
Analyzing Architectural Floor Plans Using Neural Networks

Balázs Szőke*

Supervised by: László Szécsi†

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

Budapest / Hungary

Abstract

In this paper, we introduce a system that reconstructs a
representation containing the positions and shapes of the
walls, and the locations of the doors, from an input floor
plan image (2D). We also build a 3D model from this ob-
tained representation. To achieve this, we utilize tradi-
tional image processing algorithms to identify wall and
door features, and convolutional neural networks based
on differentiable rendering to reconstruct wall geometry.
The purpose of our paper is to prove that the concept of
differentiable rendering can help achieve a flexible and
lightweight solution to this task.

Keywords: Deep Learning, Image Processing, Differen-
tiable Rendering, Convolutional Neural Networks

1 Introduction

Architectural design workflow has shifted almost exclu-
sively to computer-aided design software from traditional
pencil and paper techniques. These modern tools are bene-
ficial because it is cheaper and easier to handle digital me-
dia, and the design process is accelerated and more flexi-
ble. With the help of CAD systems, architects can utilize
numerous tools to analyze plans, automate time consum-
ing processes, e.g. generating 3D models from floor plans.
To benefit from these possibilities, it is necessary to have
a digital representation of the floor plan, but in some sit-
uations — e.g. handling archive documents — only a 2D
image of the floor plan is available. Our goal with this pa-
per is to introduce a system that is capable of overcoming
these issues by not only creating the crucial digital rep-
resentation from an input image, but also building a 3D
model of the floor plan (Figure 1).
To achieve this, we use neural networks coupled with dif-
ferentiable rendering. The flexibility of differentiable ren-
dering makes this approach extensible to floor plans with
more complex geometry, e.g. curved walls, or joints other
than 90°.
In our paper, first, in Section 2, we give an overview of
previous work in the field of analyzing architectural floor

*szokeb@edu.bme.hu
†szecsi@iit.bme.hu

plans. In Section 3, we present our solution and describe
the structure and idea behind the proposed method. Fi-
nally, in Section 4-5, we evaluate our method, and exam-
ine the weaknesses and potential development possibilities
of our system.

2 Background

Converting floor plans to a digital representation is a well
discussed problem in the field of computer vision. In the
early 2000s, Dosch et al. [7] introduced a system that con-
verts an input floor plan into a 3D model that contains the
walls, doors, and furniture. To achieve this, they used tra-
ditional image processing algorithms. In our paper, we
use a workflow similar to Dosch et al., but we extend it
with neural networks. Macé et al. [13] focused on rec-
ognizing rooms. Ahmed et al. [1] improved this method
further by separating and using text information from the
floor plan to detect room function. Following the same se-
mantic analysis approach, they enhanced their system by
improving the text separation [3] and the room detection
method [2].
With the rapid optimization of neural networks, more arti-
ficial intelligence-based approaches have shown up in this
field. Dodge et al. [6] used convolutional neural networks
and semantic segmentation [12] to recognize the walls.
Liu et al. [11] gave a raster-to-vector method. Zeng et
al. [15] improved the semantic analysis of floor plans with
the help of neural networks, breaking the boundaries of
some heuristic approaches that previous works used.
In the context of unsupervised learning, numerous differ-
ent approaches have been examined that enhanced the ef-
fectiveness of training networks [5]. One of these methods
is differentiable rendering [9], a very task-specific form of
unsupervised learning, which yielded a solution to numer-
ous complex computer vision problems. In our system we
also utilize differentiable rendering in order to train a net-
work that is capable of recognizing varied wall geometries.

3 Summary of our method

Our process can be divided into three main parts: 1) pre-
processing the input image and separating the walls from

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 1: Overview of our system: from an input 2D image to a 3D model.

other symbols, 2) constructing a parametric representation
of the walls with a neural network, 3) postprocessing of
the parametric representation, and building the 3D model.
In the first step, the goal is to reduce the input floor plan
image to a cleaner, simpler binary image that contains only
walls (no text labels or other architectural symbols on the
image), and finding the position of the doors. After that,
we split this image into smaller tiles with the same width
and height. The reason behind this is to create a uniform
input to the network regardless of the original dimensions
of the floor plan, and more importantly, reduce the com-
plexity of a single input, thus allowing us to simplify the
requiered neural network architecture and the training pro-
cess. The neural network processes all of these tiles and
gives a parametric descriptor to a particular part of the
floor plan (Figure 2). In the third part, we need to ad-
just and merge the individual parametric representations
to eliminate the errors introduced by splitting walls run-
ning through multiple tiles in the original image. In this
step we can insert doors at positions identified in the pre-
processing phase. Finally, from the corrected parametric
representation, we can build a 3D model of the floor plan.

