
Dynamic Diffuse Global Illumination: Implementation and
Evaluation

Michal Hvezda
Supervised by: Jiri Bittner*

Department of Computer Graphics and Interaction
Czech Technical University

Prague / Czech Republic

Abstract

We describe our implementation of a recent real-time
global illumination method based on irradiance fields,
which uses ray tracing to approximate multiple bounces
of light transmission in a virtual scene. Furthermore, we
present qualitative comparisons with a brute force path
tracer and the method’s performance results. Lastly, we
discuss possible extensions, such as adaptive ray genera-
tion and probe placement.

Keywords: Global Illumination, Real-time graphics,
Ray-tracing, Irradiance Probes

1 Introduction

Accurate illumination in a virtual scene is often the most
crucial visual effect in computer graphics. Correct light
transfer simulation blurs the line between a real image
and an artificial one. Furthermore, the effect can yield
stunning images even in stylized graphical applications.
However, the computation of correct light propagation is
costly, and thus global illumination is often only approxi-
mated for real-time applications. With the rise of the ray-
tracing GPUs in recent years, a lot of development into al-
gorithms that try to leverage the potential of the hardware
has spurred up. We implemented one such algorithm from
a recent paper by Majercik et al. [11] which complements
traditional rasterization with a ray-traced irradiance field
to approximate a diffuse global illumination for dynamic
illumination and geometry. We present our implementa-
tion of the Dynamic Diffuse Global Illumination (DDGI)
method and show our performance results together with
quality comparisons with path-traced ground truth.

The paper is structured as follows. Section 2 gives an
overview of existing global illumination methods used in
real-time CG. Then, Section 3 details our implementation
of the DDGI [11] method to approximate diffuse global
illumination for a fully dynamic scene. Our results are
described in Section 4, where we present our performance
findings and compare the quality of the produced images

*bittner@fel.cvut.cz

to a path-traced reference. Last but not least, in Section 5
we discuss the drawbacks of the method and its possible
improvements.

2 Related Work

Since global illumination is costly to compute, GI meth-
ods usually resorted to some trade-off to calculate the ef-
fect. The most notable is the use of a fully static scene.
For scenes where only the camera is dynamic, we can use
any of the well-established offline methods, e.g. path-
tracing [8]. Using such techniques, we would precompute
the light transfer and store it in textures beforehand for
later rendering. This process is often called light baking.

However, for dynamic or at least partially dynamic
scenes, the real-time global illumination problem becomes
more difficult. We give a rough overview of three cate-
gories of global illumination methods for interactive ap-
plications [14].

2.1 Finite Elements

The first category would be Finite Elements (Radiosity)
methods [4], whereas the name implies the scene is dis-
cretized into a finite number of surface elements. The ap-
proach completely omits the camera view from its calcu-
lations and only considers the light transfer between the
surface patches.

The original method is suitable for diffuse light transfer
and later was extended [6] by accounting for glossy mate-
rials. The quality of the global illumination is dependent
on the number of patches which introduces the problem of
scalability. Thus, due to the quadratic nature of the light
transfer calculation, the original approach does not scale
well. However, P. Hanrahan et al. [5] introduced a hierar-
chical approach to solving the light transfer, reducing the
complexity of the problem.

2.2 Photon mapping

Another approach would be photon mapping [7]. The idea
behind photon mapping is to emit a large number of pho-

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



tons from the light source and let the photons bounce in-
side the scene. At each hit point, we can store the photon
inside a photon map. During rendering, we then use the
photon map to determine the irradiance of each fragment
based on the photon density in the area.

The method can be adapted to achieve interactive rates
under some conditions. Purcell et al. [13], and Ma and
McCool [10] described an approach where they used spa-
tial hashing instead of the nearest neighbor search required
in density estimation, which better fits GPUs.

