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Abstract

Histological examination is a crucial component of breast
cancer diagnostics. Analysis of whole-slide images (WSI)
is a time-consuming process due to their hierarchical na-
ture and size, resulting both in slower diagnostics and a
lack of annotations. Recent advances in vision transform-
ers have demonstrated potential within the field of com-
puter vision. However, their properties with hierarchical
gigapixel images, where contextual information is cru-
cial, remains underexplored. In this paper, we propose
a solution employing semi-supervised learning based on
a self-supervised pretraining and supervised fine-tuning
paradigm, utilizing these advancements. Our approach
modifies vision transformer encoders within the segmen-
tation network to incorporate contextual information from
lower magnification levels through late feature fusion.
The multi-scale model variant outperforms its single-scale
counterpart, improving the dice score by 6.2%. Further-
more, we examine the properties of features learned by
masked image modeling (MIM) and establish that vision
transformers trained with MIM can effectively learn mor-
phological phenotypes from unlabeled histopathological
images, thereby validating its use as a pretraining tech-
nique in this domain.

Keywords: Whole-Slide Images, Breast Cancer, Deep
Learning, Segmentation, Semi-Supervised Learning, Vi-
sion Transformers, Medical Imaging

1 Introduction

Breast cancer is one of the leading preventable causes of
death, accounting for more than 13 percent of all new
cancer cases and 28.7 percent of all cancer discoveries in
women in the European Union as of 2020. While the num-
ber of new cases has increased over time, the number of
deaths has decreased [9]. This can be explained not just
by increasing the quality of treatment but also by increas-
ing the rate of early disease diagnosis [7]. Histological
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analysis is a vital, yet time-consuming and difficult, com-
ponent of breast cancer diagnosis. As part of the patho-
logical examination of the breast, a biopsy is performed.
The extracted tissue is sliced, and the slice is then stained
most commonly with hematoxylin and eosin (H&E). Sub-
sequently, it is placed on a glass slide, which is scanned
with a motorized microscope. Slides are scanned at mul-
tiple magnification levels, resulting in z-stacks. This en-
ables pathologists to switch between these magnification
levels, simulating classical microscopy. Pathologists ana-
lyze a variety of structures, not only at the level of cellular
morphology but also at the level of larger breast structures,
utilizing both contextual information from lower levels
and detailed information from higher levels of magnifica-
tion.

Deep learning has been an essential part of computer vi-
sion, and convolutional models have been successfully ap-
plied to the field of computational pathology. However, in
recent years, transformer-based vision models have gained
prominence, obtaining state-of-the-art performance across
numerous general vision tasks. The properties of these
transformers have, however, not yet been thoroughly ex-
amined within the field of histopathology, especially when
dealing with segmentation of hierarchical images. Due to
their size, Whole-Slide Images (WSI) must be split into
smaller patches. These patches, at the highest magnifica-
tion level, may not contain the necessary information for
segmentation models to make accurate predictions, as they
lack coarser-grained tissue features and their spatial orga-
nization. Additionally, the complex hierarchical nature of
WSI results in a lack of annotated datasets in terms of both
quantity and quality, especially when dealing with pixel-
level annotations.

In this work, we first assess the utility of vision trans-
formers on the BCSS dataset and then propose modifica-
tions to the segmentation network so that it uses multi-
ple magnifications and passes contextual information in
a top-down manner. We split methods of feature fusion
into three categories: early, intermediate, and late fusion.
Prior work on convolutional encoders used variations of
early and late feature fusion with linear and LSTM layers.
We examine early and late feature fusion with the use of
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the Swin Transformer [8] encoder and a modified Uper-
net [15] architecture, using both linear layers and cross-
attention mechanisms. Additionally, we expand these two
types of fusion through intermediate fusion, merging fea-
tures between individual blocks of the encoder. We find
that vision transformers, even though they lack the inher-
ent biases of convolutional networks, can achieve simi-
lar accuracy within the domain of histopathology. With
the introduction of late feature fusion, we surpass the ac-
curacy of single-scale single architectures, increasing the
dice score by 6.2%.

