy for the chosen set of
geometric primitives T consisting of rectilinear bounding
boxes B = [bmin,x,bmax,x]× [bmin,y,bmax,y]× [bmin,z,bmax,z]
such that leaf nodes of T

Γ
contain a minimal amount of ge-

ometric primitives (triangles) to iterate through. We con-
struct and search T

Γ
according to the KD-tree algorithm in

Section 5.2 of de Berg et al. [3]. The most computation-
ally demanding step in the construction of T

Γ
is the search

for optimal split position of box B. We use the adaptive
resampling approach according to Hunt et al. [4].
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O
Γ

is an octree of Γ constructed according to Algorithm
2 only for the purpose of sampling exact distance values
dexact

i, j,k = dmin on a subset of grid points gexact
i, j,k ∈ G corre-

sponding to centroids of cubes Cl of O
Γ
’s leaf nodes ON,l

A node of O
Γ

is subdivided into 8 children if and only if
it intersects Γ. These intersection queries are accelerated
with T

Γ
. The result is a voxel outline of a polygonal mesh

in R3 (see Fig. 4).

Figure 4: The voxel outline of a simplified Stanford Bunny mesh
with NT = 5002 triangles and voxel cell size cG = 0.01.

Algorithm 2: Mesh Distance-Octree

Data: An AABB tree T
Γ

of mesh Γ

Result: An octree O
Γ

with leaves forming an
outline of mesh Γ.

1 C0←generate a bounding cube around Γ;
2 set C0 as the cube of the root node ON,0;
3 if C0.size() > cmin,G then
4 subdivide C0 into 8 subcells Ck, k = 1, ...,8;
5 foreach Ck, k = 1, ...,8 do
6 if Ck intersects mesh Γ using T

Γ
then

7 repeat from line 3 with C0 = Ck;
8 else
9 discard Ck;

10 end
11 end
12 break if max depth is reached;
13 else
14 d2

min←
min{ squared distance of the centroid of C0 to T ∈
T

Γ
.getIntersectingTrianglesWith(C0)};

15 end

The combination of two hierarchical structures T
Γ

and
O

Γ
minimizes the computational requirements for com-

puting exact distances by (I.) on average, O(logNT )-
searching through NT = |T | primitives (triangles), and

(II.) uses the exact distances dexact
i, j,k < ∞, and di, j,k = ∞

elsewhere, as an initial condition for the Fast-Sweeping
algorithm [16] which sweeps 23 = 8 times across points
in G, completing an unsigned distance field d+ to mesh Γ

(procedure fastSweep on line 7 in Algorithm 1).
Since the voxel outline of mesh Γ can form a watertight

boundary of its interior2 the subsequent optional step of a
flood fill algorithm (used by Medl’a [5]) can recursively
fill the approximate interior regions Int(Γ) with negative
sign value leading to an approximate SDF solution d±.

2.2 The Lagrangian Shrink-Wrapping Algo-
rithm

Algorithm 3: Shrink-Wrap Remeshing of a Target
Surface Γ

Data: A mesh F (preferrably of higher quality), a
target mesh Γ, τ , Nt ;

Result: Meshes Ft for each time step, and the result
Fts

1 BΓ,o← Γ.getExpandedBoundingBox(o);
2 d±

Γ
←ComputeSDF(Γ,o);

3 for t = τ; t < ts = Ntτ; t+= τ do
4 F t .getNormalsAndCoVolumes();
5 if do volume-based tangential redistribution

then
6 ht ← F t .getCurvatures();
7 compose and solve linear system

Aψ,t
ψ t = bψ,t ;

8 vt
T ←
F t.getVolumeVelocities(ψ t);

9 end
10 else if do angle-based tangential redistribution

then
11 vt

T ← F t.getAngleVelocities();
12 end
13 compose and solve linear systems

AtF t+τ = bt + τvt
T ;

14 updateVertices(F t+τ , BΓ,o);
15 end

To declutter notation, we put Γ = Γ and F = F de-
spite considering piece-wise linear approximations of sur-
faces. We start by computing the expanded bounding
volume BΓ,o of input mesh Γ, and computing its signed
distance field d±

Γ
with expansion offset o > 0. Algo-

rithm 3 then updates geometry F by first computing its
co-volumes, that is: finite 2-volumes for the numerical
method [11] (see Fig. 5), and outward-pointing unit nor-
mals N (getNormalsAndCoVolumes), proceeding to
calculate tangential velocities vt

T when required.

