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Abstract

At a time when the demand for alternatives to gas and oil
is steadily increasing, the automotive industry faces the
challenge of designing vehicle systems, which are as ef-
ficient as possible. Vehicle system simulation is used for
concept analysis, subsystem design, and virtual compo-
nent integration. The high-level simulation model accu-
rately depicts the energy flow between different vehicle
parts over an extended period of time. The the result-
ing data is presented as a time-dependent edge-weighted
graph. The analysis and exploration of such data is a te-
dious task.

We propose a novel approach for exploring and analyz-
ing energy flow data at different levels of detail to assist
engineers and guide them to the events of interest. We
employ automatic anomaly detection techniques and pro-
pose intuitive navigation to time steps of interest. We
also propose expandable cards or labels that depict current
and overall data. Users can interactively and dynamically
choose how much information is displayed on the labels
by changing their level of detail. We provide four levels
of detail, each giving more information than the previous
level. The first level depicts the current amount of energy;
the second level shows sparklines for the energy flow over
the entire time interval; the third level shows a timeline
of anomaly occurrences; level four shows the sparkline
zoomed around the current time frame; finally, level five
depicts expands the label to a large display of the previ-
ous four levels of detail of the flow data for the selected
element.

The new approach is implemented as an interactive web
application. We are currently evaluating it with domain
experts. Since the initial feedback is very positive, we ex-
pect rapid adoption of the newly proposed approach by
automotive industry professionals.
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1 Introduction

Creating and designing a vehicle is a difficult task in and of
itself. Consumer concerns about the environment and the
high operating costs of traditional fuel-powered vehicles
exacerbate the problem even further. Engineers working
in the automotive industry must therefore design systems
for cars that are both cost-effective and environmentally
responsible.

Once a system design is finished and before an actual
vehicle is built, engineers want to know how the poten-
tial system performs during a drive. They want to collect
and analyse data extracted from drives which are longer or
shorter and mimic different geographic and environmental
conditions. Driving on a hilly road or through snow, for
instance, is different from driving on a highway in good
weather. The car behaves differently in a traffic jam than
it does on a smooth ride. The energy flowing between the
system’s components is calculated over time for each of
these various settings. The analysis problem for hybrid
cars becomes even more difficult, because some system
components, like the battery, can be both sources and sinks
of energy flow during a single driving simulation. The po-
tentially large cardinality of the set of parameters alone
makes the analysis task intimidating. Engineers want to
collect this data for various driving cycles, which is not
feasible to do from real life test drives. Therefore, in the
design phase of a vehicle, when engineers carefully exam-
ine potential system component layouts, simulation plays
a significant role.

A simulation is a technique that mimics a real-world
system or process and tracks its evolution [2][17]. It is
typically run on a computer and is based on a model - of-
ten mathematical - displaying key characteristics of a pro-
cess. Simulations are frequently used when a real-world
process, such as monitoring car system components during
a test drive, is too complex and expensive to build or pro-
vide analytical solutions for. Computer simulation is also
used in vehicle engineering to improve the aerodynamic
properties of a component [12], the turbulent combustion
system [20], the influence of tail structure on the rear field
[13].

While simulations are frequently used in research and
design, analyzing such data can be time-consuming and
challenging, particularly when dealing with multivari-
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ate time-dependent data. As a result, linear analysis
of such time-dependent data takes a long time and is
labor-intensive.

We propose an analysis system, that can reduce the en-
gineers workload by conducting automatic anomaly detec-
tion on the data and visually guiding them to incidents,
which require more thorough investigation. The goal of
anomaly detection is to identify events that differ from the
norm [15][16]. Anomaly detection is often accomplished
by employing AI and training a model on a particular test
data set. Our approach employs anomaly detection tech-
niques, which are only dependent on the input data. This
has the advantage of being applicable to any given time-
series without the need for humans to identify anomalous
occurrences beforehand. We use anomaly detection to di-
rect the engineers’ attention to specific spots in the sim-
ulated test drive. The engineer might focus on the time
frame around the occurrence to assess whether or not the
system is behaving strangely.

