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Abstract

Understanding and modeling our environment is
a great and important challenge, spanning many
disciplines from weather and climate forecast
through vehicle design to computer graphics.
Physical systems are usually described by Par-
tial Differential Equations (PDEs), which we can
approximate using established numerical tech-
niques. Next to predicting outcomes, planning
interactions to control physical systems is also a
long-standing problem.

In our work, we investigate the use of Laplacian
eigenfunctions to model and control fluid flow.
We make use of an explicit description of our sim-
ulation domain to derive gradients of the physi-
cal simulation, enabling neural network agents to
learn to control the physical process to achieve de-
sired outcomes.

Keywords: Computer Graphics, Modeling and
Simulation, Fluid Simulation, Neural Networks

1 Introduction

Data helps us model and understand our world
more truthfully. Enabling the processing of the
ever-increasing volume of data, and running more
precise simulations necessitate continuous engi-
neering efforts.

Positioned at the crossroads of physical simula-
tion and deep learning techniques, our work is in-
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spired by current advances in physics-based deep
learning. We investigate the general problem of
controlling simulation parameters to achieve tar-
get outcomes. More concretely, many real-world
applications require us to optimize for some pa-
rameters of a physics-based problem. Although
such inverse problems have been around for quite
some time in engineering applications, recent
work showed remarkable results utilizing physi-
cal gradients to solve such problems. Examples
include finding the best shape to minimize airfoil
drag [2] and finding cloth simulation parameters
for yielding desired simulation outcomes [9].

We present a novel method for controlling fluid
simulations. We show that implementing a differ-
entiable reduced-order physics simulation yields
gradients that allow us to achieve speed-ups in
the optimization process characteristic of reduced-
order models, resulting in fast convergence times.
We investigate different possibilities for control.
After directly optimizing for parameters already
present in the simulation technique (such as ini-
tial velocity and external force), we build up to
adding a neural network (NN) for predicting con-
trol forces, and optimizing for its internal param-
eters. When optimizing for advection dynam-
ics, we achieve significant speed-ups by utilizing
point-wise samples: we keep the advection dy-
namics in the reduced-dimensional space, instead
of reconstructing the velocity field on an N ×N
grid in each time step. Thus, we essentially de-
couple the optimization from the grid resolution,
which can be reconstructed in any desired resolu-
tion without increasing the complexity of the op-
timization.

The source code of this project is available
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at https://github.com/bobarna/
controlling-2d-laplacian-
eigenfluids.

2 Previous Work

2.1 Fluid Simulation

Most simulation methods are based on either an
Eulerian (i.e. grid-based), or Lagrangian (i.e.
particle-based) representation of the fluid. For ad-
vecting marker density in our fluid, as well as a
comparative “baseline” simulation, we use Eule-
rian simulation techniques, mostly as described by
Stam [13]. For an overview of fluid simulation
techniques in computer graphics, see Bridson [1].

Reduced Order Modeling of Fluids. Dimen-
sion reduction-based techniques have been ap-
plied to fluid simulation in multiple previous
works. Wiewel et al. [17] demonstrated that func-
tions of an evolving physics system can be pre-
dicted within the latent space of neural networks
(NNs). Their efficient encoder-decoder architec-
ture predicted pressure fields, yielding two orders
of magnitudes faster simulation times than a tradi-
tional pressure solver. Recently, Wiewel et al. [16]
predicted the evolution of fluid flow via training
a convolutional neural network (CNN) for spatial
compression, with another network predicting the
temporal evolution in this compressed subspace.
The main novelty of Wiewel et al. [16] was the
subdivision of the learned latent space, allowing
interpretability, as well as external control over
quantities such as velocity and density.

Eigenfluids. Instead of learning a reduced-order
representation, another option is to analytically
derive the dimension reduction and its time evo-
lution. De Witt et al. [4] introduced a computa-
tionally efficient fluid simulation technique to the
computer graphics community. Rather than using
an Eulerian grid or Lagrangian particles, they rep-
resent fluid fields using a basis of global functions
defined over the entire simulation domain. The
fluid velocity is reconstructed as a linear combi-
nation of these bases.

