
Improving Probes in Dynamic Diffuse Global Illumination

Dominik Roháček∗

Supervised by: Tomáš Iser†

Computer Graphics and Game Development
Department of Software and Computer Science Education

Charles University
Prague / Czech republic

Abstract

For a long time, real-time renderers typically only sup-
ported direct illumination. With recent technological ad-
vances, such as much faster GPU computations or the RTX
platform, simulating more accurate global illumination in
real time is now possible. This is especially important for
rendering indoor scenes in the context of architectural vi-
sualization as users can now add and modify illuminants
in real time without waiting for a fully path-traced render.

In this paper, we briefly describe the existing real-time
solutions and investigate the Dynamic Diffuse Global Illu-
mination technique in detail. We implement the solution
to an existing real-time renderer with RTX support. We
specifically describe several problems and artefacts that
the method has and present our solutions to those. Mainly,
we show an improved approach to probe placing and in-
vestigate the improvement it provides. We note that our
implementation achieves a better visual quality as it avoids
highly noticeable artefacts.

Keywords: global illumination, real-time rendering, in-
direct lighting

1 Introduction

In real-time computer graphics, one of the major contem-
porary topics is simulating global illumination, which adds
much needed details and realism into real-time scenes.
Unfortunately, techniques that we rely on in offline render-
ing are not feasible or fast enough to employ in real time.
The goal is to synthesize as physically plausible and im-
mersive images as possible while still retaining the frame
rate needed for a smooth user experience.

In this paper we present our updates to the Dynamic
Diffuse Global Illumination (DDGI) (Section 2) method,
results can be seen in Figure 1. In Section 3, we describe
our suggested improvements for DDGI, mainly a way for
improving the probe placement, which results in a higher
visual quality by avoiding highly noticeable artefacts. This
section also contains short implementation explanation of

∗RohacekD@gmail.com
†tomas@cgg.mff.cuni.cz

Figure 1: Examples of scenes rendered by our approach.
Both scenes had visible artifacts with default probe place-
ment.

details. Results of our improvements are then presented
in Section 4, where we show that the performance over-
head of our additional steps is very low, and we also show
comparison images to the original method. Finally, we
dedicate Section 5 to the conclusion and discussion on
possible future improvements we are considering to our
work.

2 Previous work

In this section, we briefly introduce the previous work on
global illumination techniques that had appeared in the last
years. A new platform by NVidia called RTX allowed us
to bring ray tracing approaches into the real time. This

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 2: Shading of a fragment X . This fragment has a
normal facing in the direction n, and we can compute a
direction dir to each probe P belonging to this cage and
distance to this probe P denoted by r. (Image source: [8])

opened new ways to calculate indirect lighting in real-time
renderers.

2.1 Dynamic Diffuse Global Illumination
(DDGI)

DDGI [8] is based on a uniform grid of irradiance probes.
The technique heavily utilises the RTX technology by
NVidia in order to dynamically update probe data in each
frame. Each probe stores its irradiance and depth data
in small textures inside a texture atlas. To minimize the
memory footprint of the technique, the original paper [8]
proposes storing irradiance and depth data in very small
textures of just 8x8 and 16x16 pixels respectively.

To capture geometry detail in such a small depth map,
variance shadow maps [4] are used to store depth informa-
tion, and later Chebyshev inequality [1] is used to deter-
mine occlusion.

As we rely on the ability to update probes, we need
some representation that is easily updated. Unfortunately,
spherical harmonics that are usually used in irradiance
probes [9] are not easily updatable. Instead, the we use
octahedral mapping of a UV space onto a sphere [2]. The
mapping function is simple and fast. All the textures are
stored inside two texture atlases [7] — one for depth and
one for irradiance textures.

A final sampling of indirect lighting is done in the frag-
ment shader. Each fragment lies within the probe cages
defined by eight probes forming cube as seen in Figure 2.
We iterate over all eight probes and evaluate each probe’s
contribution to the indirect lighting of a given fragment.