Research on the effectiveness of visualizations shows,
that visualizations exploit a humans’ cognitive capabili-
ties and therefore increase the users performance for spot-
ting anomalous behavior [14]. Visual Analytics, especially
when guided, [6][18] supports humans in identifying pat-
terns and points of interest, discover previously unknown
connections, gaining fresh insight and making data-driven
decisions. Interactivity can further enhance the users per-
formance.

Interactive visualization has become a well-established
tool to support engineers in the exploration and analysis
of complex data. We, therefore, propose an interactive
visualization approach to further support engineers in the
analysis of energy flow data. In a collaboration with do-
main experts, we designed a novel visual analysis system
to support engineers in their work flow. The new approach
unifies automatic anomaly detection and interactive visu-
alization to guide engineers to events of interest.

Our proposed system can be generalized as a flow
graph. It consists of nodes, which represent the various
car’s components, and edges, which represent the energy
flowing between the components. In order to cope with
the complexity of the data, we abstract and give an
overview of the data in carefully designed visualization
elements. Additionally we provide the user with the
option to increase the displayed information, by preparing
various visualizations showing different details and only
displaying them on demand. The detected anomalies
are displayed in a timeline, giving a summary of the
anomalies.

The summarized main contributions of this paper are:

1. interactive visualization approach for the analysis of
energy flow data,

2. augmented and extended flow graph visualization

3. anomaly detection to guide users to incidents of in-
terest.

2 Related Work

Our proposed application is closely related to the existing
software AVL CRUISE™ M1[7] developed by AVL List
GmbH (“AVL”). The software is used to design a car’s
system and then simualte diverse test runs. After the sim-
ulation, engineers can analyse the behaviour of the system
by watching a replay, which shows a simple graph consist-
ing of all the car’s components as nodes and the flow of
energy between them as edges. The current energy value
of a component is showcased as two scalar values next to
the component as incoming flow and outgoing flow, which
is also visually encoded by the thickness of the edge. The
dynamic flow is further depicted by huge arrows moving
along the edge, with the arrow head facing the direction
of the flow, which can change during the drive. Due to
the redundant information incoming and outgoing labels,
the screen gets easily cluttered. We plan to solve this by
encoding all information in one label and decreasing the
size and quantity of the arrows. The visualization itself is
static and the user is unable to query further information.
We plan to implement diverse interactions such as vari-
ous playback modes, and interaction with and selection
of the components. The biggest limitation of the original
software, though, is the linear playback mode without any
indication of where and when during the simulation inci-
dents of interest happened. For this we plan extend the
visualization with automatic anomaly detection and dis-
playing them on a time line. This allows the user to only
watch the important parts of the visualization.

Matković et al. [11] introduce diverse visualization
techniques to process monitoring, namely history encod-
ing, multi-instruments and level of detail. Additionally
to displaying the current value, the authors encode val-
ues of the near past into their visualization (history en-
coding) by adapting a bar chart. Instead of encoding the
current value as a bar, which takes up a whole column
or row, they encode the value as a heavily saturated line.
Like this, they can add more data points by adding lines
and gradually decreasing the saturation for points further
in the past. This feature could be useful for our applica-
tion to show the recent change in energy flow to give the
user an idea of how the values changed, especially around
an anomaly. Matković et al. display several data values
within one virtual instrument, to easily compare related
values and quickly spot divergences (multi-instruments).
Another advantage of this approach is that it saves screen
space, allowing for showcasing a lot of information in a
condensed and easy to grasp manner. We make use of
this feature in our anomaly timeline (see Section 5) by
displaying different types of anomalies as a stacked one-
dimensional scatter chart. Focus and context approaches

1https://www.avl.com/cruise-m
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coarsely represent the entire information in the available
screen space and give different levels of detail for differ-
ent degrees of interest. Users can see information with the
highest degree of interest in the highest level of detail, and
areas of low interest can be depicted as only a scalar value.
We employ this focus and context approach for displaying
condensed information of the flow of energy for each com-
ponent. Users can manually set the level of detail for each
component and see different visualizations, depending on
the selected level.