They propose the use of Laplacian eigenfunc-
tions as these global functions. Following their
method, the fluid simulation becomes a matter of

evolving basis coefficients in the space spanned by
these eigenfunctions, resulting in a speed-up char-
acteristic of reduced-order methods.

Following up on the work of De Witt et al.
[4], multiple papers proposed improvements to the
use of Laplacian eigenfunctions for the simulation
of incompressible fluid flow. Liu et al. [10] ex-
tended the technique to handle arbitrarily-shaped
domains. Jones et al. [7] used Discrete Cosine
Transform (DCT) on the eigenfunctions for com-
pression. Cui et al. [3] improved scalability of the
technique, and modified the method to handle dif-
ferent types of boundary conditions. Cui et al.
[3] refer to the simulation technique as eigenflu-
ids, which we also adhere to in the following.

2.2 Differentiable Solvers

Differentiable solvers have shown tremendous
success lately for optimization problems, includ-
ing training neural network models [5, 6, 11].
Holl et al. [5] address grid-based solvers. They
put forth ΦFlow, an open-source simulation toolkit
built for optimization and machine learning appli-
cations, written mostly in Python. After trying
out multiple recent frameworks aimed at differen-
tiable simulations [11, 6], we implement all of our
experiments using ΦFlow [5].

Physics-based Deep Learning. Despite being a
topic of research for a long time [12], the inter-
est in neural network algorithms is a relatively
new phenomenon. This is especially true for the
use of learning-based methods in physical and nu-
merical simulations, which is a rapidly developing
area of current research [2, 9]. Integrating physi-
cal solvers in such methods have been shown to
outperform previously used learning approaches
[15]. Drawing on a wide breadth of current re-
search, Thuerey et al. [14] give an overview of
deep learning methods in the context of physical
simulations.

3 Background

In this section, we introduce the techniques, the-
ory and notation underlying our methods for con-
trolling eigenfluids in Section 4.
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3.1 Fluid Simulation

The dynamics of fluids are governed by the
Navier-Stokes Equations:

∂u
∂ t

+(u ·∇)u =− 1
ρ

∇p+ν∇
2u+ f, (1)

where u is the velocity of the fluid, ρ is the den-
sity, p is the scalar pressure field, ν is the viscos-
ity constant and f denotes external forces. For in-
compressible fluids, the divergence-freeness also
has to hold, i.e. ∇ · u = 0. There are multi-
ple established ways to simulate fluids, the most
widespread being Eulerian (i.e. grid-based) and
Lagrangian (i.e. particle-based) methods. We
use established Eulerian methods [1] for advect-
ing and comparison purposes.

The Laplacian Eigenfunction Method. A veloc-
ity field u(x) can be expressed via the linear com-
bination of N global functions:

u(x) =
N

∑
k=0

wkΦk(x), (2)

where the elements of w = [w0, . . . ,wN ] are called
basis coefficients and Φk are basis functions. In
the following, we use u = Rw to notate a veloc-
ity field u reconstructed from w. De Witt et al.
[4] propose the use of eigenfunctions of the vec-
tor Laplacian operator ∆ = ∇

2. If we further re-
quire our basis fields Φk to be divergence-free and
to satisfy a free-slip boundary condition, then our
basis functions are fully characterized by

∇
2
Φk = λkΦk (3)

∇ ·Φk = 0 (4)
Φk ·n = 0 at ∂D, (5)

where n is the normal vector at the boundary ∂D
of our domain D. On some domains, closed-form
expressions exist. Denoting the two scalar compo-
nents in the x and y directions Φk = (Φk,x,Φk,y),
on the two dimensional D ∈ [0,π]× [0,π] square
domain, Φk can be written as

Φk,x(x,y) = ηk
(
k2 sin(k1x)cos(k2y)

)
(6)

Φk,y(x,y) =−ηk
(
− k1 cos(k1x)sin(k2y)

)
,

(a) Velocity field Φ(4,3). (b) Curl field ∇×Φ(4,3) =
φ(4,3).