3.1 Preprocessing

Following Ahmed et al. [2], we use mathematical morpho-
logical operators to separate different graphical symbols.
Repeating erosion operators and then applying the same
number of dilations eliminates thin lines from the image,
removing text, furniture symbols, and other features other
than walls. Splitting this into equally sized tiles, we have
the input of the neural network.
To find the location of the doors, we targeted the circu-
lar arc of the door symbol. First, we need a view of the
floor plan that shows only the thin elements of the origi-
nal image, which we can get by subtracting the previously
created ”wall-layer” from the original image. To recog-
nize arcs, we erased the straight lines, following Dosch et
al. [7] and Ahmed et al. [2], using the Hough transform.

Figure 2: The high-level overview of the process of con-
verting the input floor plan into a parametric descriptor.

After this, the image contains only curved lines, i.e. doors
and parts of curved furniture (e.g bathtubs). To eliminate
the remaining elements that are not parts of doors, we used
a heuristic filtering condition based on the dimension dif-
ference between doors and other objects. For filtering, we
used connected-component analysis.

3.2 Wall parametrization

Our goal in this step is to construct the parametric repre-
sentation that describes the wall geometry within a floor
plan tile. Analyzing generic, basic floor plans, we found
that walls have uniform width and usually their endings
are a rectangular cuts. Thus, we model wall segments as
rectangles. Using this model, we can state a more accu-
rate, low-level goal during the parametrization: approxi-
mating a complex shape in a binary image with rectangles,
so that the union of the rectangles is as similar to the orig-
inal shape as possible.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)

The neural network’s input is a binary image of fixed di-
mensions and its output is the parameter set of the rectan-
gles that approximate the input image. These parameters
for each rectangle are: the endpoints of the wall segment
(points in a coordinate system whose origin is the center of
the image), and its width. For the implementation of the
neural network, we used TensorFlow 2.01 and the Keras
API2, and for testing and evaluation, we used the CVC-FP
database [4].

Figure 3: The architecture of our network.

3.3 Structure of our network

Our network can be divided into three main components:
(Figure 3)

1) an encoder part which compresses the input image into
a feature vector (Nenc),

2) a part which identifies the number of rectangles re-
quired to cover the original shape (Nnum),

3) and a part which is responsible for finding the pa-
rameters of the rectangles that approximate the input
(Nparam).

As its input, the network accepts fixed 256 × 256 pixel
wide, 1-channel images. First, the network compresses the
input image into a feature vector which will be the input to
two other parts of the network. The inside of the network