Cambridge Intelligence developed a JavaScript-
based toolkit for scalable timeline visualizations that re-
veal patterns in time data, mostly aimed at cyber security
and fraud detection analysis. The main feature is a scal-
able timeline, which highlights events occurring between
two entities. Its goal is to guide analysts in detecting pat-
terns and abnormal behaviour in events. The graph con-
sists of rows, each row dedicated to an entity. An event is
encoded as a (directed) line between the two rows of the
respective entities on a low zoom level and an aggreated
heat map on a higher. The software can be extended to
show a graph or network of the underlying data. Since the
view of the graph and the timeline are linked, users can
easily query subsets of the data. While the graph visual-
ization seems powerful enough, it does not allow dynamic
playback, or encoding aggregated information or statistics
into the graph itself. The timeline is a powerful tool to in-
vestigate events, but it uses a lot of screen space. As our
main focus is on the visualization of the graph, and only
enhancing it with a timeline, this does not seem feasible.
Though the aggregated timeline could be useful for future
extensions of the Energy Flow Explorer. [5]

3 Energy Flow Data and Analysis
Requirements

During a drive, a car is subjected to many different external
influences. Temperature, weather, traffic and such affect
the performance of the car’s components and the whole
system’s behaviour. Testing and analysing the behaviour
in the real world is not desirable due to unpredictable
weather and difficult reproducibility. Furthermore, for the
automotive industry simulations are vital to save costs and
reduce time to market their products.

A driving simulation imitates the drive with a hybrid
car from point A to point B under specific environmen-
tal circumstances, or with a given set of system param-
eters. For the simulation of our test data the software
AVL CRUISE™ M2[7] developed by AVL List GmbH
(“AVL”)3 was used. It is a ”multi-disciplinary vehicle sys-
tem simulation tool”, which allows for ”Powertrain Con-
cept Analysis”,”Control Function Development and Cal-
ibration”, ”Vehicle Simulation on Testbeds” as well as

2https://www.avl.com/cruise-m
3www.avl.com

”Sub-system Analysis” [9]. The latter can be used to per-
form detailed design layouts and optimizations of sub-
systems. It serves as the basis for our proposed analysis
tool, the Energy Flow Explorer.

The AVL CRUISE™ M software allows to simulate
the flow of energy between the components of the hybrid
car and is able to replay and show the amount of flow be-
tween components. Figure 1 depicts the simulation player
of the software, where the ”Mass flow [kg/s]” is distributed
within a small test-set containing eight components: an en-
ergy source (Boundary 1) and a target (Boundary 2). The
figure shows the direction and the amount of flow entering
and leaving a component on a small label attached to each
component. The view only allows for linear playback of
the simulation and analysing the simulation at a specific
point in time. The user has to watch the whole animation
to analyse the simulation and is provided with only very
limited information; no data aggregation or statistics are
performed. The visualization also gives no indication of
abnormal behaviour or the change of energy flow through-
out the whole simulation.

Figure 1: A frame captured from the replay of a small sim-
ulation using the software AVL CRUISE™ M. It shows
the direction and amount of the energy flowing between
components at the time of the capture.

The Energy Flow Explorer is an application with the
goal to solve the previously stated limitations and provide
better support for engineers from the automotive industry
in their analysis work.