Additionally, to address the issue of the lack of anno-
tations, we explore the use of self-supervised pretraining
methods based on masked image modeling (MIM) utiliz-
ing the BRACS [3] dataset. Through qualitative analysis
of learned features, we find that transformer-based models
pretrained with MIM on the BRACS dataset can learn use-
ful representations of various types of tissues, confirming
that it can be used as a pretraining step within the domain
of histopathology.

2 Related Work

The segmentation task can be interpreted either as a pixel-
wise segmentation or a patch-wise segmentation, where an
image is split into patches, which are then classified and
combined to create a coarse segmentation mask. Numer-
ous approaches to pixel-wise segmentation have been pro-
posed, with the most prevalent being the convolutional U-
Net [12], featuring an encoder-decoder architecture with
a bottleneck and skip connections. Variants of this archi-
tecture have also emerged, including U-Net++ [18], which
employs a densely connected decoder subnetworks, and
R2U-Net [1], which incorporates recurrent modules within
both its encoder and decoder stages.

These architectures, frequently employed in cell and or-
gan segmentation tasks, do not take advantage of the hi-
erarchical structure of whole-slide images. To address
this limitation, a number of context-aware methods have
been introduced for the classification and segmentation
of histopathological images. Sirinukunwattana et al. [13]
studied the impact of providing contextual information to
the prediction algorithm. They approached the problem
of image segmentation as a patch-level classification and
compared three types of architectures: single-scale archi-
tecture, which operates at a single image resolution; early
fusion, which fuses information from multiple resolutions
before passing it through a neural network; and late fusion,
which uses separate networks for different magnifications
and combines the output to make a prediction. Out of the
three groups described, a single-scale design performed
significantly worse than architectures that used contextual
information. Feng et al. [6] proposed an end-to-end frame-
work that generates predictions at multiple magnification
levels and combines them using a voting process, adopt-
ing the late fusion approach. This approach was also used

by the multi-scale classification model proposed by Wette-
land et al. [14] to classify small patches, combining them
into segmentation mask of an entire WSI. One major ad-
vantage of the late fusion approach is its ability to utilize
contextual information from multiple resolutions, enhanc-
ing prediction accuracy. However, the main disadvantage
is the increased computational complexity compared to
single-scale architectures.

Chen et al. [5] proposed the Hierarchical Image Pyra-
mid Transformer (HIPT), a three-stage architecture that
performs bottom-up aggregation for slide-level representa-
tion, akin to hierarchical attention networks in long docu-
ment modeling. The model allows for self-supervised pre-
training methods to pretrain each aggregation layer sepa-
rately, which can then be fine-tuned with slide-level labels
for cancer subtyping and survival prediction tasks in the
TCGA. Since the attention is computed only within local
windows, learning long-range dependencies is tractable.
Even though this method of bottom-up aggregation is not
useful for image segmentation, it may be useful as a pre-
training step.

3 Data

Breast Cancer Semantic Segmentation (BCSS) [2] dataset
contains regions of interest derived from 151 WSIs stained
with H&E, collected from histologically confirmed cases
of breast cancer. Pathologists graded regions from 21 dif-
ficult slides that were annotated by trained non-pathologist
research participants. Masks, pixel-level annotations with
21 classes, were the resulting annotations. Within the
scope of our work, we opted for the use of the modified
version of this dataset with labels reduced according to
TIGER Challenge.

BReAst Carcinoma Subtyping (BRACS) [3] dataset is a
breast carcinoma subtyping dataset containing 547 H&E-
stained whole-slide images and 4539 extracted regions of
interest from these WSIs. Both WSIs and ROIs were an-
notated with lesion categories by the consensus of three
pathologists. Benign, malignant, and atypical lesions
are further subtyped into seven distinct categories. Even
though this dataset is one of the largest in its category, it
does not include annotations at the pixel level. However,
it can be used for unsupervised training.

