
Weight Redistribution Algorithms for Sparse Neural Networks
Paul Eibensteiner

Supervised by: Dipl.-Ing. Dr. techn. Markus Steinberger

ICG TU Graz

Abstract
Sparse neural networks are successfully used to speed
up inference and reduce the memory requirements of
fully trained networks. However, recently it has been
shown that sparsity can also be employed in the train-
ing phase. In this work, we introduce two new methods
to train sparse neural networks from scratch that alter
the network’s topology while training and maintain a
global level of density. Then we compare them to re-
cent state-of-the-art algorithms in a controlled setting
on two different datasets. All algorithms are imple-
mented in a GPU-accelerated framework and tested
using the KMNIST and HIGGS datasets. The results
show that global weight redistribution can significantly
improve the network’s accuracy without introducing
significant overhead.

Keywords: Sparse Matrices, Deep Learning, Neural
Networks

1 Introduction
Computational resources are commonly placing an
upper bound on the performance of artificial neural
networks (NNs). Thus, different ways to lower the
training and inference cost have always been of inter-
est. One way to achieve this is through sparse NNs,
networks where not every pair of neurons of two con-
secutive layers is connected. This is in contrast to
dense networks, where the layers are fully connected.
Sparse NNs have been shown to perform equally or
even outperform their dense counterparts due to their
regularizing effect when overfitting is a problem [19].

So-called pruning algorithms that yield sparse NNs
have been proposed in the research since the nineties [4,
13]. They take a fully (or partially) trained dense neu-
ral network and remove connections by some criterion,
often in an iterative manner. The obtained sparse
networks have great accuracy, even when more than
90% of the weights are removed. The downside is that
training them takes the same or more resources than
a fully connected network.

Pruning algorithms were further refined with the idea
of retraining the network after pruning [22]. This led
to sophisticated pruning-retraining cycles and gradual
pruning, where weights are continually removed over

the course of multiple epochs [12, 23]. All pruning algo-
rithms typically increase training time by introducing
additional retrain cycles.

In contrast to this, sparse training algorithms have
appeared more recently. As the name suggests, they
train with a sparsely connected model throughout the
whole learning phase. They can be further subdivided
into algorithms that keep the topology as initialized at
the beginning and ones that allow the connections to
change, respectively called static and dynamic sparse
training in this work.

There are several potential advantages of sparse train-
ing. First, when sparse matrix operations are im-
plemented efficiently, the training overhead can be
reduced. In the most simple case this can lead to
energy savings (“green AI”), but it can even improve
training speed. Secondly, savings in storage can make
training even bigger neural networks possible, espe-
cially when hardware access is restricted. Additionally,
sparsity can prevent overfitting because fewer param-
eters are active but still allows for a high degree of
generalization [11].

An essential part of every dynamic sparse training
algorithm is the redistribution step, where some con-
nections are removed and others are added. This work
will focus on this step and compare different algorithms
using an implementation of sparse matrix operations
in CUDA [6]. This is especially interesting, as recent
papers mainly focus on theoretical measures such as
FLOPs to evaluate resource usage, even though on
today’s highly parallelized hardware, these measure-
ments often do not correlate with the training speed.
Additionally, two of the compared algorithms apply
criteria that have only been used in pruning so far. To
our knowledge, this is the first time they are used in
the context of dynamic sparse training.

1.1 Dynamic Sparse Training
Dynamic sparse training emerged because static sparse
training was quickly found not to be able to yield
good performance when the topology is initialized
randomly [9]. It was found that traversing the param-
eter space, i.e., dynamic sparse training, is necessary
to avoid stationary points found in the static sub-
space [8, 10].

Sparse Evolutionary Training (SET) is one of the most

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



cited dynamic sparse training algorithms [19]. It intro-
duced the concept of an “evolutionary step” after each
epoch, where connections are redistributed. This step
simply removes the weights with the smallest absolute
value per layer (like magnitude-based pruning) and
adds new connections at random locations. The new
weights are initialized using Gaussian noise.