First part of the contribution weight is backface culling.
The original paper [8] proposes smooth backface culling
with an offset added to reduce the ”going to zero” im-
pact as shown in Figure 3. However, we have not found
this useful, so we completely avoided smooth backface

culling and used only a dot product between the surface
normal and the direction to the probe, with negative val-
ues clamped to zero. The problem is that the offset tends
to cause light bleeding through geometry.

The next part of the contribution weight is a probability
of a pixel being occluded from the probe, which is calcu-
lated by Chebyshev inequality [1].

Finally, trilinear filtering is used as the final weight.
This provides us with a smooth transition between each
probe cage without visible artifacts.

2.2 Signed Distance Fields Dynamic Diffuse
Global Illumination (SDFGI)

SDFGI [6] is based on Signed Distance Field (SDF) that
are constructed from scene geometry and later used dur-
ing the ray tracing phase. This technique is using probes
to cache the irradiance data and update them each frame.
SDF is also used as a way to update probe position when
geometry moves.

Unfortunately, the build of SDF on generic geometry is
expensive and dynamic geometry requires rebuilding ev-
ery time the geometry changes.

2.3 Global Illumination Based on Surfels
(GIBS)

This technique by Stachowiak [10] and further improved
by Halen et al. [5] is based on so-called surfels. Surfels
discretizes surface adaptively to screen space coverage.
Surfels are used to cache irradiance in the scene. Each
surfel holds irradiance distribution in a hemisphere around
the surface normal and depth information. The depth in-
formation is stored similarly as in DDGI in form of vari-
ance shadow maps [4].

The technique is trying to optimise surfels density to
uniformly cover screen space. This leads to finer cover-
age of the surface near the camera and lower detail in the
distance.

-3 -2 -1 1 2 3
dot(N, Omegai)

0.2

0.4

0.6

0.8

1.0

1.2

Weight

Figure 3: A comparison between smooth (orange) and
sharp (blue) backface culling.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 4: When the probe is placed right next to the geom-
etry, a large number of rays ends up covering only a small
geometry surface. Increasing the distance of the probe re-
sults in a better texture utilization.

3 Our work

The DDGI method is grid-based, which brings many ad-
vantages but also disadvantages. One of the inherent prob-
lems that grid-based methods introduce is the level of con-
trol over the placement of the probes. Mainly, it is clear
that all the probes that happen to be inside a geometry have
to be ignored. Moreover, because the grid is uniform, the
probability of certain probes being placed in a bad position
is very high, especially in architectural scenes with many
flat surfaces, often even aligned along coordinate axes.

Ideally, we would like to find a place where each probe
is separated from its nearest surface at least by an user-
defined threshold. Moving the probe only to the surface
could not only lead to a depth fight at a given place, but
would also waste the already small texture space we have
available for each probe. The reason is that a probe placed
too close to the surface uses almost half of its texture space
to cover only a small part of geometry (shown in Figure 4)
and leads to different artifacts.

3.1 Dead probe detection

In order to minimize calculations needed to detect dead
probes, we re-use information that we already have from
the ray-tracing step in the DDGI method. We introduce a
new step in which we count the number of rays that were
shot in the last frame and that encountered the backface
of any geometry as a first event. Now, in an ideal world,
where we would be able to make such constrain as forcing
all the geometry to be manifold and not intersecting other
geometry, we would simply check one ray and would be
able to tell whether the whole probe is submerged inside
geometry. Unfortunately, in the real-world 3D production
and level design, geometry placed within another geome-
try is often present and our algorithm needs to be robust
enough to handle it.

So instead, we mark back-face hits in the ray tracer with
a negative distance. In a new pipeline step, we are count-

ing rays for each probe that hit geometry in a distance less
than a user-defined threshold. When the count exceeds
half of the number of total rays, we consider the probe be-
ing “dead”.

We use this result to update the texture that marks “dead
probes”. We update this texture with an adjustable hystere-
sis. The hysteresis is used to define the amount of certainty
we want to remain from the previous frame. The hysteresis
in this case avoids the too aggressive movement of probes.