2such that no change of state propagating through neighboring non-
diagonal voxels can reach the interior region. In particular if a neighbor-
ing voxel intersects Γ, it is a boundary voxel and a recursive flood may
not iterate past it because it is regarded as frozen.
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The vertex-wise contents of linear system AtF t+τ = bt

(without tangential velocity vt
T ) are

(AtF t+τ)i = At
iiF

t+τ

i +
m

∑
p=1

At
iipF t+τ

ip
,

(bt)i = F t
i + τη

t
i Nt

i , i = 1, ...,NV ,
where diagonal components At

ii corresponding to current
vertex F t

i and off-diagonal At
iip

to m neighboring vertices
F t

ip
, p= 1, ...,m are determined by the finite volume formu-

lation using the cotangent Laplace-Beltrami scheme [14].
Evolution step t+τ is finalized by verifying whether solu-
tion F t+τ is bounded by BΓ,o and updating evolving mesh
vertices (in updateVertices).

Figure 5: The definition of a co-volume Vi around a vertex Fi
of a triangular mesh. The boundary vertices of Vi in the interi-
ors are the barycenters of adjacent triangles. Adjacent vertices
Fip contribute to the mean curvature vector approximation using
cotangents of angles θi,p−1,1 and θi,p,2 opposing to each edge
FiFip from central vertex.

Linear systems in Algorithm 3 are solved using the sta-
bilized bi-conjugate gradient method (BiCGStab). How-
ever, the BiCGStab method (especially with good precon-
ditioning) is a tool which is often stronger than required
for most meshes (with low vertex valence). Based on the
system’s diagonal dominance Mikula et al. [11] had suc-
cessfully tested convergence for the SOR method as well.

2.3 Tangential Redistribution

The angle-based tangential velocity (returned by
getAngleVelocities) is given by

vT,i = projT

(
ωangle

m

m

∑
p=1

(
1+

(Fip −Fi)

∥Fip −Fi∥
·
(Fip+1 −Fi)

∥Fip+1 −Fi∥

)
((Fip −Fi)+(Fip+1 −Fi))

)
,

with weighing parameter ωangle, and projection operator
projT (v) = v− (v ·N)N with outward-pointing normal N
projecting vector v to tangent plane. Inspired by Medl’a et
al. [5], this type of tangential redistribution homogenizes
angles of adjacent polygons at central vertex Fi.

The theoretical foundations for the more complicated
approach - the (asymptotically uniform) 2-volume-based
redistribution are laid in [11]. The key insight from this
method is that one way to homogenize co-volumes is to as-

sume that the ratio between volume density and total sur-
face area approaches a constant as t → ∞. This leads to
construction of a (pull-back) vector field determined by the
gradient of an unknown redistribution potential ψ t defined
on F t (see Fig. 6). The linear system for ψ t comes from
a finite-volume formulation of a Poisson problem which
needs to be solved for each time step t. Solution ψ t is then
converted to a tangential vector field vT by a specialized
divergence formula in getVolumeVelocities. Cur-
vature vectors ht at each point are used in the Poisson prob-
lem for ψ t .

Figure 6: Redistribution potential ψ for a surface F evolving
under MCF (5)

2.4 Scale Considerations for Numerical Sta-
bility

Since we use a semi-implicit formulation of a parabolic
problem (2) to update mesh vertices, the stability of the
numerical solution is constrained by the measures of time
step τ and a spatial step h. Outside of its constraints
the evolving mesh surface accumulates numerical errors
that are irreversible without topological adjustments, ulti-
mately invalidating the evolving surface solution F . For
further analysis in Section 4.3, we use two key criteria
for the failure of Lagrangian surface evolution, namely:
the formation of degenerate triangles, and the explosion of
mesh vertices beyond the bounding volume.

For evolving curves in R2, according to Section 3 in
[12], the finite volume approach leads to stability con-
straint τ ≈ h2 where h is a step in the spatial dimension of
the numerical solution’s domain. Hence, we put τ ≈ µ(V )
where µ(V ) is the co-volume measure (area). Given a
characteristic dimension of bounding box B

Γ
(the origi-

nal box of Γ without offset expansion), for example, mean
size, or minimum/maximum size, the factor by which a
mesh needs to be scaled is:

φ = 3

√
τ

µr(V )
, (7)

where µr(V ) is the mean measure of co volumes V of
a geodesic icosahedron F with radius r inscribed in B

Γ
.