The newest algorithm, RigL, also builds on the ideas
of SET [7]. However, it introduces a new idea of
adding the connections: They are created at the high-
est magnitude gradients of non-active connections and
initialized to zero. The intuition behind this is that
these are the locations where the weights are expected
to change the most and therefore improve the loss the
most.

Most other algorithms for dynamic sparse training
that we are aware of either have to store the full
dense weight matrices or compute the dense gradient
in the backward pass of every iteration [5, 15, 17].
This makes them ill-suited for our declared goal of
improving training efficiency.

For a broader overview of the topic, we refer the reader
to the works of Blalock et al., Gale et al. and Hoefler
et al. [1, 10, 14].

2 Redistribution Algorithms
From the number of different approaches in the liter-
ature we chose four existing dynamic sparse training
algorithms and adapted them for the comparison. Ad-
ditionally, we created two new methods based on prun-
ing algorithms. The main criterion in the selection for
the comparison was to identify algorithms that yield
the best test accuracy without introducing too big of
an overhead. Such an overhead would then render the
gains in efficiency introduced by sparse layers in the
network useless.

To keep the results comparable the algorithms con-
sidered only differ in two ways: Which weights they
remove, and which weights they add. In contrast to
some of the original algorithms, new weights are always
initialized to zero (instead of e.g. random noise), which
has been empirically found to improve the performance
in multiple papers [7, 20]. The original algorithms usu-
ally also vary in other aspects, e.g. how many weights
are relocated, when the relocation step occurs, etc.
However, they are not integral to the redistribution
itself and are kept equal for all the algorithms in this
work.

The general idea of all the given algorithms, from
an optimization perspective, is to remove the weights
that lead to the smallest possible increase in loss. The
only way to compute this expected increase exactly
would be to remove every combination of weights and

compute the corresponding loss [21]. This is, of course,
infeasible for networks in the scale of current state-of-
the-art classifiers. Therefore, different approximations
are used, with the most common being the absolute
value of the weight in question.

2.1 Redr-Random
The first and simplest algorithm is based on Sparse
Evolutionary Training [19]. It removes the weights
closest to zero per layer. Then it adds the same amount
of weights at random locations in the layer. The algo-
rithm resembles a phenomenon present in biological
brains known as synaptic shrinking [19]. The algo-
rithm has been shown to clearly outperform a sparse
neural network with fixed topology [19]. A version
optimized for CPU execution was implemented by Liu
et al. [18].

2.2 Redr-Gradient
The second algorithm is based on RigL [7], which in
turn builds on ideas of SET. It also removes the weights
with the smallest absolute value per layer. It then adds
the weights with the highest magnitude gradient per
layer. The intuition behind this is that these are the
connections expected to receive the most change in
the following training epoch, therefore contributing
the most to a decrease in the loss. The densities per
layer are kept constant.

2.3 Redr-Gradient-Global
The third algorithm is based on RigL as well [7]. It
uses the same criteria to remove (weight magnitude)
and add (gradient magnitude) weights, but it applies
them globally across the whole network. The given
percentage of weights is removed per layer, and then
the connections with the globally highest gradient are
added. For weight insertion, the full gradient is only
calculated for one layer at a time and then discarded.
To globally find the k highest absolute partial deriva-
tives, the maximum k of the previously found maxima
and the current layer’s absolute gradient are calcu-
lated iteratively for every layer. Their indices and
values are stored. After iterating through all layers,
the algorithm inserts the weights corresponding to the
resulting indices. This avoids calculating (storing) and
sorting the full dense gradient of the model.

2.4 Redr-Loss
This algorithm was adapted from the work of Ertl [6].
It also removes a set fraction of weights by magnitude
per layer. It then adds weights by an approximation of
the gradient: The absolute losses of one layer’s neurons
are sorted, and the top k are selected. For these top k

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



neurons, the gradient vectors are computed. Then for
each neuron an equal amount of new weights is added
at the highest absolute gradients. In our algorithm, k
is set to 30% of the amount of neurons in the current
layer.