Before designing the architecture of the system, we
thoroughly examined the analysis process together with
domain experts and abstracted the following requirements:

• R1 - Automatic Data Processing: load multiple sim-
ulation results from different sources

• R2 - Data Aggregation: support different types of
anomaly detection and data aggregation

• R3 - Model Structure: store system information in
simple and easy to query format

• R4 - Simulation Player: show energy flow between
components throughout simulation

• R5 - Improved ”Data-Ink Ratio” [18]: improve
data density and encoding in the visualization
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• R6 - Anomaly Visualization: show anomalous be-
haviour in multiple levels of detail

• R7 - Multi-Resolution Data Graphs [18]: show dif-
ferent levels of detail on the data with overview first
and more detail on demand

To conform to these tasks, the designed system has to
fulfill the following criteria: read input data of different
formats; have the possibility to perform data analysis tech-
niques and data aggregation; perform queries on the data
and the model itself; display various non-standard visu-
alizations and provide user interaction. Since the system
should support powerful data analysis as well as user in-
teraction, a client-server architecture following the
request-response model is employed:

1. Data Handling & Analysis: a python server is respon-
sible for reading the source data, generating an easy-
to-query model data structure, carrying out data anal-
ysis and responding to user queries (Requirements
T1-T3).

2. Data Visualization & User Interaction: a JavaScript-
based web-application displays the processed data in
an interactive dashboard, where the user is able to
freely manipulate and explore the data (Requirements
T4-T7).

Section 4 describes the first part of the system Data
Handling & Analysis, whereas the second part - Data Vi-
sualization - is described in section 5.

4 Data Handling & Analysis

Our application requires several types of input data. First,
a graph model consisting of information about each com-
ponent, such as physical properties, meta data and ports
(connection between two components). Second, the used
parameters for the simulation, which is required for select-
ing subsets in the data when comparing multiple simula-
tions (see Section 6 - Future Work). Third, the actual flow
data for each component for the whole simulation.6 - Fu-
ture Work).)
We chose Python4 due to its flexibility and vast data ma-
nipulation libraries. We employ a Flask5 server as it en-
ables easy creation of websites Data Handling & Analysis:
Once the user selects a simulation case-set, the server is
responsible for parsing the model data and generating the
component-flow model before performing anomaly detec-
tion on each component and sending the processed data to
the user.
Python provides multiple libraries for anomaly detection.
We used PyCaret [1], which provides a flexible and ex-
tensive framework for anomaly detection of time-series.

4www.python.org/
5flask.palletsprojects.com

Here it is possible to choose from a multitude of machine
learning based anomaly detection algorithms. We chose
Isolation Forest or IForest [10], an unsuper-
vised model. Using randomly chosen characteristics, an
Isolation Forest processes randomly sub-sampled data in
a tree structure. As they required more cuttings to sepa-
rate, samples that travel further into the tree are less likely
to include anomalies and samples that end up on shorter
branches tend to be anomalies. The second approach for
anomaly detection is a simple Min-Max Threshold
model, where the user can set a percentile, at which data
points below or above are marked as anomalous. Lastly,
we chose to use the Modified Z Score [8]. A z-score
in statistics indicates how many standard deviations a re-
sult deviates from the mean. However, unusually big or
tiny data values can have an impact on z-scores, so using a
modified z-score is a more reliable method of identifying
outliers, as it is based on the median rather than the mean.

Engineers desire a system where they can analyze mul-
tiple simulation runs for the same component system but
with different parameter settings at the same time and get
a feeling for the special features of the system as well as
its peculiarities and hidden correlations between compo-
nents. These aspects were already considered for the de-
sign of the system architecture, but not yet fully realized
at the publishing date of this paper.

The python server is split into the following components
to perform these tasks:

• DataFileParser:
The results generated by the AVL CRUISE™ M
come in different formats - ranging from .csv and
.xml to their own file format .gid - and vary
greatly in their structure. The DataFileParser pro-
vides all necessary functionality of requirement R1
- Automatic Data Processing to retrieve data from
all provided raw data files. Additionally it provides
methods to persist and load the generated models and
data to skip time-consuming processes such as per-
forming anomaly detection - a resource-heavy task -
in future analysis sessions of the same case-set.

• CaseSetManager:
This manager is responsible for invoking all oper-
ations happening on the server. It functions as an
organiser for the selected case-sets by loading the
model data and passing it to the ComponentManager,
where it is rearranged into a easy-to-query structure.
It then gives the order to aggregate the data with the
selected parameters and finally arranges all relevant
data and information into .json format to send to
the client.

