
Improved Integration of Depth Images in 3D Models

Dennis Depner*

Supervised by: Stefan Ohrhallinger†

Institute of Visual Computing and Human-Centered Technology
Vienna University of Technology

Vienna / Austria

Abstract

3D reconstruction using depth images is established in
many areas of computer graphics, such as virtual and aug-
mented reality. Our research is about the procedure for 3D
reconstruction from the Kinect Fusion algorithm. Partic-
ularly, the work aims to determine how the inclusion of
the aggregated point cloud information of previous / older
depth images as median vectors affects the quality of the
3D reconstructed surface. In addition to this, two algo-
rithms for the generation of meshes are compared, which
are the Marching Cubes algorithm and an adaptation of
it, which can be specifically applied to octrees. The re-
sults have shown that including median vectors has a pos-
itive influence on the quality of the 3D reconstructed sur-
face compared to the default Kinect Fusion algorithm. In
smaller areas, there are fewer holes on the surface. Finer
objects also appear softer and are reconstructed less edgy.
The adapted Marching Cubes algorithm for octrees also
shows a strong improvement in terms of generating fewer
holes in the mesh.

Keywords: 3D, Surface, Reconstruction, Scanning,
Integration, Depth-Maps, Depth-Images, Kinect Fusion,
Marching Cubes, Voxel

1 Introduction

The reconstruction of 3D models in the real world plays an
important role in various applications and numerous fields
like computer graphics, computer vision, medical imag-
ing, virtual reality, etc. One example of that is augmented
reality, which is heavily dependent on a precise and consis-
tent 3D reconstruction of real-world objects. Knowledge
of the position, form, and scale of real-world objects is
necessary to place new virtual objects in an environment
[15]. Another highly related topic to augmented reality is
visual SLAM (Simultaneous Localization And Mapping).
Visual SLAM technologies enable autonomous sensors to
localize their position by scanning and mapping their en-
vironment simultaneously. This can be very useful for the
development of autonomous vehicles or robots [16].

*e1632716@student.tuwien.ac.at
†ohrhallinger@cg.tuwien.ac.at

Figure 1: Mesh with default integration / default Marching Cubes

Figure 2: Mesh with median integration / default Marching
Cubes

Figure 3: Reference Image

Default integration means default surface generation by Kinect
Fusion Algorithm. Median integration means surface generation
by a modified version of Kinect Fusion. Comparing Figure 1
with Figure 2, especially the reconstruction of the car body and
engine cover seems to be more similar to the real-world object in
the median integration. Note the bottle in the right middle and
the can on the right, which have slightly fewer holes in the mesh
with the median integration.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



Obviously, there are a lot more applications for 3D recon-
struction than mentioned above, but mostly they all have in
common that they need data with 3D information. Depth
maps or images are most commonly used for providing 3D
data compromised as 2D images. Pixels in those images
do not have the purpose to save the color but the depth of
an object in a scene [17]. Depth cameras like the ”Kinect
v2 camera” are capable of scanning the depth of objects
with an infrared sensor. It computes depth by emitting in-
frared light to the objects and measuring the time of flight
until the emitted reflected light comes back to the sensor.
This method is also called LIDAR (Light amplification by
Stimulated Emission of Radiation detection and ranging)
[2].

2 Background

Reconstructing the depth images to a 3D model mainly
consists of two areas, camera tracking and surface gen-
eration. Concerning camera tracking, it is necessary to
know where the camera is in space to properly align the
depth images to a correct 3D model. Surface generation
means the creation or definition of the 3D surface (e.g. as
a geometrical function or a mesh) using the depth images.
Camera tracking and surface generation can be handled in
a Frame-to-Frame (Camera tracking and/or surface gen-
eration of one depth image is dependent on the previous
depth image), Frame-to-Model (Camera tracking and/or
surface generation of one depth image is dependent of the
current 3D model generated from previous depth images)
or global fashion (Camera tracking and/or surface gener-
ation is done with all depth images at once) [10].