3.2 Moving probes

Once we have our “dead probes” marked, we need to
move them from their current position. There are two ap-
proaches to this problem — geometry-aware and unaware.
We have decided to use the approach that is not aware of
the probe surroundings as we want to promote responsivity
of the algorithm. However, exploring also the geometry-
aware approach could be subject of future work.

We propose to use a spiral pattern that extends away
from the probe’s original position. This is done through
a new pipeline step that increases an integer counter for
a given probe whenever it is detected as being dead and
the resulting texture from the previous subsection exceeds
the user-defined threshold. The threshold is defined as a
percentage of the probe cage side and has to be lower than
50%.

This counter corresponds to a position on a spiral.
Points on the spiral are defined only on cardinal axes with
origin in the original probe position for simplicity. The
way in which we translate the counter value to a spiral
position follows: We take a modulo and integral division
by six. Six here stands for six directions that we want
the probe to move in. The result of the modulo operation
chooses the direction, and the division result defines the
distance from the original position.

Figure 5 shows the result of the probe movement. We
can see that four probes have been moved away from
“dead” positions inside the gometry, and as a result, the
visual quality of the image has significantly improved.

3.3 Correct filtering

By moving probes from their original uniform grid, trilin-
ear filtering is no longer valid. The probe after the move
does not satisfy an important condition. In order to achieve
correct results from the indirect light sampling, the sum of
weights need to be one, and each weight needs to remain
on the < 0,1 > interval.

Violating the first invariant leads to visible boundaries
of probe cages in a final image. On the other hand, when
we violate the second one, it can lead to oversaturation of
part of the cage or subtraction of light by some probe as
shown in Figure 6.

Instead, we propose filtering that accounts on probe off-
sets. Similarly to the original paper [8], we first calculate
fragment coordinates normalized into the probe cage space

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) (b)

(c) (d)

Figure 5: An example of visual artefacts and probe positioning with the original DDGI method (subfigures a, b) and
our modified approach (subfigures c, d). The orange and black spheres in subfigures b, d indicate correctly working and
“dead” probes, respectively. Notice how the four previously dead probes in subfigure b were automatically moved to a
better location in subfigure d. An error visualisation of the same view is shown later in Figure 9.

defined as (x,y,z) ∈< 0,1 >3 as shown in Equation 1.
Then we calculate the current probe position within the
cage with the account to the probes offset in Equation 2. In
the last step, we use linear interpolation which gives us tri-
linear weights (Equation 3) and to get the final weight we
simply need to multiply individual axial weights in Equa-
tion 4.

fragNorm =
withinCageCoord

probeCageSize
(1)

offset =
probeCoordNorm−probeOffsetNorm

(1,1,1)−probeOffsetNorm
(2)

trilinear = lerp(1− fragNorm, fragNorm,offset) (3)

weight = trilinear.x∗ trilinear.y∗ trilinear.z (4)

3.4 Depth samples rejection

During the implementation, we have faced multiple addi-
tional artifacts caused by light leaking through the geom-
etry as shown in Figure 7. The source of such artifacts

0.2 0.4 0.6 0.8 1.0

0.5

1.0

(a) Original filtering

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(b) Our filtering

Figure 6: Graphs show a simplified situation with only two
probes on a straight line. The blue line shows the weight
of the left probe, the orange line corresponds with the right
probe and the green line is a sum of both.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a)

(b)

Figure 7: (a) Example of light bleeding through the roof of
a house. The roof is being highly lit by the sun. The depth
samples are skewed by depth samples from directions al-
most parallel to the roof. (b) The second image shows the
same view with depth sample rejection.

is better explained in Figure 8. Because DDGI uses such
a small resolution for depth maps, depth information is
filtered into a sphere. It is done in a similar way as we
integrate irradiance from incoming radiance with the dif-
ference of not filtering depth into the full hemisphere. A
sharpening term is used in the distribution of depth sam-
ples. This can cause samples originally from neighbouring
pixels to carry a local extreme in depth into its surround-
ings.

