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Abstract

This paper introduces a multiple sensor synchronization
that exploits using only off-the-shelf products. Sensor syn-
chronization is significant for sensor fusion, an important
area of research in the field of computer vision. It is known
that a combination of multiple sensors can improve per-
formance of a system and overcome the disadvantages of
a single sensor, assuming sensors used are synchronized.
Without proper synchronization, any attempts to benefit
from sensor fusion, are useless. This paper aims to ex-
plore the fusion of camera data and millimeter-wave radar
data for detection and recognition purposes as well as for
machine learning. This paper proposes a multiple sensor
synchronization procedure that is easy to adopt for differ-
ent sensors and can be used for combination of visual and
non-visual sensors using only off-the-shelf products. This
synchronization technique is suited for research purposes
as well as some real-world applications.

Keywords: data fusion, detection, millimeter-wave radar,
monocular camera

1 Introduction

Camera-based systems are considered state of the art and
they work with high accuracy. The downside of camera-
based methods is that they do not perform well in challeng-
ing environments. In contrast, radar data is not affected by
challenging conditions such as poor lighting, mist, rain. In
situations when cameras fail, millimeter-wave radar data
can improve the performance of a system and provide in-
teresting features that can be utilized for object localiza-
tion and accurate speed and/or distance determination.

Computer vision techniques are getting increasingly
more attention due to advancements in deep learning and
other methods as well as in hardware. Almost every-
one owns a smartphone that can be used for wide vari-
aty of computer vision applications, for example QR code
readers, face filters, and even Google Lens (detection-
recognition system with a broad coverage). However, cre-
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ation of robust, reliable object detection-recognition sys-
tems remains challenging. In this regard, complementary
sensors are often used within one system to achieve de-
sired performance. An example of complementary sensors
is the combination of millimeter-wave (mmwave) radar
and monocular camera [1]. Mmwave radar point cloud
and image calibration example is shown in Figure 1.

Sensor fusion refers to the technique of combining data
from different sensors to achieve better accuracy and per-
formance that is not possible to attain with only one of the
sensors alone. Deep learning fusion algorithms that utilize
data from mmwave radar and cameras are recently get-
ting more attention. Readers can refer to millimeter-wave
radar and camera fusion review [1] for a thorough sum-
mary, including the mmwave radar processing chain and
fusion methods.

The key part of every sensor fusion method is data syn-
chronization to which many possible solutions exist. This
paper proposes a synchronization procedure using low-
level communication and audio channels of IP cameras
that can be used for mmwave radar with camera synchro-
nization as well as for multiple cameras synchronization.

Figure 1: Example of millimeter-wave radar and camera
calibration from RVNet [5].

2 Related Work

This section introduces different millimeter-wave radar
data representations, fusion algorithms, and synchroniza-
tion.
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2.1 Radar Data Signals Representations

Millimeter-wave radar signals may have to be interpreted
to fit the needs of computer vision algorithms. In this
regard, many radar data representations have been pro-
posed. These can be range-(velocity)-azimuth tensors,
radar point clouds, occupancy grid maps. Every rep-
resentation is suitable for different methods. Majority
of detection-recognition systems, however, use range-
(velocity)-azimuth tensors or radar point clouds.

Point cloud is an often used simple mmwave radar data
representation as point clouds are popular 3D space rep-
resentations that are easily obtainable from lidar sensors.
Many methods for classification, segmentation, and detec-
tion that use lidar point clouds are available. These meth-
ods can be easily adapted for millimeter-wave (mmwave)
radar point clouds and one can benefit from previously de-
signed algorithms. For example, the widely used segmen-
tation method, primarily used for lidar point clouds, Point-
Net++ is adaptable for mmwave radar point clouds [3].
The disadvantage of point cloud representation is that
point clouds are acquired by thresholding of multidimen-
sional Fast Fourier Transform (FFT)1 outputs which leads
to a loss of information. An example of mmilimeter-wave
radar point cloud with corresponding image is shown in
Figure 2.

Range-velocity-azimuth maps are also created using
multidimensional FFT and they can preserve the major-
ity of information, compared to point clouds. Instead of
thresholding and using only local maxima interpreted as
points, range-(velocity)-azimuth maps use the entire out-
put of FFTs and preserve much more information. An ex-
ample of range-azimuth map representation is shown in
Figure 3.

Figure 2: An example of point cloud mmwave radar data
representation with corresponding camera frame.

1Fast Fourier Transform is applied to the received reflected signals to
estimate range, velocity and azimuth. For more information, refer to [1].

Figure 3: An example of range-azimuth map from
mmwave radar data available in documentation of
mmwave radar IWR6843ISK by Texas Instruments.

2.2 Overview of Mmwave Radar and Camera
Fusion Algorithms

Many of mm-wave radar and camera fusion algorithms are
aimed at obstacle detection and recognition. This means
that the sensors are mounted on a vehicle. It is, however,
possible to use these methods as traffic monitoring systems
as well.

Many fusion algorithms are designed for object detec-
tion only, not object recognition. Systems proposed in
Meyer and Kuschk [8] and Nobis et al. [10] belong to
this category. They all combine images and radar data to
achieve better obstacle detection systems for self-driven
cars.