2.3 Monte Carlo Ray Tracing

A possible approach to solving GI is the use of Monte
Carlo techniques [8]. These techniques produce A high
number of directional samples, which are evaluated for in-
coming light, and the average of the results converges to
the correct solution. The evaluation of each sample is usu-
ally done using Ray-tracing.

The Monte Carlo integration is a complex problem for
millions of dynamic lights. The paper by Bitterli et al. [2]
introduces an algorithm called ReSTIR that renders such
lights interactively. They achieve this by repeatedly resam-
pling a set of candidate light samples and leveraging infor-
mation from relevant nearby samples by further spatial and
temporal resampling. Later Majercit et al. [12] proposed
to combine ReSTIR’s shadowing with DDGI. By combin-
ing these two algorithms, they outperform hardware accel-
erated path tracing in both runtime and noise.

Silvennoinen et al. [16] presented a radiance field
method for mostly static scenes with dynamic lights, cam-
eras, and diffuse and emissive materials. Their approach
features minor light leaking due to their algorithm for
faithfully interpolating incidence radiance captured at a
sparse set of low-frequency radiance probes to nearby re-
ceiver points.

3 Dynamic Diffuse Global Illumina-
tion

To approximate global illumination for a dynamic virtual
scene, Majercik et al. [11] proposed to compute the light
transfer by recurrently updating the irradiance field every
frame. This is achieved by using information gathered by
rays cast from each irradiance probe placed in the virtual
scene. Since the ray casting is independent of the pri-
mary rendering, it avoids denoising or prefiltering high-
resolution spherical textures. Our probe placement strat-
egy and probe representation are detailed in Section 3.1.
The geometry data and material attributes gathered by ray
casting are saved into a structure similar to the G-buffer
called a surfel buffer. The surfel buffer is then used for
ray shading by direct and indirect light. Lastly, we use the
computed illumination contributions to update data inside
the probes. To summarize, the algorithm executes four
steps in each frame:

1. Generate m rays from each probe, creating m×n rays
in total, where n is the number of probes in the scene.
The ray generation is further detailed in Section 3.2.

2. Cast and trace m× n rays into the scene. Each ray
gathers attributes from the scene’s geometry into a
G-buffer-like structure of surfels. Section 3.3 gives a
more in-depth description of the ray casting and the
surfel buffer.

3. Shade rays by direct and indirect illumination using
data in surfel buffer. The ray shading method is de-
tailed in Section 3.4.

4. Update irradiance and distance probe data for each of
m probes using the shaded rays and their hit distances.
The update procedure is detailed in Section 3.5.

The resulting irradiance probe field is then used to com-
pute the indirect illumination contribution for the final im-
age visible from the camera. This is done in the same way
as in ray shading by indirect illumination, but instead of
probe rays we use view rays from the camera.

3.1 Probe placement and representation

We place the irradiance probes in the scene’s bounding
volume at vertices of a uniform 3D grid since it pro-
vides fast probe queries and effective interpolation be-
tween probes. To have a bit more flexibility, at the cost
of slightly lower performance, we opted for arbitrary grid
resolution instead of an always a power of two resolution
as was described in the original paper.

As shown in Figure 1 the probes’ data is stored as two
texture atlases, where the first holds irradiance maps of
each probe and the second contains distance maps used
for visibility testings during indirect illumination compu-
tation. Since neither of these maps do not require high
resolution, they are stored as octahedral maps instead of
the standard cube maps. The implementation allows for
separate settings of maps’ side lengths for each atlas for
scenes where we need higher precision.

3.2 Generating rays

For each of the n probes, m rays are generated, yielding
m×n rays in total. Rays share a common origin with their
probe’s center position. Directions of the m rays are uni-
formly sampled spherical directions. To achieve the uni-
form distribution of spherical ray directions we use a Fi-
bonacci spherical mapping [9]. In the implementation we
store origins and directions as 32-bit 4-element float vec-
tors in two separate textures. The textures are then passed
to a ray-tracer to be cast as one batch, see Figure 2.