2.5 Redr-Woodfisher and Redr-
Woodtaylor

Finally, the last two algorithms are based on an ap-
proximation of the inverse Hessian matrix already
used by Hassibi and Stork [13]. The intuition be-
hind this is that its magnitude does not sufficiently
approximate the significance of a weight. However,
a first-order approximation would be problematic as
well because a fully trained weight at a local mini-
mum has a partial derivative of zero. Therefore, a
second-order approximation of the loss induced by the
removal is calculated. This might reduce the number
of important weights that are removed from the NN.
Singh and Alistarh [21] use an efficient approximation
for the inverse Hessian they call Woodfisher. The ap-
proximation algorithm was introduced by Hassibi and
Stork [13] and both papers show that it outperforms
magnitude-based pruning in all tested settings.

In short, Singh and Alistarh [21] use the Fisher In-
formation Matrix as a replacement for the Hessian.
Their equivalence is given under the assumption that
the conditional distribution of the model is equal to
the conditional distribution of the data. Then they
use the empirical Fisher as an approximation of the
true Fisher, where the model distribution is replaced
by the empirical training distribution. Finally, they
save additional computational complexity by calcu-
lating the inverse empirical Fisher block-wise via the
Sherman-Morrison formula (for mor details see Singh
and Alistarh [21]).

The resulting approximation of the inverse Hessian
is used to estimate the loss that is introduced when
changing a parameter. This value can be calculated
for every parameter and sorted to find the one with
the smallest (also possibly largest negative) associated
change in loss. By applying the corresponding opti-
mal weight update to all parameters, it is possible to
remove a weight resulting in the minimal loss possible
as computed by the quadratic approximation.

2.5.1 Implementation as a redistribution algorithm

In the formulation of the optimization problem above,
Singh and Alistarh [21] differentiate two different ap-
proaches: One which assumes the gradient to be zero
(common in pruning) and one which incorporates it
into the estimation of the loss. For the comparisons
in this work, we implemented the two approaches in
two separate redistribution algorithms. They are both

used as criteria in the weight removal step: The pa-
rameters with the smallest expected loss are removed,
and all others are updated according to the optimal
weight updates. In both algorithms, new weights are
added randomly inside the layer and in proportion to
the layer’s size.

This means that in contrast to the usage in pruning
where the empirical Fisher is only calculated once, it
has to be calculated for every redistribution. To still
have a good performance while training, we made one
significant adaptation. In the original work, all the
necessary gradients were calculated in an additional
loop before pruning. Therefore, another high number
of forward and backward passes is necessary. In con-
trast to this, we use the gradients calculated anyways
in the last epoch before redistribution. Therefore, an-
other small approximation error is made because the
model changes while calculating the empirical Fisher.
The advantage is that there is no additional compu-
tational overhead for the gradient calculation and a
low overhead per iteration for the calculation of the
inverse empirical Fisher. A version that calculates the
Fisher inverse in an additional loop was also tested
and did not yield significantly better results.

To our knowledge, the two presented algorithms are
the first ones using a second-order optimization for
dynamic sparse training. We build on the theoretical
foundations of Singh and Alistarh [21] but create a new
algorithm by including the insertion of weights and by
alternating the way the gradients for the Hessian are
calculated.

3 Experimental Setup
We evaluated the algorithms with two different
datasets, each with an adapted network architecture.
Special care was taken to choose a network size small
enough to prevent overfitting, as it was observed that
in this case, random removal of connections can lead
to improved test performance. This might be due to
the random resets generating noise in the network,
which prevents the remaining weights from overfitting.

The initialization of the topology happens as intro-
duced by Ertl [6]. The active weights are added so
that an equal amount n exists for every neuron of
the layer. Additionally, the weights for one neuron
are partitioned in n partitions, and in each partition,
the active weight is chosen uniformly randomly. The
values of the sparse model parameters are initialized
using uniform distribution. For the weights the bounds
are calculated as ± 1

ki
where ki is the number of input

features of neuron i. The biases are initialized using
the bounds ± 1√

ki
.

To evaluate the performance of every redistribution

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



algorithm, the networks are trained with three differ-
ent densities, namely 0.1, 0.06 and 0.03. Also, as a
baseline, a dense model with the same number of neu-
rons (“neuron-equivalent dense”) and a dense model
with (approximately) the same number of parameters
(“parameter-equivalent dense”) is trained. We trained
all models with minibatch gradient descent and the
Pytorch Adam optimizer [16].