Since individual areas of co-volumes V covering F are ap-
proximately equal, we put

µr(V ) =
4πr2

Ns
V

, (8)

where Ns
V is the expected vertex count of a geodesic icosa-

hedron after s successive 4-to-1 edge subdivisions deter-
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mined by a system of recurrence relations
Ns

V = Ns−1
V +Ns−1

E ,

Ns
E = 4Ns−1

E ,
(9)

where Ns
E is the edge count of F with subdivision level s.

Substituting the solution Ns
V of (9) for a given initial vertex

count N0
V , and edge count N0

E :

Ns
V =

1
3
(
N0

E(4
s−1)+3N0

V
)
,

into (8) we obtain an estimate of µr(V ) for any subdivision
level s.

Figure 7: Under the stability assumption we consider that a
geodesic icosahedron F0 evolves into an expected sphere Fr with
radius r > 0 inscribed into B

Γ
.

Now since the radius r of an inscribed geodesic icosahe-
dron F depends on the size of its respective bounding box,
one could extend relation (8) to any bounding box between
B

Γ,o and B
Γ,o expanded by offset o (see Fig. 7) and inter-

polate between the mean co-volume measures of F0 and
Fr to compute scale factor φ so that the mean co-volume
measure of the evolving surface F satisfies τ ≈ µ(V ).

Additionally we may wish to mitigate the effects of
strong angle-based tangential redistribution vT,angle close
to target mesh Γ with weight function:

ρ(d) := A(1− e−d2
), A > 0, (10)

of distance d to Γ, otherwise the influence of vT,angle may
cause some vertices to cluster together, disrupting the as-
sumed homogeneity of mesh vertex co-volumes.

3 Implementation
This paper’s framework was implemented in C++ with

architecture as shown in Fig. 8. Components Evolver and
SDF Computation represent the core implementations for
Lagrangian evolution and signed distance field computa-
tion respectively. The I/O component covers all input and
output data handlings with Wavefront OBJ and Kitware™
VTK. The input geometries Γ were either imported as OBJ
files or generated internally. Outputs in the form of VTK
polydata or VTI scalar grids were then visualized using
ParaView.

Furthermore, we used an additional third-party library -
Poly2Tri - for (n ≥ 5)-gon triangulation so that even ge-
ometries with higher-order polygons get converted to a tri-

Figure 8: The architecture of our software implementation with
arrows denoting dependencies between individual components.

angle soup T used in the construction of AABB tree T
Γ

as the first step in Algorithm 1.
Both the 3D geometry tools and the BiCGStab linear

solver are custom-made, with mesh geometry implemen-
tation being merely indexed without additional references,
requiring the use of multimap containers for mesh adja-
cency operations such as the computation of co-volumes
and surface normals.

4 Results

4.1 Preprocessing Performance

The key preprocessing step of computing the SDF was
measured via wall-clock time for a range of input octree
resolutions corresponding to the subdivision level of the
initial bounding cube C0. The sample volume G stem-
ming from input geometry’s bounding box B

Γ
first ex-

panded by a factor ϕ = 1.1 during octree construction,
and later expanded by an offset o = max{βx,βy,βz} where
β = bmax−bmin = (βx,βy,βz)

⊤ is the size (dimension) vec-
tor of expanded bounding box B

Γ,ϕ . The first uniform ex-
pansion by factor ϕ was carried out in order to contain the
mesh voxel outline, and the second to extend the distance
field further into space.

We carry out the tests on six triangular meshes (see Fig.
9) with increasing grid resolution, such that for each step
the time measurement is averaged over 10 runs to account
for interference with other processes on our machines. We
also performed the time measurements for three differ-
ent CPUs, namely: AMD Ryzen© 7 3800X, Intel© i5-
7300HQ, and Intel© i7-7700K.

We notice that AMD Ryzen 7 and Intel i7 perform
nearly the same whereas Intel i5 lags behind by a factor
of around 1.5 after the former two CPUs due to its clock
speed.