1https://www.tensorflow.org/
2https://keras.io/

branches in two directions. In our solution, the encoder
part is the EfficientNet-B1 model [14].
In order to handle the varying number of the rectangles
that is necessary to cover the input, the network’s output
is a parameter-matrix with dimensions of N ×M, where
N is the maximum number of the rectangles, and M = 6
is the number of the parameters that describe a rectangle:
the endpoint coordinates (2-2), the width of the wall, and
a binary visibility value. The last parameter is required
so that the output can be of fixed size, regardless of the
number of rectangles required to cover the original shape.
We chose N = 4 for the maximum number of rectangles.
This is a heuristic limit; the reason behind this choice is
that the tiling step in the preprocessing part (Section 3.1)
produces inputs where only a very small part of the floor
plan is present, thus the complexity of the visible region
is strongly reduced, and 4 rectangles should be enough to
represent a tile like this. In the output parameter-matrix,
the rows are the parameters of the rectangles and the val-
ues of 1 in the last column show which rectangles are
taking part in the process. This last column is the out-
put of the subnetwork that identifies the required number
of rectangles (Nnum): an N-length vector which contains
as many ones as rectangles needed, and the rest of the
vector elements are zeros. To create this, the input fea-
ture vector goes through two fully-connected layers with
a Dropout layer in between. The first layer has 128 neu-
rons and Leaky-ReLU activation. The second layer has
N+1 neurons (0..N possible rectangles), and to create the
probability distribution, a Softmax activation. To obtain
the requiered output, we create an N-length mask from
this probability vector based on the highest probability
(argmax).
Another subnetwork (Nparam) processes the feature vector
into an N × (M − 1) matrix, which represents the param-
eters of the rectangles that describe the input image. The
output matrix will be extended with the visibility-mask,
the output of the process described above. This part of the
network contains three fully-connected layers; the first two
layers have 256 and 128 neurons, and the last one has 4×5
neurons (maximum 4 rectangles, each with 5 parameters).
Between the first two layers is a Dropout layer, and after
each layer there is a Leaky-ReLU activation. To normalize
the values of the last layer, we made a custom normaliz-
ing layer, which constrains the values to the appropriate
range. The coordinates are normalized with a Tanh activa-
tion, guaranteeing that the endpoints are between the bor-
ders of the image (defining the origin as the center of the
image), and the width with a Sigmoid activation, adjusting
the output to the expected range: scaling with a maximum
width value and translating with a minimum width value.

3.4 Training data

Creating an extensive training dataset of wall layout im-
ages from real-world architectural floor plans is an expen-
sive and challenging task because of the limited availabil-

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)

ity and diversity of the data. However, because of the prop-
erties of the input — binary images that show wall seg-
ments (rectangles) —, it is possible to generate inputs in
an algorithmic way. This is a serious advantage during the
training process, since we can have full control over the
properties of the input images, and we can create a theo-
retically infinitely large dataset.
To achieve this, we need an algorithm that can generate bi-
nary images that show various numbers of rectangles with
random rotation, shape, and position. During the train-
ing process we used an algorithm with this functionality
to create an endless source to the network, generating new
inputs in every epoch.

3.5 Hybrid training method

When training neural networks, it is crucial to choose the
right metrics to compare the output with the expected out-
put. We need a well-constructed loss function that mea-
sures the error of the network output relative to a pre-
defined expectation. Usually it is simpler, faster, and
more efficient to use supervised learning than unsuper-
vised methods. On the other hand, pre-defined expected
outputs may be limited or inaccessible. To overcome these
issues, we can utilize unsupervised learning, or reinforce-
ment learning, where the loss function merely rewards out-
puts that conform to the input by some metric. This elim-
inates the need for defining explicit expected outputs dur-
ing the training, thus making the training dataset size sig-
nificantly smaller, and we have more freedom to provide
training inputs to the network.
The generation of training data, described in Section 3.4,
allows us to have an endless source of inputs, and also
expected outputs (the parameters of the rectangles), since
the generation process used these parameters to create im-
ages. But comparing these parameter matrices is not a triv-
ial task. The issue is that we need to define an ordering of
the rectangles (order of the rows in the parameter matrix),
and although we can ensure a fixed order of the parameters
in a single rectangle, there is no natural sorting for listing
rectangles; in the context of the task, the order is irrele-
vant.
Furthermore, for a single rectangle, there are multiple
combinations of parameters which code the same shape.
For these reasons, the simple way, the trivial comparison
between two matrices cannot work. By using complex,
indirect measures, it is possible to compare the similarity
of two rectangles, but the training process cannot rely en-
tirely on this method, since minimizing this kind of loss
would not guarantee perfect results.
To compensate this problem, we used unsupervised learn-
ing. Since the main goal of the network is to produce pa-
rameters that represent an image which is equivalent to the
input image, the best metric for comparison is the visual
similarity between the two images. In other words, we do
not use the network’s output in the loss function, but an
image that is rendered from those parameters (Figure 4).

To assure that the whole process is differentiable, the ren-
dering step must also be differentiable. With this solution,
we can eliminate the above mentioned issues, and train the
network with more diverse geometries, and even with im-
ages of real floor plans — where it would require extensive
expert labelling to define the correct expected parametric
description. In our solution, we used a hybrid learning
method, taking advantage of the benefits of both super-
vised and unsupervised learning.