• ComponentManager:
The systems model consists of different units:
Components, Ports, and Connections with
additional information on the flow direction (OUT-
going, IN-coming or NEUTRAL).
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The ComponentManger stores all this informa-
tion and provides methods to perform diverse
queries on the components, such as selecting only
Components associated with a specific flow, and
re-structure the query result in different formats
needed by the client and hence fulfilling requirement
R3 - Model Structure (see Section 3 - 3).

• DataAggregation:
To visualize more information than just the simula-
tion results, the data needs to be processed and ag-
gregated. DataAggregation is responsible for read-
ing every component’s data and storing the wrangled
time-series data. It performs the above mentioned
anomaly detection algorithms, which can be extended
to any other outlier detection method. Additionally,
data aggregation methods are available to calculate
parameters such as the minimum, cumulative sum or
integral, though these are mostly used for the explo-
ration of multiple simulation ensembles (see section
6 - Future Work). This part of the system fulfills re-
quirement R2 - Data Aggregation (see Section 3).

Once all the required data has been compiled, the server
sends the data in .JSON format as a response to the client.
The server then waits for requests from the client, and re-
sponds adequately with data updates or setting changes.

5 Data Visualization & User Interac-
tion

The main motivation for our proposed application is to
improve the existing simulation player used by domain
experts to guide them to interesting incidents in the
mimicked drive. Therefore, the minimum criteria for our
visualization is to show the system component layout
with its connections and an animation of the calculated
results displayed with each component (requirement R4 -
Simulation Player of Section 3). The original animation
is linear, where users can change the playback speed. It
also tends to clutter due to redundant information and
spacious visualizations. To ease the analysis process
domain experts desire more succinct information at one
glance (requirement R5 - Improved ”Data-Ink Ratio”
of Section 3) and a visual feedback on where events of
interest occurred during the simulation (requirement R6
- Anomaly Visualization of Section 3). They desire an
overview of the simulation, but at the same time more
detailed information in certain areas (requirement R7 -
Multi-Resolution Data Graphs of Section 3). Lastly, the
new application should be interactive, enabling the user to
focus on specific areas, if desired.

For the client we opted for a web application, as it
has the advantage of not requiring the user to download
any specific software, is platform independent and many

versatile data visualization libraries exist. We used HTML
in combination with vanilla JavaScript and CSS.
Additionally, we use d3.js, ”a JavaScript library for
manipulating documents based on data”, as it is written
in JavaScript and allows web developers ”to bind
arbitrary data to a Document Object Model (DOM), and
then apply data-driven transformations to the document”
[4].

Figure 2: The proposed web application - Energy Flow
Explorer with its four main windows. a) the Simulation
Player shows the system layout, flows and Data Label’s.
b) the Anomaly Timeline depicts detected anomalies of the
simulation. c) Data Labels give detailed information on
demand. d) the Parameter View shows the applied param-
eters for the simulation.

To comply with all requirements we split the appli-
cation into four visualization parts as indicated by the
red rectangles in Figure 2: a) Simulation Player,
b) Anomaly Timeline, c) Data Label and d
Parameter Table .

First, the Simulation Player - the biggest visual-
ization in Figure 2 a - shows the layout of used compo-
nents in the selected simulation. Only the relevant compo-
nents are shown as gray boxes, as not all components may
be affected by the selected energy flow. Figure 2 a, e.g.,
shows the Energy Flow Explorer, where a model with 30
components was loaded but only 20 are visible, as only
those have ’Heat Flow’, the select flow parameter. Users
can display the inactive components on demand. All com-
ponents are connected by orthogonal flow lines, forming
a planar graph drawing. A flow is defined as a connec-
tion between one component with outgoing flow and one
with incoming flow, and displays the data from the out-
going component. The simulation software calculated a
scalar value for each flow at every point in time during the
simulated drive. These scalar values are reflected in the
thickness of the flow lines; the thickness is interpolated be-
tween the minimum and maximum flow thickness, which
can be set by the user. Although thickness is a visual en-
coding with low discernability of small changes ([3][19]),
we use it here to give a visual feedback on the current en-
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ergy distribution throughout the system, as size in general
is a good visualizer for the quantitative data. In Figure 2
a, it is immediately visible, that there is a lot of energy
flowing between two components in the upper left part,
while only low amount of energy flows between the rest
of the components. Here it is less important how big the
change is between two frames, than how big the current
value is. Additionally, the color of the flow is gray, if the
current value is zero and navy blue otherwise. As the di-
rection of the flow can change during the simulation, the
current flow direction is indicated through animated half-
transparent arrows along the flow line. These features re-
alize requirement R5 - Improved ”Data-Ink Ratio” (see
Section 3).