In this work, the focus is laid on the Frame-To-Model
approach, since all our experiments and evaluation are
based on the Kinect Fusion Algorithm [10]. Kinect Fu-
sion generates a dense 3D model obtaining depth images
from a depth sensor (e.g. Kinect v2 camera) in real-time.
It is proven to be one of the fastest and most efficient al-
gorithms for 3D reconstruction using depth images. How-
ever, it still leaves some headroom for improvement con-
sidering the accuracy of the surface generation. In 3D
space, a depth image is a point cloud in which each 3D
point is assigned a pixel in the depth image. If multiple
depth images are reconstructed as a 3D model, Kinect Fu-
sion does not include the information of the point clouds of
previous/older reconstructed scans in new scans. That has
the consequence that information and accuracy of the sur-
face get lost. An approach for a possible improvement is
to simply save and use the point cloud information for sur-
face generation. Because simply saving all points of every
depth image in the 3D model would cause massive stor-
age requirements, the coordinate information of multiple
points in the same area (the 3D space is divided into mul-
tiple equally sized areas/cubes) can be aggregated as a me-
dian vector. In the following chapters, the 3D reconstruc-
tion process as well as the changes of Kinect Fusion will

be explained. Next to the changes of Kinect Fusion, we
will also discuss the differences between two mesh genera-
tion algorithms, which are the Marching Cubes Algorithm
and an adaptation of Marching Cubes for octrees.

3 Kinect Fusion Pipeline & Data
Structures

Kinect Fusion processes the depth information of depth
images frame after frame to obtain a dense 3D model.
To get a better understanding of what is happening in
the Kinect Fusion Algorithm, we take a closer look at
the pipeline. Kinect Fusion consists of four steps: Sur-
face Measurement, Surface Reconstruction Update, Sur-
face Prediction and Surface Pose Estimation [10].

3.1 Kinect Fusion Algorithm Pipeline

3.1.1 Surface Measurement

In this step, a point cloud consisting of a vertex map V
is calculated with the scanned depth image. To obtain
the vertices for the vertex map V , each of the pixels in
the depth image with its corresponding values (u,v) (the
image coordinates) and z(the depth measurement) is con-
verted into the 3D world. Computing the vertex map is
essential for being able to estimate the sensor or camera
pose later [10].

3.1.2 Surface Reconstruction Update

For extracting a surface of the depth image we need a func-
tion to represent it. For this, we use the T SDF (Truncated
Signed Distance Function). Before we explain the T SDF ,
we first take a look at the normal SDF (Signed Distance
Function). Simply explained, the SDF is a function which
takes as input a 3 dimensional point p = (x,y,z) and out-
puts the shortest signed distance of p to a surface within
a defined metric (e.g. the point (1,3,7) is 5 units away
from the surface or SDF((1,3,7)) = 5) [12]. The sign of
the distance determines whether p lies in front of (posi-
tive sign), behind (negative sign) or exactly on the surface
(then the distance is 0) with respect to the camera posi-
tion. In Kinect Fusion, the calculation of the SDF is sim-
plified by only determining the signed distance between
the camera position and p along the z-direction in camera
space [10]. T SDF is the same concept, except for taking
only points in a defined range or truncation band µ into
account. The distance inside the truncation band µ is nor-
malized by dividing it by µ . If a point’s distance from the
surface is bigger than µ , it is set to either 1 (in front of the
surface) or -1 (behind the surface) [10]. The surface can
also be defined as an implicit function T SDF(p) = 0, p ∈
R3.

Since it is not possible to compute the T SDF contin-
uously, we have to sample it along a 3-dimensional grid

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 4: T SDF of a 2D surface is represented as a red line. For
each voxel, here as a 2D square, the shortest signed distance from
a corner to the red marked surface is computed. In this example,
the signed distance is depicted inside each square [3].

with a specific resolution. The grid consists of multiple
voxels (imagine a 3D pixel or cube with 8 vertices) and
for each of them, the shortest signed distance to its corre-
sponding depth measurement (obtained by projecting the
position of a voxel onto the depth image) is computed [10].
In Figure 4 is also a 2D example for a T SDF .

The reason for using T SDF is the easy way of fusing it.
Because for every depth image which comes as input for
Kinect Fusion, a single T SDF is computed. All T SDFs
can be fused to a single T SDF by taking the average of
each voxel’s computed signed distances [10].