3.6 Differentiable rendering

Implementing a differentiable renderer with the limited
functionality we need for our goal is a fairly easy task. Our
algorithm is a rectangle rasterizer, which fills a pixel ma-
trix with values between 0 and 1 depending whether there
is a wall in that pixel or not (more accurately, how likely
it is for a wall to be there). It is important to use continu-
ous, not discrete values, to have blur by the edges and thus
gradients in the loss function. The amount of blur is con-
trollable during the training, depending on the accuracy of
the network. To have this blur effect by the edges of rect-
angles, we need a function that takes the coordinate of a
point and returns the value of the corresponding pixel, in a
way that the inside of the rectangles are constant 1 values,
and the values of the area outside the rectangle are decreas-
ing depending on the distance from the closest edge. Our
method to calculate the blur is the following: Let the sides
of the rectangles are on the x = w

2 , x = −w
2 , y = h

2 , y = −h
2

lines, where w and h are the width and height of the rect-
angle (the width and length of the wall). The value of the
pixel is:

P̂i j = f
(

Px
i j,

w
2

)
∗ f
(

Py
i j,

h
2

)
,

f (x,s) =
1
2
∗
(

1− cos
(

e−
δ (x,s)

β
−log 1

π

))
,

δ (x,s) = max{0, |x|− s},

where P̂i j is the value of the pixel in the i-th row and j-th
column of the image, Pi j =

(
Px

i j Py
i j
)

is the center coor-
dinate of the area that the pixel covers, β is the parameter
that defines the amount of blur.
After rasterizing all N rectangles with the algorithm men-
tioned above, we have N images, one rectangle on each.
We need to merge these into one final image. To achieve
this, we used the following calculation to every pixel (Pk

i j
is the pixel value on the k-th image):

Pi j = 1−
N

∏
k=1

1− P̂k
i j

This formula guarantees that if an image already has a
1 in a certain pixel, then the same pixel in the final image
will also be 1. Thus, during the merge, there is no rectan-
gle that loses pixels, and every pixel value takes part in the
final result in a differentiable way.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 4: Overview of the learning process using a differentiable renderer. After the training, only the components inside
the dotted area are used, thus we can deploy a relatively lightweight network.

3.7 Unsupervised loss function

During the training of the network, the dominant compo-
nent of the loss function is the unsupervised metric. We
create an image from the output of the network with the
renderer described in Section 3.6, which we can naturally
compare with the input image. The loss function for this is
a mean squared error, which expresses the expectation of
the most important goal of the whole process: the output
should be as similar to the input as possible.

Limg =
S

∑
i=1

S

∑
j=1

(Pt
i j −Pp

i j)
2

S2

In the formula, S is the image size (1:1 ratio), Pt
i j and Pp

i j
are the pixels in the i-th row and j-th column of the input
and rendered image.

3.8 Supervised loss function

During the design process of the network architecture, it
was a conscious choice to separate the part which iden-
tifies the necessary number of rectangles (Nnum), in order
to have a separate, more efficient loss function that targets
this part. This part’s output is a N + 1 length probability
distribution vector, which is easily comparable with the
parameters that generated the corresponding input image.
For the image generation, we used the same kind of param-
eter matrix descriptor as in Section 3.3, whose last column
is a visibility mask. The expected number of rectangles is
the sum of this vector. To measure the error of this part of
the network we used a cross-entropy loss:

Lnum =−
N

∑
i=0

Y t
i ∗ logY p

i ,

where Y t is the expected number of rectangles in one-
hot encoding, Y p is the output of Nnum, and the index i
marks the i-th element of these vectors.

During the input image generation, the algorithm pro-
duces a possible descriptor of the image, which can be

used to create a loss function that compares directly the
output of the network and this parameter set. To avoid the
wrong approach mentioned in Section 3.5, we compared
rectangle parameters by similarity. For each rectangle de-
scriptor, we find the most similar rectangle in the other
parameter set. In other words, we need to find a minimum
cost assignment between the two sets, where the edge
weights are the similarity between rectangles. The sum
of the edge weights that are included in the assignment is
the loss: Lparam. To solve this problem, we used the ma-
trix formulation of the Hungarian method [10], where the
elements of the input matrix are:

Mi j =V t
i ∗ψ(Rt

i,R
p
j)+λ ∗φ(V t

i ,V
p
j),

where Rt
i and Rp

i are the i-th parameter-vectors of the
target- and predicted output, V t

i and V p
i are the last el-

ements of these vectors, ψ(), φ() are distance functions
based on the properties and visibility of the rectangles.