Figure 1: Visualizing Φ(4,3) sampled on a 20×20
grid in our simulation domain D = [0,π]× [0,π].

where k = (k1,k2) ∈ Z2 is the vector wave num-
ber, λk = −(k2

1 + k2
2) is the eigenvalue, and ηk =

(−λk)
−1 is a normalization parameter. As an ex-

ample, Φ(4,3)(x,y) is visualized in Figure 1.
Higher wave lengths corresponding to smaller

scales of vorticity has a very literal meaning in our
simulation. As we choose to truncate the spectrum
of Φk at some number N, the error we incur is well
defined: we lose the ability to simulate vortices
smaller than a given scale. Also, as we will see
later on, this correspondence to spatial scales of
vorticity lets us control the viscosity (i.e. energy
decay) in relation to the scales of vortices by mod-
ifying the base coefficients. By setting the magni-
tude of each basis coefficient to decay with a time
constant equal to the eigenvalue, we get the physi-
cally correct behavior that small vortices dissipate
faster than large vortices.

For the simulation technique, we further require
the vorticity field ω = ∇×u and a set of vorticity
basis functions φ = ∇×Φ. Taking the curl gives
us the vorticity basis fields:

φk = ∇×Φk =

 0
0

sin(k1x)sin(k2y)

. (7)

As the velocity field u and vorticity field ω are
orthogonal, the vorticity basis functions φk have

Note: We use the wave length vector k = (k1,k2), as well
as a single (non-vector) k for indexing over all of the basis
fields – a slight, but very useful abuse of notation. This stems
from the fact that a suitable mapping from vector wave length
(k1,k2) to positive integers is necessary in an implementation.
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only a normal component at the boundary and sat-
isfy

∇
2
φk = λkφk (8)

φk×n = 0 at ∂D. (9)

From these properties, De Witt et al. [4] show a
velocity-vorticity duality, letting us use the same
w vector to reconstruct u and ω from Φk and φk,
respectively. Furthermore, as both Φk and φk are
divergence-free by construction (i.e. ∇ · φk = 0),
there is no need for a pressure projection in each
time step, otherwise often present in fluid simula-
tion techniques.

They also show that on Laplacian eigenfunc-
tions, the inverse operator curl−1 takes the sim-
ple form Φk =−λ

−1
k ·curl(φk), making the recon-

struction of u from ω efficient.

Dynamics. The vorticity formulation of the
Navier-Stokes Equations (Equation 1) is

ω̇ = Adv(u,ω)+ν∇
2
ω +∇× f, (10)

where ω = ∇× u and f denotes external forces.
Adv(u,ω) represents the advection term, defined
as Adv(u,ω) := curl(ω×u).

De Witt et al. [4] perform projection to a Lapla-
cian eigenfunction basis by substituting the expan-
sions ω = ∑i wiφi, u = ∑ j w jΦ j and ω̇ = ∑k ẇkφk
into Equation 10. With rearranging the terms
through linearity of operators, they get

N

∑
k

ẇφk =
N

∑
i

N

∑
j

wiw jAdv(Φi,φ j) (11)

+ν

N

∑
i

∇
2wiφi +∇× f.

As the Adv(Φi,φ j) terms are constant, we pre-
compute them, and the results are stored in the φk
basis, making up the elements of the Ck matrices
for each basis field, each with N×N values:

Ck[h, i] =
(
∇× (φh×Φi)

)
·φk. (12)

Thus, the evolution of a fluid’s velocity as the
time derivative of the kth element of the coeffi-
cient vector dw

/
dt = ẇ can be written as

ẇk = wT Ckw+νλkwk + fwk , (13)

where the advection term νλkwk is a point-wise
exponential decay (derived via Equation 8) and
fwk represents the external force f projected to the
given basis. Any standard numerical technique
can be used to integrate Equation 13 forward in
time. However, De Witt et al. [4] describe a pre-
ferred technique that, in order to preserve kinetic
energy, renormalizes the energy of the fluid simu-
lation after each integration step. They show that
due to the orthogonality of the basis functions, the
total kinetic energy can be calculated as a sum of
squared coefficients.