3.1 Redistribution Schedule

Random 
Initialization

Weight
Update

(Constant
Topology)Every t

Epochs:

Weight
Redistribution

Remove αAdd α

Figure 1: Simplified training schedule. Image adapted
from [7].

The training schedule is similar to the work of Evci
et al. [7], and mainly defined by the number of training
epochs between the weight redistribution steps t and
the number of redistributed weights α (see Fig. 1). In
accordance with other work [5, 7, 19], t is set to one
epoch, and α is initially set to 1

2 of the current amount
of active weights – per layer or globally depending on
the algorithm. Also, multiple papers have shown the
advantage of continuing training after the last redistri-
bution step as a sort of fine-tuning [5, 7]. Therefore,
we use cosine annealing so that alpha is continually
reduced until the last redistribution step at 3

4 the total
training epochs [7].

3.2 KMNIST Dataset
KMNIST is an image dataset based on the popular
MNIST dataset but harder to learn and therefore
better suited to see the slight differences in accuracy [3].
Likewise, it consists of 70.000 28 by 28 grayscale input
images categorized into ten classes. We used 60.000
images for training and 10.000 images for validation

and apply random affine data augmentation on the
training set to prevent overfitting.

We trained on the KMNIST dataset with a deep, sim-
ple multi-layer perceptron (MLP) inspired by Ciresan
et al. with layer sizes 784-256-256-10, using the ReLU
activation function on every layer [2]. The parameter-
equivalent dense network has layer sizes 784-33-33-10,
yielding slightly more parameters than the number of
parameters in the sparse network at density 0.1. We
set the batch size to 512 and the learning rate to the
low value of 0.0005 to reduce noise in the resulting
test and training accuracy, revealing the more sub-
tle differences between the redistribution algorithms.
We set the block size for Redr-Woodfisher and Redr-
Woodtaylor to 34.

3.3 HIGGS Dataset
HIGGS is a binary classification dataset sampled from
particle physics experiments. There are 28 features,
but the last seven are human-defined functions of the
first 21; thus we did not use them in our training.
Due to lack of computational resources, we only use
500.000 of the original 11 million samples per training
epoch and 100,000 for validation.

We trained on the HIGGS dataset with a simple MLP
with layer sizes 21-256-256-256-1 for the sparse and
the neuron-equivalent dense network. The input and
all hidden layers use the ReLU activation function,
the last layer the Sigmoid function. Also, since it is
a binary classification problem, introducing sparsity
in the last layer would mean discarding the output of
neurons in the penultimate layer. Therefore, the last
layer is kept dense in the sparse network to keep all
neurons active.

The parameter-equivalent dense network uses layer
sizes 21-79-79-79-1, which again yields slightly more
than the number of parameters in the sparse network at
a density of 0.1. We chose the network to be relatively
deep to be able to see different performance levels
between local and global redistribution algorithms.
We set the batch size to 128, the learning rate to 0.001
and the total amount of epochs to 80 for reasonable
performance and convergence. The block size for Redr-
Woodfisher and Redr-Woodtaylor was again set to 34.

4 Results
The sparse networks generally performed well, at a
density of 0.1 always outperforming the parameter-
equivalent dense net in terms of test accuracy. Only
the training speed was impacted negatively by sparse
back propagation in general and additionally by the
redistribution step.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



4.1 Computational Resources
Unfortunately, the testing was not done in a controlled
environment, so it is impossible to give exact measure-
ments of the run times of the different models. Regard-
less, it can be said that the current implementation
of sparse matrices does create a slow down of about
1
3 compared to the dense networks. Furthermore, the
redistribution algorithms again increase the runtime
significantly (see Tbl. 1). The speed differences be-
tween redistribution algorithms were less than 10%
and not measurable with sufficient precision in our
setting.

We adapted the KMNIST architecture to have 4096
neurons in the hidden layers to measure memory con-
sumption more realistically. This makes asymptotic
changes that are important for real-world applications
with bigger networks more noticeable. As seen in
Tbl. 2, random and gradient-based redistribution al-
gorithms have a lower memory usage than the neuron-
equivalent dense network even at density 0.1. It should
be noted that also Redr-Loss could be adapted to
have equal or less memory requirements than Redr-
Gradient.