The visibility value makes it harder to compare two
rectangles, because a non-visible rectangle can have ar-
bitrary position and orientation, which should have no ef-
fect. Thus, the obvious way, to measure the similarity by
comparing the parameters element-wise, would not work.
Comparing a visible and a non-visible rectangle, the main
component of the distance should be the visibility differ-
ence, since the goal is the most similar visual result. In the
formula above, the first constraint is realized in the pos-
sibility to cancel out the parameter distance function ψ()
with the V t

i factor. If the i-th rectangle is non-visible, this
factor is 0; otherwise it is a harmless 1. The second con-
straint is realized in the λ constant, amplifying the effect
of the visibility distance function φ(). This function is
squared distance:

φ(Vi,Vj) = (Vi −Vj)
2

To compare the shapes and positions of two rectan-
gles, we need to use representation-invariant properties,
to avoid the misleading behaviour of the raw parameters,
e.g. endpoint coordinates drastically different if one of two

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)

identical rectangles is mirrored, although visually there is
no difference. These representation-invariant properties
are: the area of the rectangle, the ratio of its sides, the
coordinate of its center, the horizontal/vertical extension
of the rectangle, and a heuristic metric about its rotation.
Using these properties, the parameter distance function is
the following:

ψ(Ri,R j) = ∆a(Ri,R j)+∆sr(Ri,R j)+∆c(Ri,R j)+

∆h(Ri,R j)+∆v(Ri,R j)+∆r(Ri,R j),

∆a(Ri,R j) = ∆(wi ∗ li,w j ∗ l j),

∆sr(Ri,R j) = ∆

(
min{wi, li}
max{wi, li}

,
min{w j, l j}
max{w j, l j}

)
,

∆c(Ri,R j) = ∆(cx
i ,c

x
j)+∆(cy

i ,c
y
j),

∆h(Ri,R j) = ∆(bbw
i ,bbw

j), ∆v(Ri,R j) = ∆(bbh
i ,bbh

j),

∆r(Ri,R j) = ∆

(
wi ∗ li

bbw
i ,bbh

i
,

w j ∗ l j

bbw
j ,bbh

j

)
,

∆(x,y) = (x− y)2,

where w, l is the width and length (height) of the rect-
angle,

(
cx cy) is the coordinate vector of its center, bbw

and bbh is the width and height of its bounding box. The
individual functions, ∆a,∆sr,∆c,∆h,∆r are the distance
functions of the above mentioned representation-invariant
properties respectively.

3.9 Hybrid loss function

Using the metrics described in Section 3.7-3.8, we utilized
both supervised and unsupervised methods. The com-
bined, hybrid loss function we used for training the net-
work is the weighted sum of the three loss components,
where the weights are controllable during the training pro-
cess to achieve optimal behaviour:

L = α ∗Limg +β ∗Lparam + γ ∗Lnum

3.10 Training heuristics

During the training process, we used widely applied au-
tomatic methods and intuitive, heuristic techniques which
require more manual intervention, to control the training.
To manage the network weights, we chose the Adam opti-
mizer algorithm, and to control the learning rate, we used
a discrete staircase decay. The amount of blur applied
during the rendering process is relatively high at the start
of the training, to assure overlapping between rectangles,

and slowly decreased as the accuracy of the network is in-
creased, to achieve a more accurate result. This decreasing
was done manually, analyzing the progress of improve-
ment. The most well-known problem when it comes to
training neural networks is the issue of overfitting. Luck-
ily, since we can use the input generating algorithm pre-
sented in Section 3.4, we can completely avoid any form
of overfitting.