Algorithm 1 Eigenfluids: stepping w by ∆t

e1 = ∑
N
i w[i]2 ▷ store kinetic energy

for k = 1 . . .N do
ẇ[k] = wT Ckw ▷ calculating advection

end for
w += ẇ∆t ▷ explicit Euler integration step
e2 = ∑

N
i w[i]2 ▷ energy after time step

w ∗=
√

e1/e2 ▷ renormalize energy
for k = 1 . . .N do

w[k] ∗= eλk∆t ▷ dissipate energy (viscosity)
w[k] += f[k] ▷ add external forces

end for.

3.2 Neural Networks

The goal of neural networks (NNs) is to approxi-
mate an unknown function

f∗(x) = y∗,

where y∗ denotes ground truth solutions. f∗(x) is
approximated by a neural network (NN) represen-
tation

f(x,θ) = y,

where θ is a vector of weights, influencing the out-
put of the NN. In the case of a fully-connected
NN, we can write its ith layer as

oi = σ
(
Wioi−1 +bi

)
, (14)

where oi is the output of the ith layer, and σ is a
non-linear activation function, such as the rectified
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linear unit (ReLU) function, and Wi and bi are the
weight matrix and the bias of layer i, respectively.
We call Wi and bi the parameters of the NN, and
collect their values from all layers in θ .

Deep learning (DL) is about stacking multiple
layers after each other, and finding θ parameters
such that the outputs y of the NN match the y∗
outputs of the original function f∗ as closely as
possible, as measured by some scalar-valued loss
function L

(
f(x,θ),y∗

)
. Using a mean square error

for our loss function, we can write the optimiza-
tion problem as:

argmin
θ
∥f(x,θ)−y∗∥2

2. (15)

The chain rule gives us the derivates of compos-
ite functions, letting us calculate the gradients of
the loss function L with respect to the weights θ

(i.e. ∂L
/

∂θ ). In Section 4.2.4, we optimize, i.e.
train our NNs with Adam [8], a stochastic gradi-
ent descent (SGD) optimizer.

For the purposes of Section 4, before introduc-
ing NNs into the optimization loop, it is helpful
to think of the derivative as function sensitivity,
denoting how a small change in an input variable
changes the output of the function. As introduced
in Equation 15, for finding the optimal θ param-
eters of a NN, this is exactly what we need: how
to tweak θ to reduce the output of a loss function.
More generally, we can optimize w.r.t. any param-
eter of a function in the same manner, such as the
initial velocity field of a fluid simulation. In Sec-
tion 4, we will do exactly this.

4 Controlling Eigenfluids

In the following, we showcase different optimiza-
tion scenarios of increasing complexity, investi-
gating different aspects of controlling eigenfluids
via differentiable physics (DP) gradients. Mak-
ing use of the explicit closed-form description of
a velocity field (Equation 6) to derive gradients
used for optimization, we achieve a speed increase
characteristic of reduced-order techniques.

4.1 Matching Velocities

To verify the feasibility of our technique before
moving on to more involved setups, our most
straightforward optimization scenario is finding
an initial basis coefficient vector w0 ∈ RN for an
eigenfluid simulation using N = 16 basis fields,
such that when simulated for t time steps, the re-
constructed Rwt = ut velocity field will match
some precalculated u∗ : [0,π]× [0,π]→ R2 target
velocity field:

L(w) =
∥∥RPt(w)−u∗

∥∥2
2, (16)

where Pt(w) = P ◦P · · · ◦P(w) is a compos-
ite function: the physical simulation of base coef-
ficients w, t times.

