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Abstract

Urban data visualization plays a vital role in sustainable
city evolution. Visual media enable efficient communica-
tion, which is the cornerstone of any development. This
paper presents a design and implementation of a modular
urban data visualization system. The modular design al-
lows extending the visualization system, which helps an-
swer questions as they arise during problem exploration.
The paper explores the role of visualization platforms in
urban development. Technical topics such as possible ge-
ometry representations and ways to process large geospa-
tial datasets are discussed. A simple and extensible styling
language is proposed to enable visualization customiza-
tion based on the object metadata. The system is available
as two Python/C++ packages. The first package focuses on
data processing, utilizing spatial and temporal acceleration
data structures, while the second encapsulates a WebGL-
based visualization application. An iterative qualitative
user study validated the proposed solution’s performance
and accessibility.

Keywords: urban data, visualization, extensive datasets,
dynamic data, open data, web application

1 Introduction

The city is a socio-technical system that evolves naturally
in time. On one side, decision-makers plan changes and
influence citizens’ daily lives. On the other side, citizens
adjust and feed new data into the system, effectively influ-
encing future planning. The effectiveness of this loop can
be increased by enabling cooperation throughout the par-
ticipating groups. Visual media enable efficient communi-
cation and therefore are essential for achieving sustainable
city evolution.

The base for the visualization includes more than just
data. Predictive models, the know-how of the participants,
and their diverse views are all equally significant inputs.
This paper presents principles and tools that could help
find common ground and provide a unified view of the
city’s state.
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Figure 1: Render of the Prague city center displaying
buildings and terrain overlayed with land use dataset,
styled using a custom styling language based on the ob-
ject metadata

The primary goal is to design and implement a visual-
ization system that supports both virtual and physical pre-
sentation media, and acts as an environment for collabo-
ration of city planners and stakeholders. The developed
system should be easily accessible, extensible, and perfor-
mant. Existing visualization tools often prioritize some of
these qualities over the rest; however, an ideal visualiza-
tion tool should balance them all.

2 Related Work

This section maps the current state of urban data sources
and approaches to visualization. As data alone is not
always a sufficient source of information for decision-
making, alternative approaches using simulations are dis-
cussed.

2.1 Data Platforms

The topic of urban data processing and visualization is a
focus area of several scientific fields, including Urban In-
formatics as presented by Foth et al. [1]. The sources of
data are outlined by Robinson et al. [2] in a classification
into three categories: Open Data, Remote Sensing, and
Mobile Social Applications.
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As presented by Barns [3], the data can be published on
open platforms which work as data repositories or dash-
boards. Goldsmith and Crawford argued [4] that the adop-
tion of data platforms and data-driven governance would
“open up the machinery of government to its people, let-
ting them collaborate to create solutions coproduced by
public servants and their constituents” [4]. However, ac-
cording to [5], it is possible to observe barriers to effec-
tive data exchange and the reluctance of the participants to
share data on open data platforms. Despite the ongoing ef-
forts to implement smart city solutions by the public sector
alone, it is possible to observe signs of a lack of support
for the proposed approach. Robinson [6] proposes that one
of the main reasons why the smart city transformation has
stalled so far is the lack of cohesion between the public
and private sectors.

2.2 Geospatial Information Systems

In the field of geospatial information systems, there is a
range of both open-source and commercial projects, which
focus on urban data visualization. Some offer a complex
ecosystem of applications, such as ArcGIS [7], QGIS [8],
or Cesium [9]. Additionally, there is a range of frame-
works for urban data visualization, such as Mapbox [10],
3DCityDB [11], or LuciadRIA [12]. Most of these tools
support visualization on the web, which makes the con-
tent easily accessible and collaboration with other users
simpler. Typically, these systems are proprietary, complex
and their extensibility is limited.

2.3 Urban Modeling Tools

Urban data alone is not always sufficient input for city
planning, the principles of visual analytics [13] can be
applied. Prior research in the area of geovisual analytics
for decision making has been conducted by Andrienko et
al. [14]. The practical applicability is well-illustrated by
Winder [15]. The MIT City Science Research Group has
taken a similar approach with the CityScope platform [16].