3.1.3 Surface Prediction

This processing stage is also known as ”Raycasting”.
Here, a ray is casted from each pixel of the depth image
along the estimated camera pose to read the T SDF and
create another point cloud as a vertex map. While a ray
marches through the 3D grid with a step size of the voxel
length, it stops when a zero crossing in the voxel grid is
found (when the T SDF changes from negative to positive
or vice versa). The position for the zero crossing is then
saved in the vertex map [10].

These steps finally generate a vertex map of all fused
T SDFs representing the global 3D surface. That vertex
map can be compared with the vertex map, which was
computed in the first step ”Surface Measurement” to fi-
nally estimate the camera position [10].

3.1.4 Sensor Pose Estimation

For estimating the position of the camera to be able to up-
date the T SDF , the ICP (Iterative Closest Point) algorithm
is used. ICP takes two point clouds A and B. For our case,
B is the vertex map of the ”Surface Measurement” and A
is the vertex map of the ”Surface Prediction”. The algo-
rithm tries to find the transformation between A and B by
minimizing the distance between the points of A to B with
several iterations [9].

3.2 Data Structures for the Voxel Grid

3.2.1 Grid as Hash Table

The first solution is called Voxel Hashing [11]. Here, we
use a hash table to store each of the voxels. In a hash table,
data is stored in an associated manner, which means every
data element has its unique index or key in an array. That
makes insertion, retrieval and searching of data elements
very fast (constant time complexity or O(1)), since we just
need to compute the key for a data element [6].

In our case, we have to imagine a uniform infinite 3D
grid consisting of so-called voxel blocks. A voxel block is
a cube consisting of e.g. 8 x 8 x 8 or 512 voxels and has
a hash key, which can be computed with its position. The
voxels inside a voxel block are directly accessible in a list
[11].

3.2.2 Grid as Octree

Another possibility to structure the data of the voxels is
an octree. An octree is a tree in which every node has
eight children nodes. In 3D space, the root node is a cube
with a defined edge length. That cube can be divided into
eight equally sized children cubes/nodes recursively. In
our case, every node represents a voxel [14].

3.2.3 Meshing of Voxel Grid

To obtain a visual surface, we generate a mesh of the voxel
grid by using the Marching Cubes Algorithm (Implemen-
tation was done with Bourke’s Look Up Tables). Here, we
iterate over all allocated voxels and generate polygons for
each of them. Each voxel has eight vertices, while each of
them has a signed distance marking them as inside (nega-
tive distance) or outside (positive distance) of the surface.
When processing one voxel, the goal is to separate the in-
side vertices from the outside vertices with the generated
polygons, since that represents the approximated surface
[8].

When taking Voxel Hashing into account, we only it-
erate over all allocated voxels and generate the polygons
like mentioned above. However, when using an octree, we
cannot use the default Marching Cubes Algorithm. That is
because we also iterate over coarser nodes/voxels, which
do not necessarily have the same resolution of neighboring
nodes/voxels. For example, the edge of a voxel can be a

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 5: On top, a coarser voxel node and to its right finer voxel
nodes are depicted. On each of them default Marching Cubes
is independently applied. It is clear that the edge of the face f
does not match the edges of the faces f1, f3 and f4, which will
cause a crack in the surface. When applying the Marching Cubes
adapted to octrees like depicted on the bottom, the coarser edge
of f gets replaced by the smaller edges f1, f3 and f4 in order to
avoid cracks [7].

neighbor to a smaller or longer edge of a voxel, which is
not on the same level or depth in the octree. If we would
independently generate the polygons for every node/voxel
in the octree, there could appear cracks along such edges,
since the zero crossing of a bigger edge may not match
with the zero crossings of possibly neighbored smaller
edges. Therefore, we have to use a Marching Cubes Al-
gorithm of this paper [7], which is adapted to octrees.
Shortly explained, for edges of coarser voxels which are
neighbored to smaller edges of finer voxels, the zero cross-
ings of the bigger edges are replaced with those of the
neighbored smaller edges. This should eliminate possible
cracks. The problem and avoidance of possible cracks is
also illustrated in Figure 5. Because the Marching Cubes
Algorithm adapted to octrees can also mesh coarser leaf
nodes, this offers an advantage when it comes to missing
measurements or noise in the TSDF of the voxel grid [7].