3.3 Probe ray casting

From each of the n probes, we cast m rays. In order to
avoid visibility errors when a probe is inside geometry,

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 1: On the first image is a standard Cornell box
scene where we’ve placed a 4x4x4 probe grid. The second
image is our atlas of octahedral irradiance maps for each
of the probes placed in the scene, where each map has a
resolution of 8x8. The final image shows the distance at-
las where each map has a resolution of 16x16. Each entry
in the distance atlas contains distance and a squared dis-
tance.

backface culling is ignored. On a hit, each ray then gathers
data about the scene’s geometry into a G-buffer-like struc-
ture of surfels. If a ray misses the scene we store the miss
as a normal vector with zero length. The structure con-
tains a set of m×n textures where each texture represents
data about surfels’ attributes. In the implementation, the
buffer contains explicit world-space position, normal and
surfels’ material attributes: Lambertian, emissive, glossy,
and transmissive terms. Each value in these textures is a
32-bit 4-element float vector.

3.4 Ray shading

For clarity, we separate the ray shading into two passes.
First, we shade the rays by diffuse indirect illumination
leveraging the probe data computed in the previous frame.
Section 3.4.1 describes the indirect illumination pass and
the weights used to handle visibility errors such as light
leaks and shadow leaks.

In the second pass, we compute the direct illumination
for each ray from the light sources in the scene and add
indirect illumination contributions from the second pass.
The Direct illumination is described in Section 3.4.2.

3.4.1 Diffuse Indirect illumination

Once the probes collect their data from the scene, we can
shade the rays by diffuse indirect illumination. We sam-
ple each ray’s hit location from the surfel buffer. If the
hit surfel exists, we find eight closest probes to that surfel

Figure 2: Images demonstrate the generated ray textures
for 8 probes with 64 rays per probe. Top texture stores
ray origins. Each entry in the texture contains the corre-
sponding probe center and a minimum ray distance. The
bottom texture contains ray directions sampled using Fi-
bonacci spherical mapping. The alpha channel contains
the maximum distance a ray can travel, which is set to in-
finity.

Figure 3: Sampled points from each probe in the Cornell
box scene. Each sampled point color corresponds to its
probe.

forming a grid cage around it (see Figure 4). This way,
we can encapsulate every point in the scene in a grid cage
because of the grid structure of the irradiance field.

After the probe cage is formed, we iterate over every
probe in the cage. We sample the light that the probe sees
in the direction of the surfel point. More specifically, we
take the normal of the surfel point, encode it into octa-
hedral texture coordinates, and sample the corresponding
irradiance texture. The sampled irradiance is then added
to the total irradiance sum over every probe in the cage.

The sampled irradiance from probes on its own would
not yield correct results since it does not account for visi-
bility. To ensure that the indirect light appears continuous
and accounts for dynamic geometry and lighting Majer-
cik et al. [11] describes various methods to smooth it and
cull unwanted contributions. The authors use the follow-
ing weights to blend the irradiance from the closest eight
probes:

Smooth backface weight - Wrap shading Wrap shad-
ing [17] is commonly used as a cheap approximation to
subsurface scattering or as a more expressive base-shading
model. Furthermore, it can be used as a heuristic to cull
indirect contributions from probes that are not mutually
visible to the surfel.

Chebyshev moment visibility test - Variance shadows
In CG Variance-biased Chebyshev interpolant [3] is used

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



P

X

n

dir

r

Figure 4: Depiction of the eight probe grid cage around
a surfel X . Each probe P is sampled using the surfel’s
normal n in world space. Each probe’s contribution is then
weighted based on its visibility using direction dir from
the sampled point X to the current probe P. r represents
the mean distance from X to P.

to counter shadow aliasing by approximating how shad-
ows soften on their edges. DDGI makes use of the variance
shadow maps as an effective heuristic to counter light leaks
by filtering out probe contributions which are occluded by
geometry.

Log perception weight The weight accounts for human
perception, specifically how eyes are sensitive to contrast
in low-light conditions. Specifically, the weight crushes
small weights but keeps the curve continuous.