The CityScope is particularly interesting from the soft-
ware architecture perspective. It allows integration of vir-
tually any simulation software with the visualization fron-
tend [17]. It enables the usage of both agent-based [18, 19]
and cellular-automata-based [20] simulation tools, which
are becoming increasingly popular.

Underkoffler and Ishii [21, 22] conducted several exper-
iments and introduced a framework called Urp — a system
for urban planning — overcoming the inherent incompat-
ibility of 2D digital media, 3D physical models, and dy-
namic simulations. It enabled the projection of informa-
tion onto objects’ surfaces while the objects acted both as
the projection plane and as a controller. Winder [15] sug-
gested that by constraining the objects into a matrix, “we
enable scanning in a way that is cheap in terms of both
computation and hardware while facilitating projection-
mapping,” which allows for smoother interaction.

3 Analysis

One of the initial goals was to devise principles on which
it would be possible to base the design of the visualization
framework. These principles draw from the existing work,
as well as from the analysis of existing urban data.

3.1 Available Urban Data

An analysis of the available open urban data of the city of
Prague [23] was conducted. The data is divided into 38
categories; some contain more than one dataset. Weighted
by the number of datasets in each category, the vast major-
ity of the publicly available data utilizes vector representa-
tion. Without exception, all vector data is available in the
Shapefile [24] format.

The available datasets usually contain about 10°-10%
geometrical primitives. The count increases when several
datasets are overlayed; therefore, it is desirable to design
the system around the utilization of out-of-core memory.

The data is also available in CityGML [25], and DXF
[26] formats. The concept behind CityGML — decou-
pling geometry and metadata — is beneficial because it
offers a flexible approach to data versioning and integra-
tion. Standards such as BIM offer a way to represent the
complete project documentation in a comprehensible and
sharable way [27], although adopting this standard is not
yet observable in the open data field.

The output of the simulation software such as MATSim
or GAMA is usually an XML file with the description of
the dynamic data, which needs to be parsed further.

3.2 Existing Applications

Using dashboards for data presentations is reasonably
straightforward. While these platforms can help answer
simple questions, they alone cannot improve communica-
tion between stakeholders. It is undoubtedly possible to
gradually extend the dashboards and provide a more de-
tailed view of the data, but this extension has to be pro-
vided on-demand and requires the action of the dashboard
developer/supervisor. A viable alternative is to employ the
principles of visual analytics in combination with physical
media as the user interface.

From the software architecture perspective, most of the
existing solutions are similar. The central component man-
ages the data representation, while additional tools service
the required inputs and outputs. Some of the more ex-
tensive toolkits (ArcGIS, QGIS) offer analytical tools and
ways for the user to create custom data processing scripts.
An independent module manages the visualization styles
(the mapping step of the visualization pipeline). The abil-
ity to share the visualization is crucial, which is apparent
from the popularity of web-based solutions.

The aim is not to create a photo-realistically accurate
visualization; the focus is the presentation of object meta-
data and the ability to share the visualization with collab-
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orators. A shortcoming of the physical user interfaces is
that they requires the on-site presence of the participants.

3.3 Design Principles

Based on the previous research, the design of the urban
data system should follow these principles:

1. use a format-independent data model,

2. separate semantic information and geometry,
3. enable sharing with web-based visualization,
4. focus on metadata presentation,

5. and use a modular architecture to help answer ques-
tions as they arise during problem exploration.

4 Framework Design

The system is divided into three main components —
a user interface, a server component, and a processing
toolkit, illustrated in Figure 2. The data processing toolkit
is designed to be a standalone tool utilized by the server
component. The user interface (visualization engine) is
a web application communicating with the processing
toolkit through the server component.

[ Administration ] [ Styling Editor ] [ Visualization Engine ]

| ]

Web User Interface |
Web API

Processing Toolkit $ ¢

Processing Core J—»[ Data Storage ]

Figure 2: System Structure

Server Component

4.1 Data Processing

The processing toolkit handles geometry and metadata
transformations. The data is represented using a general
data model, separating metadata and geometry. The data
storage utilizes an out-of-core memory approach and en-
ables large dataset processing. The toolkit utilizes several
additional spatial and temporal data structures to allow for
fast data manipulation.