For the optimization, we initialize a winit ∈ RN

vector with random numbers (from a normal dis-
tribution), and run the eigenfluid simulation for t
time steps, after which we measure the error as
given by loss function 16. Relying on backpropa-
gation 1 to derive the necessary gradients, we use
the gradient descent (GD) optimization method
to iteratively find a vector woptim, yielding a low
scalar loss:

w← w−λ∇LT (w). (17)

To be able to make some further evaluation of
the end results possible, we step an eigenfluid
solver for time t to precalculate the target u∗ ve-
locity field, sampled on a 32×32 grid. We denote
the initial base coefficient vector of this reference
simulation w∗, but keep in mind that the optimiza-
tion has absolutely zero knowledge of this value,
as it sees only the 32× 32× 2 velocity values of
u∗ = Rw∗ at time t. Also, these values could
have been precalculated from any other kind of
fluid simulation as well, or even just initialized
randomly. Deriving u∗ as the result of an eigen-
fluid simulation has the added benefit of exposing
to us a solution w∗ that we can use to compare
with the solution of the optimizer.

Results. We test this setup on two scenarios, with
differing the number of time steps t simulated:
first with t = 16, and then with t = 100.

1By backpropagation, we refer to the reverse mode auto-
matic differentiation technique of deriving the gradients w.r.t.
any given parameter(s) of a composite function by applying
the chain rule.
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For t = 16 simulation steps, starting from a loss
of around 400, the first 100 GD optimization steps
with λ = 10−3 reduced the loss to under 1.0, while
200 steps further decreased it to under 4 ·10−4.

Naturally, this very basic method has its limits.
Optimizing for initial coefficients for a target ve-
locity field after 100 steps proved to be a substan-
tially harder problem, as even a relatively small
error can accumulate into major deviations over
these longer time steps, resulting in much less sta-
ble gradients. With using the same learning rate,
the optimization diverged almost instantly. With
some tuning of the learning rate λ in the range of
[10−4,10−8], we were able to get the loss below
0.14. (Starting from an initial loss of 320 from the
random initialization.)

We visualize the results of these two scenarios
in Figure 2. It is interesting to observe that even
though the optimization had absolutely no knowl-
edge of w∗, only a comparison with a precom-
puted u∗ velocity field at the target time step, the
optimized woptim vector already starts to look sim-
ilar to w∗. Keep in mind that this is not guaranteed
at all. In some other cases of running this opti-
mization setup, we also observed woptims that are
completely different from w∗. Due to the physical
constraints of the eigenfluids simulation, in these
cases the optimization could not change any of the
16 values of woptim locally in a way that would
further reduce the loss below some small number,
and was stuck in a local minimum of the parame-
ter space.

Although there are a number of ways to tweak
this setup, we can already verify from these results
that the flow of the gradients is working, and is
ready to be tested in more advanced scenarios.

4.2 Controlling Shape Transitions

Advection of some scalar quantity in a fluid is an
abstract problem that describes many real-world
phenomena, like ink in water or smoke in the air.
We define a density function ψ(x) over a simu-
lation domain D. In a fluid with velocity u, and
∇ ·u = 0 holding (i.e. the fluid is incompressible),
the advection is governed by the equation

∂ψ

∂ t
+u ·∇ψ = 0. (18)

(a) winit , woptim, and w∗, optimizing for velocity field
after 16 time steps

(b) Target u∗, and u16, reconstructed from P16(woptim)

(c) Initial basis coefficients winit , woptim, and w∗, opti-
mizing for velocity field after 100 time steps

(d) Target u∗, and u100, reconstructed from
P100(woptim)

Figure 2: Results of optimizing for an initial w0
basis coefficient vector that matches a target ve-
locity field u∗ when reconstructed after simulating
for t time steps.
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We define each shape with

ψ(x) =

{
1, inside the shape
0, outside the shape.