4 Improved Depth Integration
Method

To improve the integration of the depth information into
the global 3D model, we change the processing step ”Sur-
face Reconstruction Update” of ”Kinect Fusion”. Taking a
closer look at it, Kinect Fusion only considers the current
depth image when computing the local T SDFlocal (with
local T SDFlocal we mean the T SDF of one depth image.
The global T SDF is the fused T SDF of all depth images)
and ignores nearby depth measurements of previous/older
scans. When projecting a depth measurement to a 3D point

in the voxel grid, it falls inside one voxel. However, inside
this voxel there could also be other depth measurements of
previous/older depth images. In order to take also the other
depth measurements into account, we save the coordinate
information of all depth measurements inside a voxel as a
median vector. For computing the TSDF of one voxel, we
calculate the shortest distance from its eight vertices to the
corresponding median vector.

4.1 Definitions

In order to explain the above-mentioned improvements,
some definitions have to be made. The voxel grid is de-
fined as V ⊂ R3 with following functions:

p :V→Z3, m :V→R3, d :V→R, nm :V→N, w :V→N

p returns indexed position of the voxel, m returns
median vector of all projected depth measurements inside
the voxel, d returns global TSDF of the voxel, nm returns
number of all projected depth measurements inside the
voxel, w returns number of update cycles of the voxel.
The origin of the voxel grid is always assumed to be
(0,0,0) ∈ R3. The kth depth image is defined as:

Ik ⊂ N2, depth : Ik→ R

To project the voxels from world space onto the depth im-
age plane and the depth measurements back into world
space, a matrix K for the camera intrinsics is defined. For
the camera extrinsics a 4x4 matrix CEST represents the es-
timated rotation and translation of the camera.

4.2 Default Integration

As already mentioned, Kinect Fusion only computes the
T SDF for a voxel by calculating the difference between
the depth measurement and the z-coordinate of the voxel’s
position in the camera space. Therefore, we first need to
project the position p = (x,y,z) of a voxel v ∈ V back
onto the depth image plane to get the corresponding depth
measurement [10].

x′

y′

z′

1

=CEST ·


x
y
z
1

 (1)

u
v
1

= 1/z′ ·K ·

x′

y′

z′

 (2)

depth((⌊u⌋,⌊v⌋)) = t (3)

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



In step (1), the homogenized position p = (x,y,z,1) of v
is transformed into the camera space by multiplying with
CEST . In step (2), we project the transformed position p′ =
(x′,y′,z′) of v from camera space onto the depth image
plane by multiplying it with K and 1/z′. In the last step (3),
we take the depth measurement t at the pixel coordinates
(u,v) (u and v are rounded down to integers), which we
obtained in the previous step [10].

Now that the depth measurement t and z′ is obtained,
the local T SDFlocal of the voxel v can be calculated like in
step (4) [10].

T SDFlocal =


1, if t− z′ > µ

−1, if t− z′ <−µ

t−z′
µ

, otherwise
(4)

After that, we only need to fuse T SDFlocal with the global
T SDF d(v), which means calculating the average. This
can be done incrementally with the w function, which
tracks a voxels’ number of updates or computed local
T SDFs. The global T SDF d(v), which is initially zero,
can be calculated for a voxel v ∈ V as shown in step (5)
[10].

d(v) =
d(v) ·w(v)+T SDFlocal

w(v)+1
(5)

4.3 Median Integration

By using the point cloud information of previous scans
aggregated as median vectors, we expect to see a higher
accuracy in updating the surface and generating the
surface as a mesh.
For the median integration of a depth image, the median
vectors of all voxels are updated with their corresponding
depth measurements. To do that, we first iterate over all
pixels of the depth image and project them to 3D points in
the world space of the voxel grid. After that, the median
vector of the voxel will be incrementally updated with the
3D point (See also Algorithm 1)

After updating the medians, the global T SDF d(v)
of each voxel can be calculated. Every voxel will be
matched with its corresponding depth measurement by
projecting its middle position onto the depth image plane.
When obtaining a depth measurement after projecting a
voxel v ∈ V into depth image space, it is again projected
back into the 3D voxel grid to find out in which voxel
v2 ∈ V it lies. When projecting the obtained depth
measurement into the voxel grid, it does not necessarily
lie in v since the measured depth could be smaller or larger
than the depth of v. That is why we defined another voxel
v2. The local T SDFlocal of v can be calculated with the
median vector of v2. Later the global T SDF d(v) of v can
be updated with the local T SDFlocal like already explained

in the ”Default Integration” (See also Algorithm 2).