For each CPU, slight improvements are achieved by us-
ing C++ intrinsics (configuration with intrin in the paren-
theses in Table 1) which make use of AVX registers dur-
ing the demanding adaptive resampling step when optimal
split position of bounding box is queried [4]. 256-bit vec-
tor registers, for example, allow simultaneous arithmetic
and logical operations on a union of four floating point
values. As before, the measured time is averaged over 10
runs.
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Figure 9: Wall-clock time measurements on AMD Ryzen© 7 CPU for SDF computation according to Algorithm 1, where NV is the
number of vertices, and NT the number of triangles for each mesh.

grid resolution 903 1203 1803 2403

AMD (intrin) 0.646 0.998 2.803 6.369
AMD (no intrin) 0.745 1.104 2.907 6.523
i7 (intrin) 0.667 1.03 2.908 6.621
i7 (no intrin) 0.766 1.197 3.058 6.755
i5 (intrin) 0.961 1.456 4.144 9.579
i5 (no intrin) 1.025 1.543 4.174 9.597

Table 1: Total time measurements (in seconds) for three CPUs of
SDF computation on the Stanford Bunny model.

The flood fill step is the most time-consuming proce-
dure since it needs to operate on a stack container which
is generally slow with push, pop operations. Hence, the
computational load increases even faster than that of the

Fast Sweeping step. For geometries with millions of trian-
gles, such as Nefertiti, the construction of AABB tree takes
several seconds, even though this step is constant with re-
spect to grid resolution. For grids with ≈ 1003 voxels, the
total computation takes less than 1 second for meshes with
less than 100K triangles. This is still nowhere near what
some GPU-based implementations are capable of, but un-
less real-time updates of the distance field are required,
this solution satisfies our requirements.

4.2 Numerical Experiments

Since the shrinking sphere solution (6) for n = 3 is
directly comparable to an evolving geodesic polyhedron
F with successive 4-to-1 edge subdivision, for the error
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given by difference between the 2-sphere solution r(t) =√
r0−4t and the numerical sphere F t = Fkτ ,k = 1, ...,Nt

for all mesh vertices throughout all time steps, we use

ε =

√√√√ Nt

∑
k=1

τ

( NV

∑
i=1

(
∥Fkτ

i ∥− r(t)
)2

µgkτ
F
(Vi)

)2

(11)

where µgt
F
(Vi) are 2-dimensional measures of co-volumes

Vi with respect to surface metric gt
F , corresponding to

mesh vertices F t
i , and Nt = ts/τ with stopping time ts =

0.06. We put r0 = 1 to perform the test on a unit sphere
S2.

NV τ Nt ε EOC
42 0.01 6 3.067e-03
162 0.0025 24 8.676e-04 1.8217
642 6.25e-04 96 2.106e-04 2.0423
2562 1.5625e-04 384 5.112e-05 2.0426

Table 2: The EOC for shrinking sphere test without tangential
redistribution.

NV τ Nt ε EOC
42 0.01 6 2.845e-03
162 0.0025 24 8.598e-04 1.7266
642 6.25e-04 96 2.105e-04 2.0305
2562 1.5625e-04 384 5.073-05 2.0528

Table 3: The EOC for shrinking sphere test with asymptotically
uniform tangential redistribution with ωvol = 1.0.

NV τ Nt ε EOC
42 0.01 6 3.067e-03
162 0.0025 24 8.678e-04 1.8214
642 6.25e-04 96 2.111e-04 2.0394
2562 1.5625e-04 384 5.113-05 2.0456

Table 4: The EOC for shrinking sphere test with angle-based
tangential redistribution with ωangle = 1.0.

Each subdivision step reduces the geodesic edge length
between vertices on S2 to approximately half of the previ-
ous step3, which means we can compute the experimental
order of convergence:

EOC = log2

(
εl

εl/2

)
,

where εl and εl/2 are given by (11) for tessellations with
geodesic edge lengths l and l/2. Note that since τ ≈ h2 we
must also reduce the length of the time step τ by a quar-
ter. The EOC describes the rate at which the finite volume
solution F t converges to the exact r(t) as we take finer tes-
sellations of the computational domain. We choose to do
so by taking halves of consecutive spatial length steps and

3with the approximation precision increasing after each subdivision
step.

thus take log2 of the error ratio. The results are summa-
rized in tables (2), (3), and (4).