Trilinear weight The usual trilinear interpolation to
smooth the contributions of probes based on their distance
from the surfel point.

3.4.2 Direct illumination

To calculate direct illumination for each of the samples, we
use the surfel buffer as a standard G-buffer as if we were
rendering the final image. More specifically, we com-
pute direct light contributions from each light source in
the scene for each surfel stored in the buffer. For visibility
queries, we project surfel’s world space coordinates from
the surfel buffer to light space to check if the point is in
shadow. Once the contribution of the direct light is com-
puted, we sample the indirect illumination texture from the
previous pass and add its contribution.

3.5 Updating probes

The final step is to update the irradiance and distance
maps. Using the now shaded surfels, for each probe texel,
we gather the irradiance Ee from all sampled points and
update them using linear interpolation between the new

and already existing irradiance value stored in the map,
where the linear interpolation is controlled by a hysteresis
parameter α:

Eenew(ω) = lerp(Eeold (ω), ∑
probeRays

max(0,ω · r)∗Le,α)

(1)
where Ee is irradiance, ω is the probe’s texel direction, r
is the rays direction, and Le is the rays radiance.

The distance map is updated in the same way. For each
texel in the distance map, we sum the distances between
the probe center and hit locations of the rays. Then the old
distance, and the squared distance, are updated using the
hysteresis parameter:

Dnew(ω) = lerp(Dold(ω), ∑
probeRays

max(0,ω · r)∗ l,α)

(2)
where D is the distance value, ω is the probe’s texel

direction, r is a ray direction, and l is the rays length.
The hysteresis values close to 1 change the texture map

very slowly, which improves stability at the cost of lower
accuracy when objects move in the scene. On the other
hand, values close to 0.9 (and lower) lead to rapid reac-
tions to changes in the scene. However, it also leads to no-
ticeable flickering. Furthermore, the flickering can occur
even with the hysteresis parameter being close to 1. This
is due to the low amount of sampling rays, which leads to
rapid changes in irradiance maps if there is an exception-
ally bright surface in the scene.

4 Results

We evaluated our implementation on multiple scenes in
terms of performance and quality of produced images.
This Section is structured as follows. We detail our quality
comparisons in Section 4.1. The produced images by the
DDGI method are compared to a reference image from a
brute-force path-tracer. We also show a perceptual error
between the reference image and the image produced by
our implementation. The error was measured by Nvidia’s
FLIP algorithm [1] which shows the perceptual difference
between two images. The perceptual error is shown as
color values from perceptually uniform magma color map.
Run-time and ray-tracing throughput performance evalua-
tions are detailed in Section 4.2.

4.1 Qualitative results

In order to evaluate how the method handles shadow and
light leaks, we prepared an outdoor scene with a closed
Section with a door opening. The scene is enclosed in
a 16x8x16 grid, where each probe has a resolution 8x8
and 16x16 distance map. The scene is then illuminated by
a spotlight placed high in the scene simulating sunlight.
Then we gradually applied visibility weights in order to
negate said leaks, see Figure 7.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



To see how the light propagates we created a closed
scene with a ceiling opening from which the light floods
the scene, see Figure 5. The scene is separated by a wall
into two parts to create an occluded section in the scene.
See how the DDGI method correctly creates a shadowed
area in the corner of the scene occluded by the wall. The
scene was discretized by a 16x16x15 probe grid, with 8x8
probe resolution and 16x16 distance map resolution.

0 1

Figure 5: Images (left to right) show diffuse light prop-
agation in a closed scene flooded by light. The first im-
age shows the scene only with direct illumination. On the
second image is global illumination produced by our im-
plementation of DDGI. The third image is our path-traced
ground truth. The last image depicts the perceptual error
between the second and third images.