In contrast, Redr-Woodfisher and Redr-Woodtaylor
do use more memory in every context tested. As
shown by Singh and Alistarh [21], the algorithm’s
performance deteriorates quickly when the block size
hyperparameter is set to a low value. Therefore, for
every sensible value of this parameter, the algorithm
uses more memory than its dense counterpart. This
makes the algorithm interesting only for frameworks
that are less focused on memory. For example, in a
framework where sparse training is faster, the slow
down introduced by the redistribution step does not
make such a big difference (as it only happens once
every t epochs).

4.2 Test Accuracy
4.2.1 KMNIST Dataset

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Density

75.0%

77.5%

80.0%

82.5%

85.0%

87.5%

90.0%

92.5%

M
ax

im
um

 V
al

id
at

io
n 

Ac
cu

ra
cy

Redr-Gradient-Global
Redr-Woodfisher
Redr-Woodtaylor
Redr-Random
Redr-Loss
Redr-Gradient
Parameter-Equivalent Dense
Neuron-Equivalent Dense

Figure 2: Test accuracy in percent while training
using different redistribution algorithms and different
densities on KMNIST dataset.

Evaluations on the KMNIST dataset clearly show
the advantages of the sparse networks (see Fig. 2).
They are able to match or outperform the parameter-
equivalent network even at a density of 0.03. The
neuron-equivalent dense network reaches the highest
test accuracy and the accuracy of the sparse networks
drops (by about 2% and 3%) as expected according to
their sparsity. On all levels of sparsity, the global al-
gorithms Redr-Woodfisher and Redr-Gradient-Global
achieve the best accuracies. At a density of 0.1 Redr-
Gradient-Global is less than 2% worse than the neuron-
dense solution. The layer-local algorithms perform
worse but also show a significant improvement from
the Redr-Random baseline.

To measure the induced loss, the training loss was mea-
sured right before and after the redistribution step.
Therefore, for the algorithms removing by magnitude,
only the deletion of connections is measured. As ex-
pected they all perform similarly well. In contrast
to this, the second-order-based methods additionally
apply the weight pertubation to remaining weights,
which improves the induced loss by a large margin in
the case of Redr-Woodfisher (see Fig. 3).

0.04 0.06 0.08 0.10
Density

10 2

10 1

Av
er

ag
e 

In
du

ce
d 

Lo
ss

Redr-Gradient-Global
Redr-Woodfisher
Redr-Woodtaylor
Redr-Random
Redr-Loss
Redr-Gradient

Figure 3: Training loss induced by the removal of
weights by different algorithms (logarithmic scale).

4.2.2 HIGGS Dataset

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Density

69.0%

70.0%

71.0%

72.0%

73.0%

74.0%

75.0%

M
ax

im
um

 V
al

id
at

io
n 

Ac
cu

ra
cy

Redr-Gradient-Global
Redr-Woodfisher
Redr-Woodtaylor
Redr-Random
Redr-Loss
Redr-Gradient
Parameter-Equivalent Dense
Neuron-Equivalent Dense

Figure 4: Test accuracy in percent while training
using different redistribution algorithms and different
densities on HIGGS dataset.

On the HIGGS dataset, the performance deteriorates

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



Table 1: Comparison of time needed for one training epoch on HIGGS dataset in seconds at a density of 0.1.

Dense neuron-equivalent
Dense

parameter-equivalent Sparse no redistribution
Redr-

Random
Redr-Gradient-

Global
9.80s 9.62s 13.64s 21.45s 22.20s

Table 2: Gpu storage used by different redistribution algorithms on the KMNIST dataset in megabytes (rounded).
Highest and lowest in bold.