To calculate the local T SDFlocal of a voxel v we
compute its shortest distance among its eight vertices to
its corresponding median vector m(v2), see also Algo-
rithm 3.

Algorithm 1: Updating median of voxels

// Hashfunction returns a voxel
according to an indexed
position

1 Hash : Z3→V
2 Hash(pos) = v
3 pos ∈ Z3 , v ∈V
// Updating all median vectors

4 for ∀(u,v) ∈ Ik do
// 3D position in camera space

of (u,v)

5 pcam← depth(u,v) ·K−1 ·

u
v
1


// transformed pcam into world

space

6 pworld ←C−1
EST ·


pcam.x
pcam.y
pcam.z

1


// indexed voxel position

7 pos← ⌊ pworld
voxelsize⌋

// corresponding voxel v for
indexed pos

8 v← Hash(pos)
// Updating median vector m(v)

and the counter n(v) of v

9 m(v)← (pos+n(v)·m(v))
(n(v)+1)

10 n(v)← n(v)+1
11 end

5 Implementation

Implementation of the changes in Kinect Fusion was
done in the open-source framework ”InfiniTAM v3”
[5]. It is a framework written in C++ and optionally
using Nvidia CUDA (a parallel computing platform for
programming with an Nvidia GPU [4]). The framework
has the whole Kinect Fusion Pipeline and a Hashing Voxel
Data Structure already implemented. Since our purpose is
to test the changes in quality for the default integration in
Kinect Fusion vs. our median integration and the default
Marching Cubes vs. the Marching Cubes adapted to
Octrees, it was sufficient to do the implementation only
running on the CPU without using Nvidia CUDA. Our
implementation was running on a machine with a CPU

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



”Intel Core i7 4770k” and an Nvidia GTX 1060 graphics
card.

Algorithm 2: Updating TSDF of voxels with me-
dian

1 for v ∈V do
// transform p(v) from world

space into camera space

2 pcam
1 ←CEST ·


p(v).x
p(v).y
p(v).z

1


// project pcam

1 from camera
space to the depth image
plane

3

u
v
1

← 1
z ·K ·

pcam
1 .x

pcam
1 .y

pcam
1 .z


// depth measurement t of (u,v)

4 t← depth(⌊u⌋,⌊v⌋)
// project depth measurement t

back to camera space

5 pcam
2 ← t ·K−1 ·

⌊u⌋⌊v⌋
1


// project pcam

2 into world space

6 pworld
2 ←C−1

EST ·


pcam

2 .x
pcam

2 .y
pcam

2 .z
1


7 p2←

pWORLD
2 .x

pWORLD
2 .y

pWORLD
2 .z


// indexed voxel position pos of

projected depth measurement
8 pos← ⌊ p2

voxelsize⌋
// voxel v2, in which t lies

9 v2← Hash(pos)
// calculate local T SDFlocal with

median vector of v2
10 T SDFlocal ← calculateT SDF(v,m(v2), t)

// update global T SDF d(v)

11 d(v)← T SDFlocal+w(v)·d(v)
w(v)+1

12 end

Algorithm 3: Calculating TSDF of voxel with me-
dian vector

1 Function calculateTSDF(voxel ∈V ,
median ∈ R3, depth ∈ R):
// transform p(voxel) from world

to camera space

2 p←CEST ·


p(voxel).x
p(voxel).y
p(voxel).z

1


// indicate whether the voxel

lies in front, behind or on
the surface

3 sign← signum(depth− p.z)
// calculate minimum distance

and apply sign
4 n = 0
5 distances[8]
6 for i = 0; i≤ 1; i = i+1 do
7 for j = 0; j ≤ 1; j = j+1 do
8 for k = 0; k ≤ 1; k = k+1 do
9 distances[n]← length(median− p(voxel).x+ i · voxelsize

p(voxel).y+ j · voxelsize
p(voxel).z+ z · voxelsize

)