4 Method

One of our objectives is to make use of current develop-
ments in transformer-based models. We decided to exploit
current breakthroughs in semi-supervised learning, focus-
ing on the paradigm of self-supervised pretraining and
fully-supervised finetuning, as training these transformer
models requires vast quantities of data. Thus, as shown
on Figure 1, training is divided into two stages, with each
of these stages being performed at the slide level using a
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patch generator. This generator generates a tissue mask
and patch stacks for the entire WSI. The resulting data is
subsequently used for training. Within the first stage of our
experiments, we compare various architectures that either
utilize input from a single magnification level or use cus-
tom architectures that make use of three separate magnifi-
cations. In the second stage of our experiments, we focus
on self-supervised pretraining with the BRACS dataset.
Since the dataset contains 547 WSIs, training is difficult
given the available computational resources. Therefore,
we have chosen to sample WSIs, and from these images,
we have chosen to sample 150,000 patches. In this phase,
we will evaluate method of masked image modeling.

Figure 1: Overall two-stage architecture of proposed
framework with self-supervised pretraining using MIM
and fully-supervised context-aware finetuning

4.1 Data Preparation

Upon reviewing slides included in the dataset, we have dis-
covered that a large part of all WSIs consist of background
material without any histopathological relevance. That is
why, firstly, a tissue mask is constructed employing simple
thresholding and morphological operations. As some of
the slides were labeled and contained artifacts, we created
a mask for artifacts we observed by applying thresholding
to the converted LAB image and deleting them from the
tissue mask.

Patches are generated based on the pixels per micron
(PPM) parameter of the slide, so that the generator can
be used on varying datasets. Patches at the greatest mag-
nification level containing tissue proportions below the
threshold are discarded. When dealing with the BCSS
dataset, patches with masks that include background levels
above threshold in their annotation at the greatest magnifi-
cation level are eliminated. When multiscale patch stacks
are required, the location of the patch at the highest magni-
fication level is determined first, and then the locations of
patches at lower magnification levels are calculated, with
higher magnification being at the central position. Stain
normalization is the final phase in the preparation process,

and we have decided to use the Macenko method of nor-
malization [10]. This method is frequently employed as a
preprocessing step, as it estimates hematoxilin and eosin
concentrations from color space distributions and normal-
izes input images based on these concentrations, given
some target image. Preprocessing flow is illustrated on
Figure 2.

Figure 2: Three stages of data preparation: tissue mask
retrieval with tresholding, patch tiling and background re-
moval, and the addition of contextual patches from lower
magnifications

4.2 Training Configuration

As per established and recommended training parameters,
the final training configuration for fully supervised train-
ing uses the ReduceLRonPlaeau scheduler for convolu-
tional networks and the cosine scheduler for transformer-
based networks. As for the optimizer, AdamW is used,
with betas set to 0.90 and 0.999, epsilon 1e-8, and a
base learning rate of 5e-4. Since we have observed that
this dataset is unbalanced and comprises disproportion-
ately greater stroma and tumor types, we used Dice Cross-
Entropy Loss, which includes squared versions of targets
and predictions in the denominator,

Loss =
(

1− 2∗∑
C
c=1 pc p̂c

∑
C
c=1 p2

c +∑
C
c=1 p̂2

c

)
−0.5∗

C

∑
c=1

pc log p̂c

where, C is the number of classes or categories, pc is the
true probability of class c, and p̂c is the predicted proba-
bility of class c. Since the background class label in this
dataset reflects unannotated regions and offers no seman-
tic relevance in terms of training, it is not included in the
calculation of loss.

To improve model resilience and reduce susceptibility
to color pertubations, we employed augmentations. Ver-
tical and horizontal flips, random rotations, and Contrast
Limited Adaptive Histogram Equalization (CLAHE), ran-
dom brightness, and contrast were employed. Addition-
ally, we attempted to address the issue of class imbalance
by oversampling and undersampling patches based on the
classes present within its segmentation mask.
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As for patch extraction, we used patch size 224 and
overlap 112, as images of this scale contained sufficiently
complex structures both within images and masks. Using
our patch extractor, we used scale 1 as an input for single
scale experiments and 1, 4, and 8 for multi-scale experi-
ments. Within the scope of this work, the term scale refers
to the downsampling factor relative to the highest level of
magnification.