Network
Redr-

Random
Redr-
Loss

Redr-
Gradient

Redr-Gradient-
Global

Redr-Wood-
Fisher

Redr-Wood-
Taylor

No
redistri-bution

Density 0.1 305.1 914.4 320.4 354.5 1,712.5 1,712.7 151.3
Density 0.06 265.9 903.4 271.2 297.5 1,041.4 1,042.5 129.1
Density 0.03 237.0 899.1 241.3 254.2 631.1 631.5 111.2
Dense parameter-
equivalent

- - - - - - 44.6

Dense
neuron-equivalent

- - - - - - 456.7

more quickly on low densities (see Fig. 4). Again
the neuron-equivalent dense network reached the high-
est accuracy by a margin of less than 1% over Redr-
Gradient-Global at a density of 0.1. The sparse net-
works at density 0.03 were not able to reach the per-
formance level of the parameter-equivalent dense net-
work at all. Differences between the redistribution
algorithms are again bigger at lower densities, where
global redistribution algorithms clearly outperform the
local ones.

4.3 Stability with regard to hyperparam-
eters

4.3.1 Redistribution Frequency

We did a set of tests to investigate the effect of the
frequency of redistributions. It can be seen that in-
creasing t has the effect of decreasing the validation
accuracy (Fig. 5). A high value of t means that the
topology of the network changes less often. Therefore,
the random initialization at the beginning plays a big-
ger role in the performance of the network. This can be
seen in the validation accuracy of the networks varying
randomly regardless of the redistribution algorithm
used.

4.3.2 Network Depth

Two additional architectures were tested for the KM-
NIST dataset to evaluate the relation between network
architecture and redistribution algorithm in detail (see

1 10 30 No redistribution
n

84.0%

85.0%

86.0%

87.0%

88.0%

89.0%

90.0%

M
ax

im
um

 V
al

id
at

io
n 

Ac
cu

ra
cy Redr-Gradient-Global

Redr-Woodfisher
Redr-Woodtaylor
Redr-Random
Redr-Loss
Redr-Gradient

Figure 5: Validation accuracy in percent while train-
ing using different redistribution algorithms and at a
density of 0.1 on KMNIST dataset.

Fig. 6). The only difference between these architec-
tures is the number of layers and their respective
number of neurons. The original architecture is 784-
256-256-10, and the two other tested are 784-256-128-
128-128-10 and 784-128-128-128-128-128-128-128-128-
128-128-10. This yields about 269 thousand, 268 and
265 thousand weights respectively, i.e., a comparable
amount of free parameters.

The better performance of second-order-based methods
on deeper networks makes sense from a theoretical
perspective. The more layers a network has, the lower
the probability that a weight’s magnitude is a good
approximation of its importance, i.e., its effect on the
training loss. Therefore, second-order-based methods
are relatively better at removing the correct weights.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



2 4 10
Number of hiden layers

86.0%

88.0%

90.0%

92.0%

94.0%

M
ax

im
um

 V
al

id
at

io
n 

Ac
cu

ra
cy

Redr-Gradient-Global
Redr-Woodfisher
Redr-Woodtaylor
Redr-Random
Redr-Loss
Redr-Gradient
Neuron-Equivalent Dense

Figure 6: Validation accuracy while training using
different redistribution algorithms and at a density of
0.1 on KMNIST dataset.

4.3.3 Woodtaylor performance and dampening
factor

In our setting, the redistribution algorithms are ap-
plied while the network is still training. Therefore,
the gradient can not be zero, and one would expect
the Redr-Woodtaylor algorithm to yield better per-
formance than Redr-Woodfisher, even more so since
Singh and Alistarh [21] show improved performance
even in a pruning context. Unfortunately, it seems
that Redr-Woodtaylor is more sensitive to the choice
of its two hyperparameters, the block size and the
dampening term λ. A low block size impacts the per-
formance of Redr-Woodtaylor more severely, reducing
its validation accuracy by over 7%.

The sensitivity of the Woodtaylor algorithm is already
mentioned by Singh and Alistarh [21]. A small ablation
study was done on both datasets to evaluate the effect
in our test setting. It shows that the network used for
the HIGGS dataset does not seem to be affected much
at all, while the network used for the KMNIST dataset
does show a significantly increased test accuracy at
λ = 1.

Ultimately, the missing fine-tuning of these parameters
is the most probable cause of the bad performance of
Redr-Woodtaylor in our testing.