4.3 Lagrangian Shrink-Wrapping

Figure 10: Regions of stability (light blue) where evolution com-
pleted Nt ≥ 200 steps without failure. The black curves denoted
by φmin and φmax are the bounds for φ by the starting F0 and
the expected surface Fr. Minimum bounding box dimensions
are denoted as βmin. Dark yellow and red regions correspond to
evolutions that failed after Nt ∈ [50,200) steps and Nt < 50 steps
respectively.

The fundamental problem in the experimental setup is
the tuning of all the parameters of model (2) so that, be-
sides other criteria, the shrink-wrapped solution F com-
pletes the process within a reasonable time while also
maintaining the stability of the numerical method.

We first verify the propositions in Section 2.4 by sim-
ulating evolutions across an array of parameter values τ

(time step) and φ (scaling factor). The results can be seen
in Fig. 10 for meshes Bunny and Armadillo when the
weight of angle-based tangential velocity vT,angle is iden-
tically one (left). As we can see, additional stabilization
is achieved by using a distance-dependent weight function
(10).

The stability evaluation in Fig. 10 reveals only a par-
tial match between theoretical bounds φmin, φmax, and the
actual stability of shrink-wrapping a specific geometry Γ

with features that might lead to enlarged or stretched trian-
gles. Other, more complicated geometries appear to have
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Figure 11: Results of shrink-wrapping (with D = 0 in η) three test meshes after Nt = 200 time steps of length τ = 0.015 with angle-
based tangential redistribution with weight ωangle = 0.5 for subdivision levels s = 3 and s = 4 of the evolving geodesic icosahedron
surface F . The scalar values d

∣∣
F are the interpolated values of distance field d on mesh vertices.

highly irregular stability regions in the τ,φ -plane, espe-
cially with volume-based tangential redistribution with ad-
ditional stability constraints for potential ψ on F . Note
that, despite evolving past the equilibrium position in con-
cave regions around Γ, for D > 0 in control function η , the
stretching of triangles becomes too excessive to maintain
our stability assumptions. For this reason, we demonstrate
the shrink-wrapping algorithm with partial advection us-
ing η with D = 0.

From this observation, we put φ = φmax so that the co-
volume measure is always maximized, and restrict our
evolution to time step size τ = 0.015. We performed La-
grangian shrink-wrapping on our test meshes the results of
which can be seen in Fig. 11) for two subdivision levels
s = 3 and s = 4 each with its own scaling parameter φ .

Besides considering closeness of the results to target
geometries (using distance d

∣∣
F ), we evaluated additional

triangle metrics such as minumum, maximum angle, and
condition number of Jacobian associated with the trans-
formation from unit triangle (0,0),(1,0),(0,1) in R2 to
each triangle’s planar representation [7].

5 Future Research

Although Lagrangian surface evolution models with ad-
vection fully wrap a subset of meshes, an extension of this
approach to general geometries demands further inquiry.
We would also like to point out that only a small sam-
ple of possible approaches to tangential redistribution have
been tried. The shrink-wrapping implementation would
certainly benefit from splitting and/or decimation subrou-
tines for minimal surface regions of the solution F .

Model (2) also does not wrap holes of target geometries
with higher genus. Without the need for adjusting poten-
tial self-intersections, we can start the evolution by gen-
erating a contour surface of distance function d and run-
ning model (2) after tangentially relaxing triangle vertices
above the generating surface Γ.

Furthermore, with the help of connectivity adjustments
on F , a more robust stability analysis is needed. Besides
adjusting for vertices added during evolution, a larger por-
tion of the parameter space of points (τ,φ) can be covered
by an experimental design with optimized sampling.
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Eventually, Algorithm 3 can be extended to quadrilat-
eral meshes, as in [5], with additional analysis of stability
for changing density of mesh vertices.

6 Conclusion

The shrink-wrapping tool using Lagrangian evolution
based on mean curvature flow (MCF) comes with a ro-
bust smooth theory currently bounded by the limitations of
semi-implicit finite volume method, topological properties
of indexed mesh geometries, and the difficulty to tangen-
tially redistribute mesh vertices to cluster more in regions
around concave parts of input geometry Γ.

In this paper, we discussed the development of a shrink-
wrapping technique for wrapping polygonal meshes. We
maximized and tested the efficiency of signed distance
computation of the input meshes without the requirements
for manifoldness (see Section 4.1). Beyond the experi-
mental results, we discuss and test the numerical stability
of our model in sections 2.4 and 4.3.
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