In the case of fully supervised training, the BCSS
dataset was divided into 133 training samples and 18 vali-
dation samples. To prevent training on validation data that
can be caused by overlap, patches were generated after this
partitioning. During the training and validation process,
metrics were computed patch-wise.

4.3 Single-Scale Architectures

First, we experimented with architectures based on U-
Net [12] in order to establish a baseline and test con-
figurations for data generation, as well as the properties
of transformer-based networks and their usefulness within
the domain of histopathology. For these U-Net-based de-
signs, both encoder and decoder blocks based on trans-
formers and convolutional blocks were utilized.

After these experiments, we focused on more complex
and recent architectures, which generally perform better
in multi-class semantic segmentation, with one of them
being SegFormer [16] and the other being Upernet. Ex-
periments on the SegFormer architecture were conducted
with only small deviations from the original publication.
The Upernet architecture was changed from multi-task to
single-task with a Swin Transformer backbone. Back-
bone, which we used as an encoder for Upernet, remained
the same. All the previously mentioned single-scale ar-
chitectures maintain their original parameters, with al-
terations limited to their training parameters and minor
implementation-related deviations. The transformer vari-
ants of these architectures employ the base size of the Swin
encoder.

4.4 Multi-Scale Architectures

After the first iteration of experiments with a single scale,
we focus on experiments combining multiple scales. Vi-
sion transformers have some different properties than con-
volutional neural networks, with the most important ex-
ample being that they lack their intrinsic biases. Addition-
ally, features of these two methods vary significantly [11],
with global features being present at much earlier network
stages. Simultaneously, various new layers and architec-
tural elements were introduced in vision transformers and
transformers in general, some of which do not have their
counterparts within convolutional architectures. We try
to improve the prediction accuracy of single-scale mod-
els evaluated in previous iterations using various methods,
which we have divided into three categories:

1. Early fusion, where a single encoder is used and im-
ages from three different scales are combined before
the first encoder stages

2. Intermediate fusion, where either three encoder
branches are used and features are combined between
stages from top to bottom, or a single encoder is used
sequentially

3. Late fusion, where three images are passed through
branches separately and fusion is performed on fea-
tures passed before passing them to the encoder

We chose the Upernet-based architecture for these ex-
periments involving multiple magnifications since it per-
formed significantly better than other segmentation net-
works.

4.4.1 Early Fusion

The first method involves using a single encoder and merg-
ing its input before its first stage, concatenating channel
dimensions. The number of blocks used was the same as
for the single-scale encoder, but we increased the number
of heads in the first two stages to 9 to match the complexity
of the network to the increased complexity of the input.

Our second method for early fusion, Upernet T3 is com-
prised of three encoder blocks, which process input triplets
sequentially in a top-down manner, passing contextual in-
formation to higher magnifications. The patch at the low-
est magnification level is processed by the first encoder.
The input for the first stage of the next encoder is the sec-
ond magnification level, and the first stage of this encoder
produces a feature map that is prepended to the feature
maps produced by the first encoder. This information is
then fed into the feature pyramid network (FPN), which
produces a single, combined feature map. This map is then
fed into the remaining stages of the second encoder. After
that, the same operation is carried out with the second and
third encoders, respectively. The feature maps produced
by the third encoder are subjected to processing with pyra-
mid pooling module (PPM) and FPN Fuse blocks, which
ultimately produce a segmentation mask.