3.11 Postprocessing of the parameters

Due to splitting the original floor plan into smaller parts
before processing with our network, a wall can appear
in multiple tiles, which is completely unrecognizable to
the network, since it sees only one floor plan tile at a
time. Thus, the network covers these walls with mul-
tiple smaller wall-segments instead of a more accurate,
longer segment. These smaller segments can have differ-
ent width and horizontal/vertical axis, which can be ad-
justed after the parametrization step. The goal in this step
is to overcome this problem and to merge the individual
parametrizations into one that is more accurate in the con-
text of the whole floor plan. At this step, we can inte-
grate the door positions into the parametric representation.
Because of the imperfections in the network’s output, we
need to adjust the door coordinates, and snap it to the near-
est wall opening. If we can define a minimum or maxi-
mum door width value, then we can adjust the wall end-
ings, too, according to this value. After these steps, we can
build a 3D model from the parametrization of the walls,
using a custom Python script, which creates a 3D scene in
Blender3.

4 Results

The presented system is capable of creating a parametric
representation of the floor plan and a 3D model, using only
an input image, and we showed that the concept of differ-
entiable rendering can be used to achieve this. During the
evaluation of the results of our system, we used mostly
qualitative evaluation, since the main goal was to have a
visually similar result to the input image.
In the first step, when we separate the walls, we fine-tuned
the number of repetitions of the morphological operators
to have the most optimal results on the database we used,
and this method barely makes any errors; the separation is
clean in most cases. During the finding of the door posi-
tions, the other symbols that intersect with the door sym-
bols have the biggest impact on the quality of our heuristic
approach. On a generic, non-overcrowded floor plan, we
recognized doors with high accuracy by tuning the param-
eters of the algorithm in an empirical way, but it made no-
ticeable errors when the arch of the door was intersected
by other lines, or only a tiny part of it was visible.
The wall parametrizer neural network worked with very

3https://www.blender.org/

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)

high accuracy in those cases when the input formation was
simple, as expected, and its accuracy decreases as the com-
plexity of the shape on the input image increases. But in
general, if the complexity is equal to a part of a real floor
plan, the results are good enough to be a visually simi-
lar representation of the original, after the postprocessing
step (Figure 5). The network is very accurate at captur-
ing the shape of the walls, the noticeable errors occurring
mostly because of the imperfect rotation angle. The net-
work makes more mistakes in cases where a wall endpoint
is close to the edge of the image, mainly because of the
imperfect training data generating algorithm.
The part of the network, which identifies the required num-
ber of rectangles, works with high accuracy, but we can
see a decreasing tendency here too, as the complexity of
the input shape increases. The training data generating al-
gorithm has a big impact on this, because the imperfect
generation sometimes results images, where some rectan-
gles are visually not separable from the other rectangles,
or other rectangles cover them completely. In these situ-
ations, the network, in most cases, correctly identifies the
number of visibly separable rectangles, but the label of the
data marks a different number; thus the loss is not always
correct. After manually correcting these labels during the
evaluation, the confusion matrix of this part is the follow-
ing:

0 1 2 3 4 Accuracy
0 22% 0% 0% 0% 0% 100%
1 0.4% 17.6% 0% 0% 0% 98%
2 0% 1% 18% 0% 0% 95%
3 0% 0.1% 1.4% 16% 1% 86%
4 0% 0% 1% 3% 18.5% 82%

Table 1: The confusion matrix of the network. On the
horizontal axis is prediction of the network; on the vertical
axis is real number of rectangles.

By optimizing the parameters of the postprocessing
step, significant improvement can be achieved in those
cases where the neural network works with a lower ac-
curacy. It can efficiently compensate the errors of the wall
rotations, and the difference in wall widths, thus reduc-
ing the necessary level of accuracy of the network which
speeds up the training process.

For training the network, we used the Google Colab4

cloud based service, which makes hard to provide exact
specification on the hardware used during the process, but
it took about 12 hours to achieve the above presented re-
sults.

4https://colab.research.google.com/

Figure 5: The results of our network. In the top row are
the original floor plans from the CVC-FP database, and in
the bottom row are images rendered from the parametric
representation that the network produced.

5 Future work

There are several points where the system can be improved
to have a better result. The most important part of the sys-
tem is the neural network, this is the point where there is
the most room for improvement. The network layers and
parts were not fully optimized, and for optimal results, it
would be beneficial to find the best parameters. It would
be beneficial to integrate the concept of splitting the input
image into the network, e.g. with higher level convolu-
tion or with the use of RNN models [8]. Using reinforce-
ment learing techniques to improve the training efficiency
would be a logical extension of the current approach. Per-
fecting the training data generating algorithm is crucial to
eliminate the problems in the part that identifies the re-
quired number of rectangles. Finding faster, more efficient
algorithms in the preprocessing step can improve the speed
of the system, since 90% of the process time is spent on
this step. The system can be extended with algorithms to
recognize more symbols in the preprocessing step, to re-
serve more information from the original floor plan, e.g.
furniture.