Another category of researched systems is formed by
those systems that use camera data only for training. These
systems, when deployed, use only mmwave radar data.
Systems with this design are used only for obstacle or ob-
ject detection, not recognition. The most interesting work
is that of Major and Fontijne [11]. They used Range-
Azimuth-Doppler Tensors representation to achieve well-
performing automotive detection systems that work even
for long distances.

Another category describes systems that use both cam-
era and radar data for not only detection purposes but
also recognition. RVNet [5] belongs to this category.
It uses point cloud radar data representation and camera
data. It consists of three parts: Image Feature Extrac-
tion Branch, Radar Feature Extraction Branch and Out-
put Fusion Branch. The names of these parts are self-
explanatory. Image feature extraction, and final convolu-
tion layers with reshape are identical to Tiny Yolo v3 [2].
Yet another example of a method using both camera and
radar data is the work of Lim et al. [7]. They designed an
early fusion system that uses range-velocity-azimuth maps
and camera data and they achieved good results.
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2.3 Synchronization Algorithms

Sensor synchronization is achievable through different
procedures that usually require special equipment such
as embedded cameras, cameras supporting specific proto-
col [9, 6]. With these specialized devices, it is possible
to control the moment when a frame is taken with an out-
side signal and ensures precise synchronization. The prob-
lem with this approach is that mentioned equipment can be
rather expensive.

It is also possible to use features such as video, au-
dio, accelerometer, telemetry of recordings to synchronize
multiple cameras [4, 12]. This approach is unfortunately
not possible for a combination of non-visual data and cam-
era data.

Another possible approach is to synchronize cameras
using a clapper slate or other reference event. This pro-
cedure is, however, also not usable for non-visual data and
does not guarantee synchronization over time if only one
synchronization event is present.

In the next chapter, a synchronization method using the
audio channel of a camera and low-level communication
is proposed.

3 Proposed Synchronization Method

Sensor synchronization is a crucial problem for multi-
sensor systems. Various existing methods are described
in section 2.3. An example of a possible synchronization
system for mmwave radar and embedded camera is shown
in Figure 4. Mmwave radar can send signals to control
shutter of the camera and accurately synchronize frames
of the sensors. In the following section 3.1, a method us-
ing accessible off-the-shelf products is proposed.

Figure 4: Mmwave radar and embedded camera synchro-
nization diagram example. Image courtesy of Optronis
GmbH.

3.1 Monocular Camera and Millimeter-Wave
Radar Synchronization

In this work, we propose a synchronization system that
is based on low-level communication protocols and audio

millimeter-wave
radar

I2C/SPI
communication

interface

Voltage
divider

Figure 5: Millimeter-wave radar to camera synchroniza-
tion diagram that uses low-level communication and con-
nected to audio input. Image courtesy of Zhejiang Uni-
view Technologies Co., Ltd.

channels of cameras. Millimeter-wave radars usually in-
clude communication interfaces such as I2C, SPI that can
be utilized for pulse generation. Pulses generated can be
used as an audio signal connected to the audio input of
a camera. It is needed to adjust audio levels for audio
voltage output levels that are lower than voltage used for
mmwave radar communication. Functional synchroniza-
tion diagram is shown in Figure 5.

This approach is to the best of our knowledge unique
and has not been proposed. It can achieve good results
with accessible hardware and guarantee synchronization
over time.

3.2 Multiple Camera Synchronization

A sensor synchronization system similar to one described
in the previous section 3.1 can be also applied to multiple
camera systems instead of camera-radar synchronization.
Functional synchronization diagram is shown in Figure 6.

Pulse generator

I2C/SPI
communication

interface

GPIO frequency
generatingor

Voltage divider

Figure 6: Multiple camera synchronization diagram that
uses low-level communication and audio signals. Image
courtesy of Zhejiang Uniview Technologies Co., Ltd.
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4 Fusion Algorithms

This section presents previous experiments aimed at peo-
ple detection and range estimation as well as the intended
exploitation technique proposed.

4.1 Previous Work

An initial experiment using mmwave radar and camera
data for fusion purposes has been conducted already. It
uses mmwave radar data represented as point clouds and
camera data for people detection and distance estimation.

In this early experiment, inter-sensor synchronization
(discussed in the previous section) was not used yet. The
synchronization was performed using timestamping of re-
ceived data at the time of collection. Based on timestamps,
the corresponding camera and radar frames were found.

Sensor calibration was based on sensor relative posi-
tions and camera extrinsic and intrinsic properties. Con-
catenation of camera and radar data was performed at the
beginning of the processing and radar data were repre-
sented as the fourth input channel for the convolution neu-
ral network.

Experimental fusion results were acquired within the
described initial experiment. It focuses on people detec-
tion and distance estimation. Examples of this system’s
results are shown in Figure 8.

Figure 7: Diagram of sensor calibration of uncalibrated
mmwave radar point cloud and image.

Figure 8: Fusion detection system results.