(19)

In Eulerian fluid simulation methods [1], both
u and ψ are sampled on grids, numerically ap-
proximating the evolution of the field quantities.
The work of Holl et al. [5] formulated the shape
transition problem in an Eulerian representation,
with explicitly simulating the shapes as scalar
marker densities being advected by the velocity
field of the simulated fluid. Instead, playing to the
strengths of an eigenfluids simulation, our method
proposes sampling the density function at discrete
particle positions, thus rephrasing the process in
a Lagrangian way. In the context of Laplacian
eigenfluids, a Lagrangian viewpoint is especially
inviting, as the explicit description of the fluid ve-
locity u (Equations 2 and 6) allows us to recon-
struct u only partially, while keeping the simu-
lation of the fluid dynamics in a reduced dimen-
sional space. In a forward physics simulation, this
can already lead to substantial speed-ups, but this
formulation seems especially promising when the
backpropagation of variables is desired, such as
the optimization scenarios introduced herein.

We formulate three different control problems,
each with a different mean to exert control over
the fluid simulation.

• In Section 4.2.2, similarly to the problem
statement in Section 4.1, we are looking for
an initial coefficient vector w0, such that
when simulated for t time steps, the re-
constructed velocity field Rwt = ut advects
some initial shape into some target shape.

• In Section 4.2.3, we optimize for some force
vector f ∈ Rt×N , such that ft ∈ RN applied as
external force to each time step of an eigen-
fluid simulation, it yields the desired out-
come.

• Finally, in Section 4.2.4, we generalize the
problem to looking for a function that ex-
erts the necessary control force at time t,
such that particles currently at positions pt
end up at target positions pt+1 at the next
time step. We formulate this third task as

a neural network (NN) model in the form
f(pt ,pt+1,wt ,θ), also passing in the current
basis coefficient vector wt , and optimizing
for its parameters θ to yield the desired out-
come (as introduced in Section 3.2).

In each of these tasks, a velocity field u = Rw
advects a set of initial points p0 =

[
p0

0, . . . ,p
i
0
]

to
line up with target positions pt =

[
p0

t , . . . ,pi
t
]

after
time t. Using a mean-square error, our loss func-
tion becomes

L(w,p0,pt) =
∥∥Pt(p0,w)−pt

∥∥2
2. (20)

4.2.1 Sampling

As we neither want to lose too much informa-
tion about our original function nor do we want to
keep track of an unnecessary number of points, the
feasibility of our method necessitates an efficient
sampling of ψ(x). We use a simple rejection-
based sampling technique. We generate random
points psample ∈ [0,1]× [0,1], rejecting them if
they lie outside the shape.

As we consider shape transitions given start and
target shapes S0 and St, it is important to take
into consideration the connection between these
shapes. To balance finding spatial correspon-
dences between the shapes, while still approxi-
mating their unique shapes, we sample O overlap-
ping, and U unique points. For the overlapping
points, we accept only psample ∈ S0∪St, i.e. we re-
ject points that are not inside both shapes. For the
unique points, we sample a different set of points
for each shape. To generate low-discrepancy,
quasi-random 2D coordinates, we use Halton se-
quences.We further generate T = 5 trivial points
that are hand-picked to best resemble the given
shape, as well as line up between different shapes.
We choose these to be the center, upper right, up-
per left, lower left, and lower right corners of the
shapes.

In conclusion, our final set of p0 initial, and
pt target sample positions are given by concate-
nating the O overlapping, U unique, and T trivial
points for each shape, resulting in two sets of sam-
ple points p0,pt ∈R2(O+U+T ). Figure 3 shows the
result of our sampling strategy for a triangle and a
circle shape.
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(a) O = 30 (blue), U =
30 (green), and T = 5
(red) points.

(b) Sample points over
ψtriangle +ψcircle.

Figure 3: Sampling strategy for transitioning from
a triangle to a circle. Halton series with base (2,7)
and (3,11) were used to generate the overlapping
and unique positions, respectively.