To avoid such behaviour, we have decided to discard
any depth samples that are longer than the main diagonal
of the probe cage. We can do this modification without
loss of generality as we never check the distance from the

Figure 8: The green area represents projection of the depth
map pixel into the world. Yellow lines represent depth
samples. The red wall could be lit by the left probe when
not using depth sample rejection.

fragment to the probe that lies outside the probe cage itself.
With our dead probe detection and movement, we have

to extend the threshold for the sample discard to the maxi-
mum size of the probe cage. We need to enlarge the size of
the cage by the twice percentage threshold of the maximal
probe movement.

3.5 Implementation

We implemented DDGI in an existing production real-time
engine called Fibix1, which also contains an implementa-
tion of an offline path tracer. This allowed us to also mea-
sure our solution in comparison to reference path-traced
images. This way, we were also able to try different scenes
provided by the Fibix Studio and verify that our imple-
mentation can be used with different geometries without
bigger difficulties.

In our implementation, we use the DXR pipeline to
gather radiance information from the scene. Afterwards
we integrate irradiance into the probe texture through se-
ries of compute shaders and use same data for probe offset-
ing. Finally, we sample results in the final fragment shader
as we described in subsection 2.1.

4 Results

The main goal of our improved technique was to avoid
highly noticable and visually unpleasant artefacts, or in
other words, to make sure that any error is not concen-
trated in a small area, but is better spread across a frame.
To show that we have achieved the goal, we are present-
ing error heatmaps in Figure 9. The view presented in this
figure is identical to the one shown in Figure 5. It is clear
that the most visible hotspot has disappeared with probes
moved out of the geometry to the surface. With probes
pushed even further to the 15 cm distance from the surface,
the maximum error is brought down. With the improved
filtering, the isle of error is barely noticable.

Table 1 shows time for each step of the DDGI pipeline
measured as average over multiple frames. You can see
that the main part of the total time is spent in the RTX
pipeline and our addition to the pipeline takes only about
0.15 ms. Such a small difference in frame time in com-
parison to the improvement of visual quality is easily jus-
tifiable. The table was measured with 64 rays per probe
per frame. It is needless to say that the number of samples
had a negligible impact on the render pass length. Also,
we were not able to measure any change in the duration
of those steps with an increasing resolution of depth maps,
which is understandable as the size of computing space for
those shaders is only dependent on the number of rays.

1https://www.fibix.eu/

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) (b)

(c) (d)

Figure 9: Heatmaps show the spread of the error across the image. The same view as in Figure 5 is shown. Please note
the scale of each subfigure. (a) Original implementation of DDGI algorithm. (b) All probes offset to the surface. (c) All
probes offset at least 15 cm from nearest surface. (d) Added correct trilinear filtering described in subsection 3.3.

Render pass Time (ms)

Ray cast (RTX) 2.71
Probe update (irradiance and depth) 0.02
Dead probe detection 0.05
Probe offset 0.10
Indirect light sampling 0.48
Total 3.36

Table 1: Timings for separate passes of DDGI. For these
measurements, we used 11x10x15 probes. Each probe
produced 64 rays per frame. The render passes written
in bold are ones we have added.

5 Discussion

5.1 Comparison to Other Solutions

In comparison to the original DDGI, we have shown that
we can avoid situations with most or all probes of a given
cage submerged into the scene geometry. This problem
lead to dark sections of the scene and broke the immersion
of the user into the virtual world we were trying to model.
In the parts of the scene, where we experienced the most
noticable artifacts, we were able to spread the error more
evenly across the space and we lowered the visibility of
such errors.

In comparison to the Global Illumination Based on Sur-

fels (GIBS) [5], our solution has problems with specific
scenes where GIBS has better strategies of cache place-
ments. On the other hand, DDGI is simpler for implemen-
tation and its integration into the existing engine has fewer
requirements.

The solution presented by Hu et al. [6] places probes in
better places due to geometry aware approach to probe off-
setting. On the other hand, this approach requires the con-
struction of Signed Distance Fields that are hard to con-
struct in runtime for dynamic geometry.