5 Conclusion
All in all, it can be stated that global redistribution
algorithms seem to give a clear advantage in test accu-
racy over layer-local methods. Especially redistribut-
ing via gradient information (Redr-Gradient-Global)
results in consistent improvements without introducing
an unreasonable overhead in computational complexity
or memory.

The two new methods—Redr-Woodtaylor and Redr-
Woodfisher–are harder to recommend despite their
great performance. This is due to the introduced

memory overhead and the additional hyperparameters
that have to be fine-tuned for the given task. However,
they might perform even better when paired with very
deep networks, where the estimation of a weight’s im-
portance simply by its magnitude is less likely to be
accurate. Moreover, these redistribution algorithms
might be the best choice in applications, where mem-
ory consumption does not matter as much but where
sparsity improves the execution speed.

For future projects we would like to investigate dis-
tribution algorithms on larger networks. Especially
the performance on state-of-the-art image classifiers
like convolutional neural networks and residual net-
works would be interesting. This would also make the
evaluations more comparable to other papers.

In sum, all tested algorithms perform significantly
better than a sparse network with fixed topology. We
hope that the comparison provides a reference for
future development or application of dynamic sparse
training algorithms.

References
[1] Davis W. Blalock, Jose Javier Gonzalez Ortiz,

Jonathan Frankle, and John V. Guttag. What
is the State of Neural Network Pruning? arXiv
CoRR, abs/2003.03033, 2020.

[2] Dan Cireşan, Ueli Meier, Luca Maria Gam-
bardella, and Jürgen Schmidhuber. Deep, big,
simple Neural Nets for Handwritten Digit Recog-
nition. Neural computation, 22:3207–3220, De-
cember 2010.

[3] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Ki-
tamoto, Alex Lamb, Kazuaki Yamamoto, and
David Ha. Deep Learning for Classical Japanese
Literature. arXiv CoRR, cs.CV/1812.01718, De-
cember 2018.

[4] Yann Le Cun, John S. Denker, and Sara A. Solla.
Optimal Brain Damage. In David Touretzky, edi-
tor, Advances in Neural Information Processing
Systems, volume 2. Morgan Kaufmann, 1990.

[5] Tim Dettmers and Luke Zettlemoyer. Sparse Net-
works from Scratch: Faster Training without Los-
ing Performance. arXiv CoRR, abs/1907.04840,
August 2019.

[6] Alexander Ertl. Accelerating Sparse Neural Net-
works on GPUs. Bachelor Thesis, 2021.

[7] Utku Evci, Trevor Gale, Jacob Menick,
Pablo Samuel Castro, and Erich Elsen. Rigging
the Lottery: Making All Tickets Winners. In
Proceedings of the International Conference on

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



Machine Learning, 2020. URL http://proceeding
s.mlr.press/v119/evci20a.html.

[8] Utku Evci, Fabian Pedregosa, Aidan Gomez, and
Erich Elsen. The Difficulty of Training Sparse
Neural Networks. arXiv CoRR, abs/1906.10732,
October 2020.

[9] Jonathan Frankle and Michael Carbin. The Lot-
tery Ticket Hypothesis: Finding Sparse, Trainable
Neural Networks. In Proceedings of the Interna-
tional Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=rJ
l-b3RcF7.

[10] Trevor Gale, Erich Elsen, and Sara Hooker. The
State of Sparsity in Deep Neural Networks. arXiv
CoRR, abs/1902.09574, February 2019.

[11] Richard C. Gerum, André Erpenbeck, Patrick
Krauss, and Achim Schilling. Sparsity through
Evolutionary Pruning prevents Neuronal Net-
works from Overfitting. Neural Networks, 128:
305–312, 2020. ISSN 0893-6080.

[12] Song Han, Jeff Pool, John Tran, and William
Dally. Learning both Weights and Connections
for Efficient Neural Network. In Proceedings of the
International Conference on Neural Information
Processing Systems, 2015. URL https://proceedi
ngs.neurips.cc/paper/2015/file/ae0eb3eed39d2b
cef4622b2499a05fe6-Paper.pdf.

[13] Babak Hassibi and David Stork. Second Order
Derivatives for Network Pruning: Optimal Brain
Surgeon. In S. Hanson, J. Cowan, and C. Giles,
editors, Advances in Neural Information Process-
ing Systems, volume 5. Morgan-Kaufmann, 1993.