10 n← n+1
11 end
12 end
13 end
14 distancemin← min(distances)
15 distancemin← distancemin · sign

// return local T SDF
16 return

T SDF ←


1, if distancemin > µ

−1, if distancemin <−µ

distancemin
µ

, otherwise

6 Results

To measure the difference between the meshes recon-
structed with the default and median integration methods
as well as the default and Octree Marching Cubes Algo-
rithm, we use the RMS (Root Mean Square) of the directed
Hausdorff Distance. It is an algorithm that computes the
RMS-distance from a source point set A and a target point
set B [13]. The setup for the comparison is three different
scenes in which we scan a room with the Kinect v2 sen-
sor. In the first scene, the room has only easy geometric
shapes, e.g. a couch with rather flat surfaces. In the sec-
ond scene, we add more complex geometric shapes, e.g. a
flipped table. In the third scene, geometrically finer shapes
are added, which are also harder to reconstruct. The over-
all results of the measurements in all scenes are shown and
explained in Figure 8.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



The source point set for computing the Hausdorff dis-
tance is always the mesh generated with the default in-
tegration and the default Marching Cubes Algorithm. The
target point set is the mesh generated with the median inte-
gration and (optionally) with Marching Cubes for octrees.
The comparison of the meshes shows that the median in-
tegration method has no bad influence in terms of qual-
ity compared to the default integration. It rather high-
lights improvements considering the quality of the meshes.
When generating meshes with the median integration,
there are fewer holes in some areas of the surface, while
finer objects also appear to be a bit smoother and more
similar to real-world objects. Figures 1, 2, 6 and 7 are
examples of the third scene in which those improvements
can be observed. The results for the directed Hausdorff
Distance as RMS also reflect with its rather low values
(only a few millimeters) that there is only a slight differ-
ence between the default and median integration. Compar-
ing the default Marching Cubes with the advanced March-
ing Cubes for Octrees, the differences between the meshes
become slightly larger, which is also represented by the
higher RMS of the directed Hausdorff Distance. Marching
Cubes for Octrees provides the best improvement consid-
ering the fewer holes in the mesh. Combining Marching
Cubes for Octrees with the median integration slightly am-
plifies that effect.

7 Conclusion and Future Work

All in all, the median integration provides slight improve-
ments in terms of generating fewer holes and letting the
mesh appear to be smoother. The low values of the di-
rected Hausdorff distance also ensure that the median in-
tegration does not cause any malformation or deteriora-
tion compared to the original Kinect Fusion Algorithm.
Since our modifications only require slight changes in one
update step of the Kinect Fusion Algorithm, it should be
easily adaptable to other applications too. The Marching
Cubes Algorithm for octrees has even more significant im-
provements since it further reduces holes in the mesh.

The median integration can be used for further studies,
which requires mesh generation with Kinect Fusion. One
of our current works is concerned with detecting changes
in two different scenes captured and reconstructed with the
Kinect Fusion Algorithm. In the future, the difference of
meshes will also be measured to ground truth data with the
BlenSor plugin [1]. The BlenSor Plugin simulates depth
data of an already generated 3D model and imitates a depth
sensor. We expect the more precise median integration to
deliver more faithful results in change detection.

References

[1] Blensor: Free open source simulation package for
light detection and ranging (lidar/ladar) and kinect

Figure 6: Mesh with default integration / default Marching Cubes

Figure 7: Mesh with median integration / Marching Cubes for
Octrees

The Hausdorff Distance is 34.51 mm and is measured from mesh
in Figure 6 to mesh in Figure 7. Using also the median integra-
tion with Marching Cubes for Octrees provides even fewer holes
in the mesh compared to using the default integration.

sensors. https://www.blensor.org/. Accessed: 2022-
02-16.

[2] Xin Bi. Lidar technology. In Environmental Percep-
tion Technology for Unmanned Systems, pages 67–
103. Springer, 2021.

[3] Ta-Ying Cheng. Understanding real
time 3d reconstruction and kinectfusion.
https://itnext.io/understanding-real-time-3d-
reconstruction-and-kinectfusion-33d61d1cd402.
Accessed: 2021-12-01.