4.4.2 Intermediate Fusion

The first model architecture, which we implemented with
respect to intermediate fusion, marked as Upernet T6, was
intermediate fusion with the use of cross-attention, visual-
ized on Figure 3. We used three separate Swin encoders.
Images taken at different scales are passed through en-
coder stages, with each stage being followed by a cross-
attention stage. The cross-attention stage is composed of
two cross-attention blocks followed by layer normaliza-
tion, where the first cross-attention blocks takes an in-
put low smallest magnification as context and intermediate
magnification as an input and the second one takes high-
est magnification as an input and result of previous cross-
attention as context. The intuition behind this idea was
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that, using purely attention-based mechanisms, we could
pass information between the encoder stages of these three
branches in a top-down manner.

Contextual
Branch

Small
Branch

Linear
Mapper

K

V

Q

X Softmax

X +
Linear
Mapper

Linear
Mapper

Figure 3: Cross-attention module

The second architecture utilizing intermediate fusion,
with a designated label of Upernet T7, functioned in a
similar manner, but instead of cross-attention, we fused
class (CLS) token with patch tokens of higher magnifica-
tion using convolutional layers. First, since Swin does not
contain an explicit learnable CLS token, we compute it us-
ing an embedding layer, which takes input patch tokens as
input, passes them through layer normalization followed
by adaptive average pooling and a linear layer, produc-
ing a single class token representing all patches combined.
This token is concatenated with patch tokens from higher
magnification, and dimensions are reduced back to their
original size using point-wise convolution. This way, we
attempted to fuse features between three encoder branches
by passing an aggrieved CLS token to lower magnifica-
tions.

4.4.3 Late Fusion

As for late fusion, we experimented with two methods as
well. Our first method, named Upernet T2, was composed
of three swin encoders, each used for different magnifica-
tion level, all of them of same size. Since there are three
encoder branches, the outputs of these stages need to be
merged. For this, three outputs are first rearranged so that
the height and width dimensions are reshaped into a single
dimension, representing all tokens. Then we concatenate
these tokens and pass them through an MLP block with
the GELU activation function, which reduces their num-
ber to their original number. Finally, they are rearranged
back to their original shape, and the resulting feature map
is passed through the same PPM and FPN Fuse blocks.
This architecture is shown on Figure 4.

The second method, named Upernet T5, utilizes fea-
ture merging instead of linear layers with a single cross-
attention block, merging feature maps that are outputs
of the last encoder stages. First, images from three se-
lected scales are passed through all three encoders. Subse-
quently, the feature maps from the last encoder stages are
passed through a self-attention block. Cross-attention is
done twice, with the objective of passing contextual infor-
mation from the lowest to the highest magnification level.

The feature map produced by the second cross-attention
module is then passed through the FPN Fuse block, result
of which is then passed through the PPM block together
with other features from the lowest magnification level.
We hypothesized that the application of the self-attention
mechanism in this manner may prove useful for passing
high-level features at lower magnifications.

Linear

Swin Stage

2x Swin

Block

Swin Stage

2x Swin

Block

Swin Stage

2x Swin

Block

Swin Stage

2x Swin

Block

Parallel Swin Encoder Branches

Concat Concat Concat Concat

3 x H/4 x W/4 x C 3 x H/8 x W/8 x 2C 3 x H/16 x W/16 x 4C 3 x H/16 x W/16 x 4C

Rearrange Rearrange Rearrange Rearrange

Linear Mapper Linear Mapper Linear Mapper Linear Mapper

Rearrange Rearrange Rearrange Rearrange

PPM

Module
FPN FuseMask Head

Figure 4: Architecture of Upernet T2 with three encoder
branches and late future fusion

4.5 Masked Image Modeling

The effects of masked image modeling within the domain
of histopathology have not yet been thoroughly studied.
Thus, we focus on self-supervised training using masked-
image modeling with iBot [17], which obtained state-of-
the-art performance on various vision tasks outside of the
medical domain.