4.2.2 Optimizing for Initial Velocity

As Equation 20 introduced the problem, our goal
is to find an initial velocity field Rw = u that ad-
vects points p0 to line up with target positions pt
after t steps. We can write optimizing for base co-
efficients w as:

argmin
w

∥∥Pt(p0,w)−pt
∥∥2

2. (21)

Making use of the differentiability of our phys-
ical simulator P , and the multivariable chain rule
for deriving the gradient of the above Pt func-
tion composition, we can derive its gradient with
respect to the initial coefficients:

∂Pt(w,p)
∂w

.

Finally, we simply iterate a GD optimizer to
find a (good enough) solution for the minimiza-
tion problem of Equation 21:

wbetter = w−λ
∂L(w,p0,pt)

∂w
,

where L is the same as in Equation 20:

L(w,p0,pt) =
∥∥Pt(p0,w)−pt

∥∥2
2.

The main difficulty of this non-linear optimiza-
tion problem lies in that we have no control over
the natural flow of the fluid besides supplying an
initial w0 vector. We showcase two different se-
tups in Figure 4, with the details of both experi-
ments described in Table 1.

Table 1: Details of the two optimization scenarios
shown in Figure 4.

Figure 4a Figure 4b
N 16 36

Sampling size for smoke simulation 32 32
Eigenfluid initialization time 6.19 sec 68.47 sec

Time for 51 optimization steps 108.05 sec 230.48 sec
Initial loss 2.3 2.19
Final loss 0.08 0.09

Number of overlapping points O 0 30
Number of unique points U 0 30
Number of trivial points T 5 0

4.2.3 Control Force Estimation

In this scenario, we optimize for a force vector
f ∈ Rt×N , such that ft ∈ RN applied as external
force at each time step t of an eigenfluid simula-
tion, initial positions p0 will be advected to target
positions pt after t time steps:

argmin
f

∥∥Pt(p0,w, f)−pt
∥∥2

2,

where Pt(p0,w, f) = P ◦ · · · ◦P(p0,w, f) de-
notes simulating the physical system for t time
steps, applying ft force at each time step. Results
of the optimization are shown in Figure 5.

4.2.4 Neural Network Training

We generalize the control force estimation (CFE)
problem by defining a function f(pt ,pt+1,wt) :
R2·2(O+U+T )+N → RN , that given particles at po-
sitions pt and velocity field wt at time t, gives a
force that advects the particles to positions pt+1 in
the next time step. Its inputs are the (x,y) coor-
dinates of the points, and the N basis coefficients,
giving 2 · 2(O+U +T )+N values, where O, U ,
and T denote the number of overlapping, unique,
and trivial sample points, respectively, as intro-
duced in Section 4.2.1.

We approximate function f with a CFE NN
f(pt ,pt+1,wt ,θ). Each layer is constructed as de-
scribed in Equation 14 with ReLU non-linearities
in-between. Figure 6 gives an overview of our NN
architecture. As the input size of the NN is depen-
dent on the specific problem, the number of train-
able parameters also varies, and a new NN has to
be trained when using a different number of basis
fields, or different number of total sample points.
As an example, for N = 16 basis fields, and 75
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(a) Using O = 0, U = 0, T = 5 sampling points and N = 16 basis fields.

(b) Using O = 30, U = 30, T = 0 sampling points and N = 36 basis fields.

Figure 4: In the least complex scenario, we solve the shape transition problem by optimizing for an initial
coefficient vector w without any further control over the simulation. Time evolution over 16 time steps of
two different simulation set-ups are shown, with different number of sample points and basis fields used.
Initial (blue) and target (red) sample points are shown.

sample points, the NN has 337 392 trainable pa-
rameters. Testing the setup, we overfit the NN to
a single training sample. Plotting the results of
the time evolution in Figure 7, we observe that a
reduced degrees of freedom can yield compara-
ble, or even better results with the same setup, and
training time. Using an Adam optimizer [8] with
learning rate 10−3, the results shown in Figure 7
were achieved in 260 epochs. The training took
53.94 seconds.