Data Model Previous research revealed that most avail-
able datasets are currently available in the Shapefile for-
mat. This observation indicates that narrowing the focus
field to vector data is possible. The proposed data model
is presented in Figure 3. To increase cross-program com-
patibility, it is desirable to make the data model similar
to those utilized by existing GIS and graphics software —
Projects include Layers of Objects. When an overlay of

[ Project ]— Layer

Layer

Object

Object

»[ Layer Overlay OverlayGeometryJ——[ Object Links

(N

Figure 3: Proposed Data Model

two Layers is computed, it is possible to store only the
overlay geometry without duplicating the object metadata.
Instead, the geometry contains links to the original objects,
allowing the original metadata retrieval.

Data Storage Ultilizing a database for data storage has
several advantages (e.g., scalability, performance, easy in-
tegration with web services); it also adds licensing issues,
a system dependency, and requires each user to install the
database software first if they wish to use the toolkit lo-
cally. The proposed alternative utilizes a local file sys-
tem. The directory hierarchy follows the design of the data
model, see figure 3. Geometry and metadata are stored in
separate Data Storage Directories, which speeds up the
data retrieval when only one component is required.

As illustrated in Figure 4, all data are clustered into data
chunks, allowing to move only a portion of the dataset into
memory at a time. The data management remains trans-
parent to the user, and the storage appears as an ordinary
array of objects. An important parameter is the granular-
ity of the data chunks — one object per file is inefficient
and possibly hits the limits of the file system (e.g., inode
counts). Storing all objects in a single file might not be
possible due to insufficient memory resources.

Data 0

Data 1
D Data Set File
Data 2

Data 3

E Data Storage Directory Data4
Data 5
D Data Set File
cos

Figure 4: Individual data items in Data Storage Directo-
ries are packed into chunks and stored in separate Data Set
Files

Data Preprocessing for Streaming None of the con-
cepts so far directly addressed the spatial layout of the
data. The array-like approach utilized by data storage al-
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Figure 5: Grid Construction

lows pre-sorting the objects based on their position; how-
ever, utilizing a regular grid would further speed up fre-
quent spatial queries. Upon construction of the grid, it is
necessary to clip the geometry to the tile boundaries to
avoid triangles or lines spanning multiple tiles. The naive
grid construction algorithm could effectively load the en-
tire dataset into memory and then process it, which is not
always possible. A proposed memory-efficient approach
works in two steps:

1. for each tile, building a cache containing sliced prim-
itives inside the tile

2. rebuilding the tile geometry from the cache

When inserting the sliced geometry into the cache, it is
possible to store the data in chunks into out-of-core mem-
ory, minimizing the memory footprint of each tile. The
entire process is illustrated in Figure 5.

A similar approach can be taken with the dynamic data.
An analogy of a regular grid for dynamic data is slicing
the data into intervals and storing each interval individ-
ually. Depending on the size of the input data, the con-
struction process can be similarly memory-optimized us-
ing disk cache.

Dataset Mapping The goal is to compute an overlay of
two datasets. The focus is on preserving the relations be-
tween the input and output geometries since it allows fil-
tering, styling, and modifying the overlay geometry based
on the metadata of the original objects. Two approaches
were considered: either using the classical plane sweep
MapOverlay algorithm [28] for the overlays of two dou-
bly connected edge lists (DCEL), or computing an over-
lap of two triangulated meshes using a parallel traversal of
two R-trees built with top-down greedy split construction
strategy [29]. The latter was chosen since the polygonal
geometry needs to be triangulated to be displayed using
the visualization engine. Also, the strategy using R-trees
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Figure 6: Layer Overlay Mapping

can efficiently work with point, line, or mesh data, and it
is easy to extend for overlays of 3D and 2D datasets, as
illustrated in Figure 6.