iBot, similarly to DINO [4], employs two views created
by augmenting the input image. Since it was not originally
trained on medical images, we changed several parame-
ters of these augmentations in order to accommodate the
medical domain. iBot first applies local and global trans-
forms, which produce local and global crops from the in-
put image. After a visual evaluation of augmented crops,
we changed the range of global crops to be between 0.7
and 1, from the original 0.14 and 1, and the range of lo-
cal crops to be between 0.2 and 0.4, increasing the orig-
inal values of 0.05 and 0.4, since such small patches did
not contain sufficient information. Additionally, we re-
moved color jitter and random grayscale from both local
and global transforms and reduced the probability of solar-
ization and Gaussian blur to 0.1. Experiments were done
on ViT backbones on three different scales. For highest
magnification, we used patch size 16, since we found it
generally delivered better self-supervised results than with
patch size 8. On intermediate and lowest magnification,
we used patch size of 4, since we found, that smaller patch
sizes on lower magnification levels provided necessary in-
crease in resolution of attention maps.
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5 Results

Within our single-scale experiments, we have found con-
volutional U-Net to be worse performing in comparison
with transformer-based U-Net with respect to dice score.
However, it obtained better IoU and per-class accuracy.
Thus, we evaluated, that Swin-based U-Net performs on
par with its convolutional counterpart, but with better in-
ference and training speeds. Even though Segformer is a
model with high throughput and efficiency, it performed
significantly worse than Upernet, which outperformed all
other evaluated models, as is shown within Table 1.

Table 1: Quantitative single-scale model evaluation

Models mIoU mDice Per-Class Acc
Conv U-Net 29.44 36.57 36.27
Swin U-Net 28.58 36.91 35.72
Segformer 36.80 44.15 43.73
Upernet 46.03 56.05 55.1

Similarily to single-scale models, we have obtained sev-
eral interesting results with multi-scale models. First,
attention-based feature merging performs better when im-
plemented as intermediate feature fusion rather than late
fusion. Second, it was overcome by a method combin-
ing linear layers with late fusion. However, despite the
fact that Upernet T6 with three encoder stages performed
worse than Upernet T2 of the same size, its counterpart
with a single encoder outperformed Upernet T6 of the
same size. Thirdly, both methods of early fusion per-
formed worse than their late and intermediate counter-
parts. Lastly and most importantly, all three best perform-
ing models outperformed their best performing single-
scale counterpart. This result is attributable to the use
of multiple contextual magnifications, which allowed the
model to be trained on a specific dataset. Table 2 dis-
plays the respective results of the five architectures with
the highest performance.

Table 2: Quantitative multi-scale model evaluation

Models mIoU mDice Per-Class Acc
Upernet T3 40.8 47.92 48.24
Upernet T2* 46.12 54.67 53.96
Upernet T6* 48.15 56.52 55.68
Upernet T6 49.42 58.34 57.96
Upernet T2 52.13 62.25 61.51

* Single encoder used sequentially instead of three parallel encoders

5.1 Masked Image Modeling

Our qualitative evaluation involved the analysis of atten-
tion maps within the last transformer block. We used

three different scales to measure how well these attentions
worked on all three transformers that were trained with
iBot. These were the same scales that were previously
used for multi-scale experiments: 1, 4, and 8.

We started our experimentation at the highest magni-
fication. Since the pretrained model was focusing only
on white regions and ignoring regions with tissue com-
partments, we found the results to be underwhelming af-
ter training with patch size 8 and examining the attention
maps of the model. However, when we increased the patch
size to 16, we noticed that the attention heads began to
concentrate more on the different kinds of tissue and small
structures within the images, particularly cells. Follow-
ing a qualitative analysis of attention, we discovered that
heads 4, 7, and 12 acquired the ability to tell surrounding
tissue from cells, which is particularly evident in images
of tissue devoid of bubbles or other white regions. Within
Figure 5 are visualized attention maps from heads 4, 3 and
2 of the last block of the encoder network, attending cells,
stroma and fatty tissue, respectively.