5.2 Limitations and Future Work

Probe cascades Even in our improved implementation,
the probe grid space is still relatively uniform. This
is convenient for world-space to grid-space normal-
ized mapping. But it also means that for huge probe
grids, we have just the same level of detail for irra-
diance even a few kilometres away from the camera,
which may not be a good use of resources. The pos-
sible future improvement would be probe cascades,
which comes from the same idea as cascade shadow
maps [3] that we need finer detail in the immedi-
ate surrounding of the camera but not further in the
scene.

Ray budgeting Right now, our solution uses a uniform
distribution of a ray budget for each frame between

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)



probes. This works well, but we could do better. We
can come up with some heuristics for rays distribu-
tion. One solution could be manually feeding data
about changes in the scene from the engine code. A
better solution could be to think a little about where
we want finer sampling. Those are such parts of a
scene that encountered the biggest change of light-
ing in the previous frames. We can use a short term
mean-variance estimator of the irradiance and in-
crease ray budgeting accordingly as proposed by [5].

Dynamic hysteresis We can also change the speed of up-
dates by using a more informed way to set hysteresis.
Right now, we use a user-defined constant hysteresis.
We could use the same approach as with ray budget-
ing and change the hysteresis based on a variance of
a short term mean-variance estimator.

5.3 Conclusion

We have presented an adaptive approach to probe posi-
tioning for DDGI that is suitable for an improved global
illumination of dynamic scenes. We have shown better er-
ror distribution across the scene and lower visual artifacts
from the synthetized images. We have verified that our
approach can be implemented into an existing engine and
mainly enables architectural users or level designers to it-
erate over the level design faster.

References

[1] Pafnutii Lvovich Chebyshev. Des valeurs moyennes.
J. Math. Pures Appl, 12(2):177–184, 1867.

[2] Zina H. Cigolle, Sam Donow, Daniel Evangelakos,
Michael Mara, Morgan McGuire, and Quirin Meyer.
A survey of efficient representations for independent
unit vectors. Journal of Computer Graphics Tech-
niques (JCGT), 3(2):1–30, April 2014.

[3] Rouslan Dimitrov. Cascaded shadow maps. Devel-
oper Documentation, NVIDIA Corp, 2007.

[4] William Donnelly and Andrew Lauritzen. Variance
shadow maps. In Proceedings of the 2006 symposium
on Interactive 3D graphics and games, pages 161–
165, 2006.

[5] Henrik Halen, Andreas Brinck, Kyle Hayward, and
Xiangshun Bei. Siggraph 21: Global illumination
based on surfels. SIGGRAPH course, 2021.

[6] Jinkai Hu, Milo K. Yip, Guillermo Elias Alonso, Shi-
hao Gu, Xiangjun Tang, and Xiaogang Jin. Signed
distance fields dynamic diffuse global illumination.
CoRR, abs/2007.14394, 2020.

[7] Jérôme Maillot, Hussein Yahia, and Anne Verroust.
Interactive texture mapping. In Proceedings of the
20th annual conference on Computer graphics and
interactive techniques, pages 27–34, 1993.

[8] Zander Majercik, Jean-Philippe Guertin, Derek
Nowrouzezahrai, and Morgan McGuire. Dynamic
diffuse global illumination with ray-traced irradiance
fields. Journal of Computer Graphics Techniques
(JCGT), 8(2):1–30, June 2019.

[9] Ravi Ramamoorthi and Pat Hanrahan. An efficient
representation for irradiance environment maps. In
Proceedings of the 28th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH ’01, page 497–500, New York, NY, USA,
2001. Association for Computing Machinery.

[10] Tomasz Stachowiak. Stochastic all the things: Ray-
tracing in hybrid real-time rendering. SEED, Digital
Dragons, 2018.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)


	Introduction
	Previous work
	ddgi
	sdfgi
	gibs

	Our work
	Dead probe detection
	Moving probes
	Correct filtering
	Depth samples rejection
	Implementation

	Results
	Discussion
	Comparison to Other Solutions
	Limitations and Future Work
	Conclusion