The color bleeding effect introduced by the diffuse light
transfer is demonstrated in Figure 6. The scene is a closed
box scene with two colored objects and a dynamically
translating spotlight. We set the probe density to 2x2x2,
where each probe had an 8x8 irradiance map and 16x16
distance map. Notice that the approximated color bleed-
ing matches almost perfectly the ground truth.

Figure 6: Images illustrate color bleeding effect compari-
son in a closed scene between the DDGI method (left) and
path-traced reference (right).

Figures 8 and 9 show the DDGI method on scenes with
more elaborate geometry. Notice the diffuse light on the
left wall reflected from the floor in Figure 8. In Figure 9,

Probe resolution
8x8 16x16 32x32

8x
8x

8
16

x8
x1

6
16

x1
6x

16

Table 1: Global illumination based on Probe density and
resolution comparison. The table shows the quality of in-
direct illumination based on probe density and probe reso-
lution in a forest scene.

we can see noticeable light leaks on the leaves of the tree.
This is due to the dense foliage geometry, which would re-
quire a much denser irradiance field. Also, notice how the
scenes tend to be overilluminated by the indirect illumina-
tion produced by the method.

Lastly Table 1 demonstrates quality comparisons across
multiple probe densities and probe resolution selections.

4.2 Performance results

We measured the performance on the following machine.
OS: Windows 10; Processor: AMD Ryzen 2700X, 4100
MHz, 8 cores, 16 Logical processors; RAM: 32 GB; GPU:
RTX 3080. Tables 2 and 4 show the ray-tracing throughput
of the irradiance field update based on the number of rays
per probe and probe density. We also include times of each
step of the irradiance field update in Table 3.

Rays 16x8x16 32x8x32 32x16x32 32x32x32
32 15.1 57.4 101.1 155.2
64 29.5 103.8 160.2 216.8

128 56.8 161.7 225.1 277.3
256 100.7 224.1 283.8 316.1

Table 2: Ray-trace throughput [MRays/s] of the irradi-
ance field update with respect to probe density and number
of rays per probe. The throughput was measured on the
Sibenik scene (72862 triangles), where we set the probe
resolution to 8x8.

5 Discussion

As mentioned in the methods overview and results the
method has some drawbacks which we further discuss in
Section 5.1. Two possible extensions to improve the per-
formance of the method are discussed in Section 5.2.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) (c) (e)

(b) (d) (f) (g)

Figure 7: Irradiance visibility sampling comparison. Scene (a) is a closed room, where light enters through a small door
opening. Images (b) to (e) show the interior view of the room, illustrating the gradual reduction of light-leaking by added
sampling weights. On the image (b) are no weights applied, (c) backface weight, (d) Chebishew weight, (e) normal bias.
Image (f) shows our path-traced reference, and (g) illustrates the perceptual error between (e) and (f).

0 1

Figure 8: Global illumination quality comparison. Images
(left to right) show the Sibenik scene, where the first im-
age shows the scene with only the direct light contribution.
The second image shows global illumination produced by
DDGI, the third is our reference, and the fourth is the per-
ceptual error between DDGI and the reference image. We
set the grid resolution to 16x8x12 with 16x16 resolution
for irradiance and distance maps.

Irradiance field pass time[ms]
Ray generation 0.03

Ray cast 1.88
Indirect shade 0.22
Direct shade 0.18

Probe irradiance update 0.22
Probe depth update 0.46

Table 3: Table of timings [ms] of the irradiance field up-
date in a single frame. The timings were taken on the
Sibenik scene, where we placed 32x8x32 probes with 8x8
probe resolution.

5.1 Drawbacks

As mentioned in Section 3.5 the method can suffer from
noticeable flickering. This problem can be either caused

0 1

Figure 9: Global illumination quality comparison. Images
(left to right) show the San Miguel scene, where the first
image shows the scene with only the direct light contri-
bution. The second image shows global illumination pro-
duced by DDGI, the third is our reference, and the fourth
is the perceptual error between DDGI and the reference
image. The grid density was 16x8x15 with 64x64 probe
resolution and 16x16 distance maps.