[4] Mark Harris. Many-core gpu computing with nvidia
cuda. In Proceedings of the 22nd annual inter-
national conference on Supercomputing, pages 1–1,
2008.

[5] O. Kahler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. H. S
Torr, and D. W. Murray. Very High Frame Rate Vol-
umetric Integration of Depth Images on Mobile De-
vice. IEEE Transactions on Visualization and Com-
puter Graphics, 22(11), 2015.

[6] Elshad Karimov. Hash table. In Data Structures and
Algorithms in Swift, pages 55–60. Springer, 2020.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 8: Directed Hausdorff Distance as RMS from the mesh with default integration/default Marching Cubes to all new meshes for
every scene. It can be observed, that only using the median integration makes the smallest difference in terms of Hausdorff Distance.
However, as complexity in the scene gets higher (Scene 1 low, Scene 2 middle, Scene 3 high), the Hausdorff Distance also gets higher,
which indicates that more complex scenes might be influenced more by the median integration. When only comparing the default
Marching Cubes Algorithm with the adapted Marching Cubes for octrees (without using the median integration), Hausdorff Distances
turn out to be higher. The reason for that is obvious since Marching Cubes for octrees can also generate polygons for bigger nodes
and is better at compensating for missing values/noise. This can be observed very well in Figure 6 and 7 at the table. Using Marching
Cubes for Octrees in combination with the median integration slightly raises the Hausdorff Distance, but in the third scene it is slightly
lower.

[7] Michael Kazhdan, Allison Klein, Ketan Dalal, and
Hugues Hoppe. Unconstrained isosurface extraction
on arbitrary octrees. In Symposium on Geometry Pro-
cessing, volume 7, 2007.

[8] William E Lorensen and Harvey E Cline. March-
ing cubes: A high resolution 3d surface construc-
tion algorithm. ACM siggraph computer graphics,
21(4):163–169, 1987.

[9] Kok-Lim Low. Linear least-squares optimization for
point-to-plane icp surface registration. Chapel Hill,
University of North Carolina, 4(10):1–3, 2004.

[10] Richard A Newcombe, Shahram Izadi, Otmar
Hilliges, David Molyneaux, David Kim, Andrew J
Davison, Pushmeet Kohi, Jamie Shotton, Steve
Hodges, and Andrew Fitzgibbon. Kinectfusion:
Real-time dense surface mapping and tracking. In
2011 10th IEEE international symposium on mixed
and augmented reality, pages 127–136. IEEE, 2011.

[11] Matthias Nießner, Michael Zollhöfer, Shahram Izadi,
and Marc Stamminger. Real-time 3d reconstruction
at scale using voxel hashing. ACM Transactions on
Graphics (ToG), 32(6):1–11, 2013.

[12] Stanley Osher and Ronald Fedkiw. Signed distance
functions. In Level set methods and dynamic implicit
surfaces, pages 17–22. Springer, 2003.

[13] William Rucklidge. The hausdorff distance. In
Efficient Visual Recognition Using the Hausdorff
Distance, pages 27–42. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1996.

[14] Carlos Saona-Vazquez, Isabel Navazo, and Pere
Brunet. The visibility octree: a data structure for 3d
navigation. Computers & Graphics, 23(5):635–643,
1999.

[15] Ming-Der Yang, Chih-Fan Chao, Kai-Siang Huang,
Liang-You Lu, and Yi-Ping Chen. Image-based 3d
scene reconstruction and exploration in augmented
reality. Automation in Construction, 33:48–60, 2013.

[16] Yun-Jia Yeh and Huei-Yung Lin. 3d reconstruc-
tion and visual slam of indoor scenes for aug-
mented reality application. In 2018 IEEE 14th In-
ternational Conference on Control and Automation
(ICCA), pages 94–99. IEEE, 2018.

[17] Ping Zhang, Jincong Luo, and Guanglong Du. Depth
image application in analysis of automatic 3d recon-
struction. In 2015 IEEE International Conference
on Cyber Technology in Automation, Control, and
Intelligent Systems (CYBER), pages 409–414. IEEE,
2015.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)