The user can choose to animate the simulation, which
complies with requirement R4 - Simulation Player
(see Section 3). This updates the current flow value
and consequently the size, color, and arrow position and
direction

The Anomaly Timeline in Figure 2 b is dedicated
to showing the points of interest, or anomalies, and is
called Anomaly Timeline. As the name indicates, it
shows at which point in time an anomaly occurred. The
Anomaly Timeline has three rows, as we performed
three different anomaly detection techniques (IForest
anomaly detection, Min-Max Threshold, Modified Z
Score), each dedicated to one technique. An anomalous
point is indicated by a line and positioned relative to the
point in time when it occurred in the simulation, with the
left-most point translating to the start and the right-most
to the end of the simulation. The Anomaly Timeline
gives an overview of the anomalies of all components,
as can be seen in Figure 6. If the user wants to see the
anomalies of a specific component, they can add the
component to the timeline. The associated anomalies
will then appear on top of the summary timeline. In
Figure 2 b three components have been added. This
component-based timeline shows not every anomaly of a
component, but only those within a specified time frame,
i.e. x frames before and after the current time stamp,
creating a zoomed anomaly timeline. A zoom-window
linked to the time frame appears on the summary timeline
as soon as one component has been added to the zoomed
timeline (see Figure 3). The Anomaly Timeline
complies to requirements R6 - Anomaly Visualization
and R7 - Multi-Resolution Data Graphs (see Section 3)
by showing more details of anomalies when requested.
The user can move the zoom-window along the timeline,
as well as change the size. A mouse-over effect reveals the
anomaly type, component and time-stamp of an anomaly.
The mouse-over visually links the referenced component
by highlighting the corresponding Data Label in red
for a short time.

A Data Label is an interactive and responsive visu-
alization inherent to the Energy Flow Explorer. Each

flow has a Data Label, which is an expandable graph,
showing diverse information of the flow at multiple lev-
els of detail (LOD) (see in Figure 2 c). The label al-
ways shows the scalar value associated with the current
time stamp (see the first Data Label in Figure 4). The
scalar value is either green or red, depending on if the
difference in change since the last time stamp was posi-
tive or negative. The user can change the level of detail
of the Data Label by clicking on the [+] button or [-
] button on the right side. Showing the scalar value is
level of detail one (LOD 1). LOD 2 shows a Sparkline
of the whole simulation results for the associated com-
ponent. This gives the user an overview of the compo-
nents behaviour. Increasing the level of detail to 3 reveals
an Anomaly Timeline, showing the anomalies exhib-
ited by the component. A final increase in LOD shows a
zoomed sparkline, centered around the current time stamp,
with the same time frame as the zoomed timeline in visu-
alization b - Anomaly Timeline. When playing the
simulation, this time frame synchronizes with the zoom
window and therefore stays always up-to-date. The right-
most graph in Figure 4 depicts a Data Label at LOD 4,
showing the scalar value, the zoomed sparkline, overview
sparkline and anomalies. To not clutter the whole visu-
alization, these Data Labels are kept small to give an
overview, which can impede the analysis. To counter that,
the user can enlarge a Data Label so that it gives more
room and details to the graphs. Figure 5 shows the en-
larged view of component ’Map Based Engine’. In the
future we plan to provide a pin feature, where the user can
select maxed Data Labels and pin a smaller version of
them to the side of the explorer, similar to ”sticky notes”.
Future work might also include an extension of displayed
information, such as multiple spark lines, which show ad-
ditional statistical features e.g. the first derivative.