Rays 16x8x16 32x8x32 32x16x32 32x32x32
32 12.3 42.3 68.2 94.2
64 23.8 68.9 96.0 119.2
128 42.1 98.4 123.7 140.9
256 68.6 125.8 146.3 156.9

Table 4: Ray-trace throughput [MRays/s] of the irradiance
field update with respect to probe density and number of
rays per probe. The throughput was measured on the For-
est scene, our most complex scene (21.6M triangles). The
probe resolution was set to 8x8.

by a low hysteresis parameter or an insufficient amount
of sampling rays in a scene with bright objects. Unfortu-
nately, the only problem that can be directly managed by
the method is the low amount of sampling rays and that is

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



by increasing the amount of rays per probe. Unfortunately
this could potentially lead to infeasible amounts of rays
cast in each frame.

Another drawback of the method is a noticeable illumi-
nation delay caused by the recurrent computation of indi-
rect light between frames. This problem is most noticeable
in static scenes, however, it is not really noticeable in dy-
namic scenes and can be compensated for by lowering the
hysteresis parameter.

As was shown in Figures 8 and 9 the method can strug-
gle with light leaks in scenes with dense geometry, such
as foliage, and can suffer from over-illumination. These
problems however can be easily resolved by the use of
ambient occlusion methods such as SSAO. This would re-
solve the light leaks on dense geometry such as foliage and
dim the over-illuminated areas.

5.2 Proposed extensions

Even though the approximation of diffuse transfer pro-
duces images that are sometimes almost indistinguishable
from the ground truth, the probe update in each frame is
still relatively costly. This is because we update every
probe in each frame with an initially set ray budget, which
leads to an infeasible amount of ray casts and slow probe
map updates. An adaptive approach would be more ap-
pealing, where we would change the budget of each probe
based on its surroundings. A probe with a low contribution
to the overall global illumination, such as probes placed in
geometry or dark areas, does not need the same ray budget
as a probe in a well-illuminated area.

We could take inspiration from the paper of K. Vardis et
al. [18], which describes an illumination driven technique
to optimize automatic probe placement methods for light
baking, e.g., uniform 3D grids or tetrahedral grids. More
specifically, their use of YCoCg color space to determine
which probes to disable. To adaptively reduce the number
of rays a probe emits, we would compute the cost based on
absolute percentage errors, e.g., SMAPE. Since the DDGI
method already computes illumination between frames we
would compute the errors between the current and previ-
ous frame. Probes with low error, or probes placed inside
geometry, would have their budget gradually reduced to a
set minimum.

Another possible extension would be to use more elabo-
rate probe placement, which would reduce artifacts caused
by probes inside geometry and increase performance by
reducing the required probes in the scene. However, this
approach would possibly lessen the dynamic aspect of the
method. Inspiration could be taken from the paper by
Wang et al. [19] or Sedlacek’s approach [15] for placing
sparse radiance probes [16]. The solution by Sedlacek
uses a voxelization of a scene together with a few sim-
ple rules to avoid placing irradiance probes inside geome-
try and to avoid probe overlap. However, as already men-
tioned, this approach might limit the method to static, or at

least partially dynamic scenes due to the costly voxeliza-
tion of the scene.

6 Conclusions

We presented our implementation of one of the recent
methods for approximating global illumination for com-
pletely dynamic scenes. We compared the effects pro-
duced by the algorithm to the ground truth and evaluated
the method’s performance on multiple scenes. We also
discussed the drawbacks of the method and how they are
managed by the method or how they could be compen-
sated for by other methods. Lastly, we proposed possible
extensions such as adaptive scaling of probes’ ray budget
and dynamic probe placement tactic to increase the perfor-
mance of the method.

References

[1] Pontus Andersson, Jim Nilsson, Tomas Akenine-
Möller, Magnus Oskarsson, Kalle Åström, and
Mark D Fairchild. Flip: A difference evaluator for
alternating images. Proc. ACM Comput. Graph. In-
teract. Tech., 3(2):15–1, 2020.