Training. We generate 2000 samples, using 1800
for training, and 200 for validation. Using N = 16
basis fields, we train the NN for the CFE prob-
lem detailed above. At the end of the training, we
generate further data the NN has not seen during
training to further test generalization. Using an
Adam [8] optimizer with learning rate 10−3, the
results shown in Figure 8 were achieved in 260
epochs. The training took 1201.74 seconds (20
minutes). As we did not experience any overfit-
ting issues during training, no additional regular-
ization schemes were applied.

5 Results & Discussion

After introducing gradient-based optimization in
the context of eigenfluids (Section 4.1), we pro-
posed a novel approach to control shape tran-

sitions (Section 4.2) in the reduced-dimensional
fluid simulation. Starting with individual opti-
mization problems (Figures 4 and 5), we showed
that NNs can not only give comparable results to
a set of problems, but they also generalize beyond
the examples seen during training (see Figure 8).

Owing to the reduced-order nature of the ap-
proach, we achieved speed-ups that usually result
in convergence times of minutes even in the case
of more advanced setups (and sub-minute, or sec-
onds in the more straight-forward ones).

Although not a silver bullet, we believe that
this approach complements and connects existing
techniques in a new and exciting way, offering a
fresh perspective on thinking about NNs as uni-
versal function approximators.

Generalizing to 3D. All of the introduced meth-
ods generalize to 3D in a straightforward way. As
shown by Cui et al. [3], the Laplacian eigenfluids
technique is a viable option for simulating three-
dimensional incompressible fluid flow.

Target Trajectory. We estimate the trajectory as
a linear interpolation between start and end posi-
tions. Recalculating the trajectory based on the
actual path taken after applying the control forces
at each time step might lead to more natural transi-
tion paths. Alternatively, the effects of implement-
ing a predictor-corrector scheme as introduced by
Holl et al. [5] could be investigated.
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(a) Sample points. (b) Optimized trajectory of the sample points underlying the optimization (top). Smoke ad-
vection is shown for qualitative comparison, reconstructed on a 100×100 grid (bottom).

Figure 5: Direct force optimization results with 16 time steps, and using N = 16 basis fields. We observe
that although the sample points (blue) were advected close to their target positions (red), using only 5
sample points was not enough to approximate the underlying higher dimensional advection dynamics.

[p0,pt ,w] f
512 256 128 64 32 16

Figure 6: The CFE NN transforms the input vector of size 2 ·2(O+U +T )+N into a force vector f that
can be added to the w coefficients as external force. (The architecture for N = 16 fields is shown.) Each
layer is linear, with outuput sizes matching each following input size. A ReLU non-linearity is applied
after each layer.
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Thürey. Latent Space Physics: Towards
Learning the Temporal Evolution of Fluid
Flow. Computer Graphics Forum, 38, 2019.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

https://doi.org/10.1145/3527660
https://doi.org/10.1145/3527660
https://doi.org/10.1145/2816795.2818130
https://doi.org/10.1145/2816795.2818130
https://github.com/nvidia/warp
https://github.com/nvidia/warp
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1145/311535.311548
https://doi.org/10.1145/311535.311548
https://physicsbaseddeeplearning.org
https://physicsbaseddeeplearning.org
https://doi.org/10.1111/cgf.14097
https://doi.org/10.1111/cgf.14097


(a) Performance on training data. (Randomly sampled.)

(b) Testing on previously unseen test data. (Randomly sampled.)

Figure 8: Randomly sampled time evolution of controlled shape transition tasks. Using N = 16 basis
fields, sampling the smokes on a 32× 32 grid, approximating them with O = 30 overlapping, U = 40
unique and T = 5 trivial sample points, through 16 time steps t = [0 . . .15].
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