The user can choose to change the LOD for selected
components, or globally set the LOD in the settings menu.
In Figure 6 the global LOD level has been set to 4, the
maximum. This change in level of detail complies with
requirements R5, R6 and R7 (see Section 3).

The last part of the web application, the
Parameter Table (see Figure 2 d), is dedicated
to the parameters used in the simulation, as domain
experts want to examine the same model with differ-
ent parameters set. It shows the used parameters and
corresponding values. When analysing ensembles of
simulations the user will be able to see a summary here,
as well as have the ability to brush the data here, i.e. select
subsets of the simulations.

The user is able to animate the changes of values
throughout the simulation in a linear manner with vari-
able playback speed and pause whenever an anomaly is
hit. Still, watching the whole simulation, even at increased
speed, can take a long time, depending on the length of
the simulated drive. To avoid this, we provide a play-
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Figure 3: The Anomaly Timeline displays the anomalies, subdivided by anomaly type; one row each. A line indicates
the occurrence of an anomaly somewhere in the system at the given point in time. The top figure shows the summarized
Anomaly Timeline showing all anomalies of the system, subdivided by anomaly types Iforest Anomaly, MinMax Threshold
and Modified Z Score. The second figure shows on the bottom the summarized timeline, and on top the timeline of a
specific, user selected, component. Here the timeline is zoomed according to the zoom window (indicated by the orange
rectangle in the summarized timeline) and shows all three anomaly types that arose in this component.

Figure 4: A Data Label showing its four levels of de-
tail (LOD). First, on the left, only the current energy flow
value is shown (LOD 1). Next to it, the label is extended
to LOD 2, showing the whole, unzoomed sparkline. For
LOD 3, the third Data Label, the anomaly timeline corre-
sponding to this component is added. The right-most Data
Label is extended by a zoomed version of the sparkline,
centered around the current time stamp (LOD 4).

back option to accelerate the animation until the current
time frame is near an anomaly. Before hitting the anoma-
lous point, the animation slows down, so that the user can
carefully watch the following time frames and examine
the changes. The user can choose that, when hitting an
anomaly, the Data Label associated with the compo-
nent where the anomaly arose automatically expands, cre-
ating a visual link to the anomaly occurrence in the system.

6 Conclusions & Future Work

A vehicle undergoes many cycles of evaluation and adap-
tation before it can be cleared for production. The eval-
uation process is based on several simulations of a drive
through various terrains and under divers conditions. The
analysis process is a tedious task and current systems leave
engineers wanting. We propose an interactive web appli-
cation, which alleviates this task by aggregating the sim-
ulation results as well as performing anomaly detection
techniques on it in a python-based server. The processed
data is displayed in an interactive web visualization with
four main views: the Simulation Player showing the sys-
tem layout, giving playback control and encoding addi-
tional information in the flows (lines connecting two sys-
tem components). The Anomaly Timeline turns the users

Figure 5: The Energy Flow Explorer with a selected Data
Label enlarged, giving more room and revealing more de-
tails of how the component was affected throughout the
simulation.

attention to points of interest in the simulation. The Data
Labels give the user additional information on a flow and
component at multiple levels of detail, if desired. The pa-
rameters used for the simulation are depicted in the Param-
eter View. The whole application is highly interactive and
gives the user an overview as well as detailed information
on demand and non-linear animation of the simulation.

The system is currently being extended to cater to the
analysis of multiple simulations concurrently, where the
user will also be able to further investigate subsets of se-
lected simulations brushing and linking. We also plan
to include a visualization showing the balance of energy
flowing into a component versus leaving it, revealing loss
or gain in energy. We plan on doing a thorough evaluation
together with domain experts, but first feedback has been
very positive.
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