[14] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun,
Nikoli Dryden, and Alexandra Peste. Sparsity
in Deep Learning: Pruning and growth for effi-
cient inference and training in neural networks.
arXiv CoRR, abs/2102.00554, January 2021.

[15] Siddhant M. Jayakumar, Razvan Pascanu,
Jack W. Rae, Simon Osindero, and Erich Elsen.
Top-KAST: Top-K Always Sparse Training.
arXiv CoRR, abs/2106.03517, June 2021.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A
Method for Stochastic Optimization. In Proceed-
ings of the International Conference on Learning
Representations, 2015. URL http://arxiv.org/ab
s/1412.6980.

[17] Junjie Liu, Zhe Xu, Runbin Shi, Ray C. C. Che-
ung, and Hayden K. H. So. Dynamic Sparse Train-
ing: Find Efficient Sparse Network from Scratch
with Trainable Masked Layers. In Proceedings of
the International Conference on Learning Repre-

sentations, 2020. URL https://openreview.net/f
orum?id=SJlbGJrtDB.

[18] Shiwei Liu, Decebal Constantin Mocanu,
Amarsagar Reddy Ramapuram Matavalam, Yu-
long Pei, and Mykola Pechenizkiy. Sparse evo-
lutionary Deep Learning with over one million
artificial neurons on commodity hardware. Neu-
ral Computing and Applications, 33(7), July 2020.
ISSN 1433-3058.

[19] Decebal Constantin Mocanu, Elena Mocanu, Pe-
ter Stone, Phuong H. Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable Training of Artifi-
cial Neural Networks with Adaptive Sparse Con-
nectivity inspired by Network Science. Nature
Communications, 9(1):2383–2392, 2018. ISSN
2041-1723.

[20] Hesham Mostafa and Xin Wang. Parameter Effi-
cient Training of Deep Convolutional Neural Net-
works by Dynamic Sparse Reparameterization. In
Proceedings of the International Conference on
Machine Learning, 2019.

[21] Sidak Pal Singh and Dan Alistarh. WoodFisher:
Efficient Second-Order Approximation for Neural
Network Compression. In H. Larochelle, M. Ran-
zato, R. Hadsell, M. F. Balcan, and H. Lin, edi-
tors, Proceedings of the Conference on Neural In-
formation Processing Systems, volume 33, pages
18098–18109. Curran Associates Inc., 2020. URL
https://proceedings.neurips.cc/paper/2020/file/
d1ff1ec86b62cd5f3903ff19c3a326b2-Paper.pdf.

[22] Nikko Ström. Sparse Connection and Pruning in
Large Dynamic Artificial Neural Networks. In
Proceedings of the European Conference on Speech
Communication and Technology, pages 2807–2810,
Rhodes, Greece, 1997.

[23] Michael Zhu and Suyog Gupta. To prune, or not
to prune: exploring the efficacy of pruning for
model compression. In Proceedings of the Inter-
national Conference on Learning Representations,
2018.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)

http://proceedings.mlr.press/v119/evci20a.html
http://proceedings.mlr.press/v119/evci20a.html
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SJlbGJrtDB
https://openreview.net/forum?id=SJlbGJrtDB
https://proceedings.neurips.cc/paper/2020/file/d1ff1ec86b62cd5f3903ff19c3a326b2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d1ff1ec86b62cd5f3903ff19c3a326b2-Paper.pdf

	Introduction
	Dynamic Sparse Training

	Redistribution Algorithms
	Redr-Random
	Redr-Gradient
	Redr-Gradient-Global
	Redr-Loss
	Redr-Woodfisher and Redr-Woodtaylor
	Implementation as a redistribution algorithm


	Experimental Setup
	Redistribution Schedule
	KMNIST Dataset
	HIGGS Dataset

	Results
	Computational Resources
	Test Accuracy
	KMNIST Dataset
	HIGGS Dataset

	Stability with regard to hyperparameters
	Redistribution Frequency
	Network Depth
	Woodtaylor performance and dampening factor


	Conclusion