[2] Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter
Shirley, Aaron Lefohn, and Wojciech Jarosz. Spa-
tiotemporal reservoir resampling for real-time ray
tracing with dynamic direct lighting. ACM Trans-
actions on Graphics (TOG), 39(4):148–1, 2020.

[3] William Donnelly and Andrew Lauritzen. Variance
shadow maps. In Proceedings of the 2006 symposium
on Interactive 3D graphics and games, pages 161–
165, 2006.

[4] Cindy M Goral, Kenneth E Torrance, Donald P
Greenberg, and Bennett Battaile. Modeling the inter-
action of light between diffuse surfaces. ACM SIG-
GRAPH computer graphics, 18(3):213–222, 1984.

[5] Pat Hanrahan, David Salzman, and Larry Aupperle.
A rapid hierarchical radiosity algorithm. In Pro-
ceedings of the 18th annual conference on Computer
graphics and interactive techniques, pages 197–206,
1991.

[6] David S Immel, Michael F Cohen, and Donald P
Greenberg. A radiosity method for non-diffuse en-
vironments. Acm Siggraph Computer Graphics,
20(4):133–142, 1986.

[7] Henrik Wann Jensen. Global illumination using pho-
ton maps. In Eurographics workshop on Rendering
techniques, pages 21–30. Springer, 1996.

[8] James T Kajiya. The rendering equation. In Pro-
ceedings of the 13th annual conference on Computer

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



graphics and interactive techniques, pages 143–150,
1986.

[9] Benjamin Keinert, Matthias Innmann, Michael
Sänger, and Marc Stamminger. Spherical fibonacci
mapping. ACM Transactions on Graphics (TOG),
34(6):1–7, 2015.

[10] Vincent CH Ma and Michael D McCool. Low
latency photon mapping using block hashing. In
Graphics Hardware, pages 89–98. Citeseer, 2002.

[11] Zander Majercik, Jean-Philippe Guertin, Derek
Nowrouzezahrai, and Morgan McGuire. Dynamic
diffuse global illumination with ray-traced irradiance
fields. Journal of Computer Graphics Techniques
Vol, 8(2), 2019.

[12] Zander Majercik, Thomas Mueller, Alexander
Keller, Derek Nowrouzezahrai, and Morgan
McGuire. Dynamic diffuse global illumination
resampling. In ACM SIGGRAPH 2021 Talks, pages
1–2. 2021.

[13] Timothy J Purcell, Craig Donner, Mike Cammarano,
Henrik Wann Jensen, and Pat Hanrahan. Pho-
ton mapping on programmable graphics hardware.
In ACM SIGGRAPH 2005 Courses, pages 258–es.
2005.

[14] Tobias Ritschel, Carsten Dachsbacher, Thorsten
Grosch, and Jan Kautz. The state of the art in in-
teractive global illumination. In Computer graphics
forum, volume 31, pages 160–188. Wiley Online Li-
brary, 2012.

[15] Šimon Sedláček. Real-time global illumination using
irradiance probes. 2019.

[16] Ari Silvennoinen and Jaakko Lehtinen. Real-time
global illumination by precomputed local reconstruc-
tion from sparse radiance probes. ACM Transactions
on Graphics (TOG), 36(6):1–13, 2017.

[17] Peter-Pike Sloan, Derek Nowrouzezahrai, and Hong
Yuan. Wrap shading. Journal of Graphics, GPU, and
Game Tools, 15(4):252–259, 2011.

[18] Konstantinos Vardis, Andreas Alexandros Vasilakis,
and Georgios Papaioannou. Illumination-driven light
probe placement. 2021.

[19] Yue Wang, Soufiane Khiat, Paul G Kry, and Derek
Nowrouzezahrai. Fast non-uniform radiance probe
placement and tracing. In Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics
and Games, pages 1–9, 2019.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)