6 Acknowledgements

This work has been supported by OTKA K-124124. The
research presented in this paper, carried out by BME, was
supported by the Ministry of Innovation, and the National
Research, Development and Innovation Office, within the
framework of the Artificial Intelligence National Labora-

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)

tory Programme.

References

[1] Sheraz Ahmed, Marcus Liwicki, Markus Weber, and
Andreas Dengel. Improved automatic analysis of ar-
chitectural floor plans. In 2011 International Confer-
ence on Document Analysis and Recognition, pages
864–869. IEEE, 2011.

[2] Sheraz Ahmed, Marcus Liwicki, Markus Weber, and
Andreas Dengel. Automatic room detection and
room labeling from architectural floor plans. In
2012 10th IAPR international workshop on docu-
ment analysis systems, pages 339–343. IEEE, 2012.

[3] Sheraz Ahmed, Markus Weber, Marcus Liwicki, and
Andreas Dengel. Text/graphics segmentation in ar-
chitectural floor plans. In 2011 International Confer-
ence on Document Analysis and Recognition, pages
734–738. IEEE, 2011.

[4] Lluı́s-Pere de las Heras, Oriol Ramos Terrades, Sergi
Robles, and Gemma Sánchez. CVC-FP and SGT: a
new database for structural floor plan analysis and its
groundtruthing tool. International Journal on Doc-
ument Analysis and Recognition (IJDAR), 18(1):15–
30, 2015.

[5] Happiness Ugochi Dike, Yimin Zhou, Kranthi Ku-
mar Deveerasetty, and Qingtian Wu. Unsupervised
learning based on artificial neural network: A re-
view. In 2018 IEEE International Conference on
Cyborg and Bionic Systems (CBS), pages 322–327.
IEEE, 2018.

[6] Samuel Dodge, Jiu Xu, and Björn Stenger. Parsing
floor plan images. In 2017 Fifteenth IAPR inter-
national conference on machine vision applications
(MVA), pages 358–361. IEEE, 2017.

[7] Philippe Dosch, Karl Tombre, Christian Ah-Soon,
and Gérald Masini. A complete system for the anal-
ysis of architectural drawings. International Journal
on Document Analysis and Recognition, 3(2):102–
116, 2000.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long
short-term memory. Neural computation, 9(8):1735–
1780, 1997.

[9] Hiroharu Kato, Deniz Beker, Mihai Morariu,
Takahiro Ando, Toru Matsuoka, Wadim Kehl, and
Adrien Gaidon. Differentiable rendering: A survey.
arXiv preprint arXiv:2006.12057, 2020.

[10] Harold W Kuhn. The Hungarian method for the as-
signment problem. Naval research logistics quar-
terly, 2(1-2):83–97, 1955.

[11] Chen Liu, Jiajun Wu, Pushmeet Kohli, and Yasu-
taka Furukawa. Raster-to-vector: Revisiting floor-
plan transformation. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages
2195–2203, 2017.

[12] Jonathan Long, Evan Shelhamer, and Trevor Darrell.
Fully convolutional networks for semantic segmenta-
tion. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 3431–
3440, 2015.

[13] Sébastien Macé, Hervé Locteau, Ernest Valveny, and
Salvatore Tabbone. A system to detect rooms in
architectural floor plan images. In Proceedings of
the 9th IAPR International Workshop on Document
Analysis Systems, pages 167–174, 2010.

[14] Mingxing Tan and Quoc Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In
International conference on machine learning, pages
6105–6114. PMLR, 2019.

[15] Zhiliang Zeng, Xianzhi Li, Ying Kin Yu, and Chi-
Wing Fu. Deep floor plan recognition using a
multi-task network with room-boundary-guided at-
tention. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 9096–
9104, 2019.

Proceedings of CESCG 2022: The 26th Central European Seminar on Computer Graphics (non-peer-reviewed)