Figure 5: Visualized attention maps of cells (left), stroma
(center) and fatty tissue (right) from the last encoder block
with the highest magnification used

Secondly, we trained the same model with a scale of 4,
with the model patch size set to 8. Even though the model
did not focus on cellular structures as much as with higher
magnification, upon analyzing various tissue types, we ob-
served that it rather focused on differentiating between tis-
sue compartments. Within fatty tissue, we can see that the
attention map of heads 0, 1, 3, and 9 focused on mem-
branes, and heads 2, 4, 5, 7, and 8 focused more on the fat
itself, which resides within these membranes. Structures
recognized by head 6 were not as apparent. However, it
seems like model focused more on darker structures, in-
cluding cells and darker tissue material where membranes
meet. Within the darker patches that do not contain fat,
we observed that attention within heads 0, 1, 3, 6 and 9
focused on stroma tissue connecting various other com-
partments, and attention within head 11 focused on darker
regions of an image. On Figure 6, we can observe atten-
tion maps attending connective tissue and darker regions
within fatty patches, as well as darker regions and stroma
within patches containing tissue.

Finally, we trained a Swin transformer, which could be
utilized for additional fine-tuning experiments, following
the same approach as with ViT. We processed randomly
sampled images and extracted features from the final layer
of the encoder network. After applying T-SNE dimen-
sionality reduction, we clustered the points using K-Means
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Figure 6: Visualized attention maps of connective tissue,
dark regions and stroma from the last encoder block with
patches from lower level of magnification

and visualized two components in Figure 7, with images
representing the cluster centers. Figure 8 presents points
accompanied by their respective images. The formation
of clusters containing visually similar images is observed,
with the primary basis for similarity being their visual
characteristics.

6 Conclusions

First, we focused on the development of a full data pro-
cessing pipeline that prepares whole-slide images for ei-
ther training or analysis. Following a preliminary analy-
sis of available datasets, we focused on evaluating single-
scale models on the BCSS dataset and comparing convo-
lutional networks with transformer-based networks, which
have gained popularity in recent years. For the subse-
quent experiments involving multiple contextual magni-
fications, we chose the top-performing architecture based
on an evaluation of these models. Experimenting with var-
ious variations of Upernet, we discovered that our multi-
scale modification, Upernet T2, which is based on the late
fusion of features between three backbones, outperforms
its single-scale counterpart. We conclude, based on these
results, that contextual usage improves the performance of
the model.

Finally, we examined the effects of self-supervised
learning with masked image modeling and its applicabil-
ity in the medical field. After analyzing vision transform-
ers pretrained with iBot, we conclude that masked im-
age modeling is applicable to this domain and that models
trained with masked image modeling may prove useful in
future experiments.

Further research is required in the area of self-
supervised pretraining. We found that this pretraining
method is not appropriate for lower magnifications, but
we hypothesize that this pretraining process could be gen-
eralized to multi-scale image processing by changing the
training process so that all three encoders would learn rep-
resentations together rather than separately. This requires
changing the iBot head to accommodate the use of three
backbones and changing the loss function so that all three
encoders can be trained. Furthermore, we used only small
models and a limited number of pretraining samples, since
our evaluation of the self-supervised algorithm concen-
trated primarily on the analysis of feature maps. In order
to evaluate larger Swin models, which should perform bet-

ter with self-supervised pretraining, more training samples
are required.

Weakly supervised learning could be incorporated into
the fully supervised stage of our training pipeline. Since
the BCSS dataset contains whole-slide images, but only
ROI-level annotation, it is possible to use surrounding
regions progressively as a method of weakly-supervised
learning. As the segmentation model is trained from the
labeled data during training, it can also produce segmen-
tation masks for nearby regions, resulting in their weak la-
bels, which can subsequently be added to the training set.
Since the areas around labeled patches have some com-
monalities, we hypothesize that the model could use this
shared information to generate reliable weak predictions.
However, as training goes on, the factor of expansion must
decrease because patches farther away do not benefit from
proximity to the labeled patches.
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7 Appendix

Figure 7: T-SNE projection with K-Means clustering and
patches from cluster centers

Figure 8: T-SNE projection of features from 10,000 im-
ages, with images as points
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