4.2 Visualization Engine

The architecture of the visualization engine takes into ac-
count the limitations imposed by web technologies. The
engine architecture mirrors the layout of the processing
toolkit components and the data model structure. The en-
gine prioritizes processing tiles close to the viewer to those
further away. Since the individual geometries are indepen-
dent, it is possible to process them in parallel (data paral-
lelism approach). All metadata is stored on the server only
and presented on-demand.

Styling The key idea is to change the geometry appear-
ance based on the object metadata. For demonstrational
purposes, this research focuses only on color as a stylable
property common among all supported geometry types.
Each object represents a virtual structure and is assigned a
color based on its properties. A prime example of a simi-
lar styling system is Hypertext Markup Language (HTML)
and Cascading Style Sheets (CSS) — HTML describes the
structure, while CSS describes the appearance. The pro-
posed styling mechanism is based on identical principles.

Grammar 1 is proposed describing the designed styling
language. The language supports both static colors as
well as the definition of colormaps. Upon submission,
a context-free grammar parser generates a styling table
based on the predefined grammar and provided user styles.
When the visualization engine requests the style to be ap-
plied, the visible geometry is traversed, and the colors are
assigned based on the geometry object identifiers and the
object-color map.

Exports The geometric data has to be exported to sup-
port the creation of physical user interfaces. Two ap-
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@layer ( STRING ) { }
@color : COLOR ;

@source { }

@target { }

emeta ( ) { i }
STRING ( . STRING

COLOR
COLOR+
@legend { REN:

STRING : : COLOR+
STRING @default
[ SIGNED.NUMBER SIGNED.NUMBER ]

Grammar 1: Styling language grammar, terminals in
black; nonterminals in grey, asterisk as any number of oc-
currences; plus sign as one or more occurrences; round
brackets in grey denote a group of symbols.

HEERE
ils]s]|s]s
ile]efe]e
ils]s|s]s
BB EBE

1
1
1
1
1

[ Geometry

]—»[ Height Map ]—»[ Resampled HM ]—»[ Lego Height Model }

Median Box Filter Quantization

Rasterization/Raycasting

Figure 7: Transforming Geometry into LEGO

proaches were considered — 3D printing and assembly of
LEGO models.

Printing the 3D models requires exporting the data into
printer-compatible formats (e.g., STL, OBJ) and slicing
large models into smaller tiles. Since the regular grid con-
struction already requires the slicing functionality, it can
be reused. The geometry file for a selected area can be
created on-demand.

Generating the LEGO models is a more complex task.
Several approaches were considered; however, the scale
of the test models limited the available detail. Instead, the
proposed design utilizes a heightmap, illustrated in Figure
7. First, a heightmap is rendered with a resolution larger
than the brick resolution of the output. The heightmap
is then filtered using a box filter. Minimum, maximum,
median, and average box filters were tested and the me-
dian filter seems to yield the best results. The filtered
heightmap is quantized to match the scale of the bricks
to the original geometry.

5 Results

The processing toolkit is available at PyPI as a Python
package metacity. The server component, together
with the user interface, is available as Python package
metacity-workspace. The implementation is writ-
ten in a combination of languages — geometry processing
is implemented in C++ behind a Python interface. The
visualization engine and the user interface are coded in
Typescript and use WebGL for 3D graphics. Shapefile and
GeoJSON input formats are supported. The deployed ap-
plication runs behind an Nginx server and uses the Nginx
Unit for FastAPI apps.

Figure 9: Visualization of traffic simulation, the color in-
dicates the speed at which the agents are moving

The implementation was tested and validated using a
series of static and dynamic datasets, see Table 1. The
Road 3D and Land Use 3D datasets are actually only Layer
Overlays. The tests were conducted at a computer running
Linux Kubuntu 18.04 with Intel Core i7 7700 @ 3.6GHz,
8GB of DDR4 RAM (2133MHz), NVIDIA GeForce GTX
1060 6GT with Chrome 95.0.4638. The utilization of
the out-of-core memory enabled predictable memory con-
sumption, see Figure 12. The performance of the visual-
ization was tested in a series of tests where utilized mem-
ory and frame rate were monitored. The implementation
behaves as expected, maintaining 60 frames per second for
average available datasets (see Table 1).