4.2 Intended Exploitation

As described in Section 2.1, range-(velocity)-azimuth
maps hold more information and so they are more use-
ful for recognition purposes. That is the reason why we
are going to use this representation as an input of a neural
network inspired by RVNet [5] instead of mmwave radar
point clouds. A concept summary of proposed system is
shown in Figure 9. The detailed architecturee of the neu-
ral network itself, for now heavily inspired by RVNet, is
available in the appendix of this paper.

5 Experimental Reults

This section introduces an experiment for evaluation of the
used camera’s video and audio channels synchronization
and the setup needed for this experiment. It is crucial to
validate whether the channels of the camera are synchro-
nized sufficiently for the method proposed in section 3.
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Předzpracování dat z radaru

Předzpracování dat z kamery

Radar Feature
Extraction Branch

Output Fusion Neural
Network

Synchronized data

Radar frequency
data

Camera frame

3D representation

Regions containing
detected objects
with class and
added information

Neural network for detection and recognition

Předzpracování dat z radaru

Předzpracování dat z kamery

Radar Data Preprocessing

Transformation of radar data
to camera coordinate system 

(from 3D to 2D)

Camera Data Preprocessing

Image Feature
Extraction Branch

Figure 9: Fundamental diagram of the proposed system that uses radar frequency data in a form of range-(velocity)-
azimuth map and camera data for detection-recognition purposes, the output is an image with detected objects with
assigned class and additional information, detailed architecture of the neural network is available in the appendix of this
paper.

5.1 Experimental Setup for Synchronization
Evaluation

Unique synchronization approach is proposed in this work.
To confirm its accuracy, tests were needed. The potentially
problematic part of this approach is the camera’s video to
audio synchronization stability and also the relative shift
of audio and video frames that needed to be determined
and are not necessarily guaranteed. We used an Arduino
prototyping platform to control a LED at the same time as
generating pulse for audio camera input.

After an evaluation of audio and video camera channels
synchronization of camera recording in a video editor, it
is, in given circumstances, e.g. light conditions and cam-
era exposure time, possible to establish the delay between
the video and audio camera channels. For this purpose a
simple circuit was designed as presented in Figure 10.

Voltage Divider

5 V

0.2 V

LED Protection

Figure 10: Circuit designed for camera video with audio
channels synchronization tests. Image courtesy of Zhe-
jiang Uniview Technologies Co., Ltd. and Arduino S.r.l.

5.2 Results of Synchronization Evaluation

The setup described in the previous chapter was used to
verify the accuracy of an audio and video channels syn-
chronization of IP camera Hikvision DS-2CD2686G2-IZS
in the given conditions. For this purpose, an Arduino on-
board LED was used as shown in Figure 11.

Figure 11: Footage from testing with marked LED.

This setup was then used to record test results that con-
sist of video and audio channels. Thereafter, the differ-
ence between pulse generated by Arduino and LED state
change was possible to acquire. The LED state change was
based on the camera frame where the diode is turned off
and the pulse timestamp was determined through a video
editor with the millisecond resolution.

However, a problem with the camera frame frequency
exists. The state of the diode is changed before it appears
on a frame because of the low framerate of the camera.
The difference is, therefore, not accurate. It is possible
to tackle this problem by recording multiple independent
video frames if we assume that the difference between
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channels of the camera is constant in the given conditions
for the camera used in each recording. The lowest differ-
ence is then going to be the real delay of the video chan-
nel in relation to the audio channel. The following table
shows the obtained delays in series of independent mea-
surements.

If we follow the assumption described previously, the
real delay, based on Table 1, is 10 ms from test: id = 13.
It is then possible to use this information to synchronize
sensors properly. This approach could be improved with
more LEDs usage, e.g. Gray code counter to measure the
delay. With Gray code LED counter, it would be possible
to acquire the delay between channels as well as the delay
variability using only one test recording.

Test ID 1 2 3 4 5

LED Delay 28 ms 30 ms 20 ms 37 ms 24 ms

Test ID 6 7 8 9 10

LED Delay 29 ms 31 ms 35 ms 37 ms 48 ms

Test ID 11 12 13 14 15

LED Delay 45 ms 36 ms 10 ms 31 ms 29 ms

Test ID 16 17 18 19 20

LED Delay 16 ms 13 ms 35 ms 42 ms 17 ms

Table 1: Video, audio channels synchronization test re-
sults, each test is a camera recording and the ”LED Delay”
is the difference between channels in the given test record-
ing.

6 Conclusions

In this paper, we propose a synchronization method us-
ing off-the-shelf products that are synchronized by audio
signals passed between sensors in the context of sensor fu-
sion. This method proved to be applicable for sensor syn-
chronization. Millimeter-wave (mmwave) radar and the
monocular camera are used to demonstrate sensor fusion.
A summary of fusion methods using these sensors is pro-
vided as well as a summary of synchronization methods.
The initial experiment with detection using mmwave radar
and camera is presented with example results. Finally, a
future exploitation fusion algorithm for the sensors men-
tioned is provided.
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7 Appendix
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Figure 12: Proposed fusion detection-recognition system neural network architecture.
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