An iterative qualitative user study with three partici-
pants was conducted during the development. All partic-
ipants were familiar with geospatial information systems
(ArcGIS and QGIS). The user interface was briefly pre-
sented at the testing site to the participants, who were later
asked to locate a particular building and interact with the
system to obtain metadata for various targets. The par-
ticipants appreciated the possibility of seeing the city in
both 2D and 3D, as the 3D environment provided a richer
context. Several issues connected to navigation were iden-
tified and removed in the later versions of the system.

Figures 1, 8—11 showcase selected examples of the visu-
alization outputs, presenting both static and dynamic data.
User-selected regions can be exported as OBJ file or as a
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static dataset general information

grid statistics

primitive object geometry  metadata primitive count per tile primitive
layer i e [MB ize IMB . : t

ype count size [MB] = size [MB] =~ ;) max avg  median stdev coun
Buildings triangle 228472 1403.228 38.964 21 625119  78490.00 58834.5  79470.00 41599698
Terrain triangle 4502183  1587.296 837.864 2796 183204  21426.38 18840 13434.58 14055708
Roads line segment 47522 16.228 15.520 3 4575 1149.42 972 899.65 634482
Bridges triangle 672 10.900 0.016 9 79089 1025.73 219 5099.23 258486
Population triangle 88572 44.832 15.284 6 33189 6737.69 4797 6685.99 3166713
Land Use triangle 551077 597.124 124.400 6 256092  73393.40 54072 64919.63 42347994
Amenities point 34043 2.500 3.564 3 6015 232.63 63 544.74 102126
Roads 3D line segment - - - 12 14745 4204.19 3702 3128.43 2308101
Land Use 3D triangle - - - 0 1338774 408118.73 335502 321196.00 233852034

dynamic dataset general information timeline statistics

primitive object geometry  metadata primitive count per interval primitive
layer + ize IMB ize IMB - 3 t

ype count size [MB] —size [MB] ) max avg  median stdev coun
Cars time point 21196 744.404 2.228 0 5115 899.84 519 1058.19 71213697
Buses time point 189234 565.688 26.484 0 1872 684.63 546 510.87 52086903
Subway time point 33506 116.752 5.028 0 285 150.97 144 69.93 10815135
Tram time point 194448 706.308 27.456 0 1230 705.48 852 35649 65525040

Table 1: Data storage, regular grid and timeline statistics for test datasets; the geometry is tiled into 1 x 1 km tiles or

60-second intervals

a

Figure 10: The presentation of the exported LEGO model

LEGO model. The export page of the LEGO model offers
an interactive presentation (Figure 10). It is possible to di-
vide the model into tiles and layers. The projection map-
ping of the visual outputs was tested using a scale model
located at the Center for Architecture and Metropolitan
Planning in Prague (see Figure 11).

6 Conclusion

The designed and implemented visualization framework
enables efficient data processing and accessible visualiza-
tion on the web. The internal data model is designed to
facilitate a wide range of geometry types, supporting both
static and dynamic data. The processing of large datasets
is enabled by using out-of-core memory and spatial and
temporal data structures and features a custom styling lan-
guage allowing customization of the geometry appearance
based on the object’s metadata.

Figure 11: Visualization output projected onto a scale
model of the Zizkov Freight Railway Station area, cour-
tesy of CAMP Prague. The red zone highlights the loca-
tion to be redeveloped into a new residential area

The system was implemented as two Python packages.
The modular design of the packages allows them to be
separately reused as libraries in a more extensive system.
Behind the Python interface, all computations are imple-
mented in C++, providing an ideal combination of inter-
face accessibility and computational efficiency. The sys-
tem can be used to share and explore the data online. Users
can request OBJ files or generate LEGO models of any
available urban area.

The future objectives include extending the styling sys-
tem and adding support for other input formats. The com-
plexity of the geometry increases with the application of
transformations such as overlay mapping, and it is desir-
able to adjust the geometry level of detail and further im-
prove the system’s performance. The most challenging
objective is integrating the system with a simulation mod-
eling tool. As the initial research suggests, pursuing this
goal could significantly contribute to sustainable city de-
velopment.
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