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Abstract

In this paper, we present a workflow for optical material
parameter estimation based on real-world images, numeri-
cal optimization, and differentiable rendering (using Mit-
suba 3). We primarily focus on translucent materials and
demonstrate our approach both for synthetic and real-world
data. Specifically, we estimate parameters for two well-
known material models: either a Principled BSDF (a sur-
face model based on Burley’s Disney BSDF), or a Rough
dielectric BSDF, describing volumetric homogeneous par-
ticipating media.

In order to solve the inverse rendering problem of ac-
quiring suitable material properties from a (set of) given
reference image(s), we present a software tool that handles
the entire material reconstruction workflow. Furthermore,
we also propose an experimental workflow to acquire the
necessary reference images and potentially the 3D scene
geometry. Our results show that our approach works on
well-known materials such as acrylic glass, as well as newly
designed materials, such as alginate, from experimental ma-
terials research.

Keywords: Numerical Optimization, Material Parameter
Estimation, Differentiable Rendering, Appearance Mod-
elling

1 Introduction

Early work in computer graphics relied on phenomeno-
logical, often physically implausible, shading models and
focused primarily on rendering images under direct, or
purely diffuse illumination [26, 2, 27]. The driving force
behind many rendering methods was artistic expression
rather than physical accuracy. However, with more pow-
erful hardware supporting modern ray tracing algorithms
[23, 14], photo-realistic and physics-based rendering has
become not only feasible but de-facto standard in many
fields, both within and outside of computer graphics.

Given a virtual scene description, the main goal of
physics-based rendering is to create images matching the
way our eyes perceive the world. The ability to create im-
ages that are hard to separate from reality, however, hinges
on accurate knowledge of the optical material parameters
of objects in the scene.

Scattering occurring at the surface of objects is mod-

Figure 1: Reconstruction results for a surface BSDF model
from synthetic data (left) and real-world alginate material
(right). Dragon model by Delatronic [6], License: CC-BY.

elled by the bidirectional scattering distribution function
(BSDF). Statistical micro-surface models provide physics-
based, parametric BSDF formulations that describe the
material properties of an object in the scene. For translu-
cent materials, ray tracing methods, as well as material
descriptions, have been extended to cover volumetric scat-
tering in addition to surface effects. While both surface and
volumetric BSDF parameters can be obtained from careful
measurements of real-world materials, or instead formu-
lated in a data-driven (rather than a parametric) framework,
these approaches heavily rely on specialized laboratory
equipment. However, this precise approach might not al-
ways be feasible or cost effective. For example, research in
materials engineering might produce new compounds for
specific applications, whereas aging and weathering effects
might alter a material’s appearance over time.

Recent work on differentiable and inverse rendering, on
the other hand, has enabled the identification of optical
material parameters by applying (gradient-based) optimiza-
tion methods in order to match the rendered result to an
object’s real-world appearance. This optimization approach
is particularly suited to estimating parameters from only
a few reference images. In this work, we rely on the Mit-
suba 3 renderer [11], a publicly available, state-of-the-art
differentiable rendering system, to solve material parame-
ter estimation problems. However, as a research-oriented
system, Mitsuba 3 requires a lot of domain-specific knowl-
edge to operate. To facilitate the parameter estimation
workflow, we implement a software tool that combines a
gradient-based optimization algorithm with the necessary
data management and rendering interface.
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In the remainder of this paper, we first provide an
overview of previous work on physics-based (inverse) ren-
dering and accumulate relevant background information.
The subsequent sections then detail the experimental and
computational aspects of our proposed approach. Lastly,
we present and analyze our results from both synthetic and
real-world data. In summary, our contributions are:

• A software tool1 that incorporates the full power of the
Mitsuba 3 renderer and various features to accomplish
the task of inverse rendering.

• A gradient-based optimization procedure to acquire
material properties from an image, including a careful
evaluation of how optimization hyper-parameters and
rendering quality affect the results.

• A workflow to increase the reproducibility of our re-
sults, encompassing both synthetic as well as real-
world examples.

2 Related Work

Physics-based rendering has its origins in the seminal paper
by Kajiya [12], formulating the now well-known render-
ing equation. Veach [32] introduced the path-integral form,
which provides the theoretical foundation of modern Monte
Carlo (MC) ray tracing methods [25]. In order to arrive at
a photorealistic rendering, an accurate description of how
various materials interact with light must be formulated.
Different analytical material models have been introduced
to account for the light-scattering effects from surfaces
[34, 9, 11]. Similarly, models for participating media de-
scribe volumetric scattering effects as light passes through
the material [25, 11]. Physics-based rendering itself (which
we also refer to as forward rendering in this context) is con-
cerned with computing accurate images using the rendering
equation, given a scene description, including all materials.

Conversely, the question for inverse rendering is how to
find an appropriate scene description in order to obtain a
desired result. In particular, finding the parameters of a
scattering model corresponding to a real-world material,
has been a long-standing research problem. While some
previous work has addressed this problem in a data-driven
way [19, 15, 28], inverse rendering methods in contrast,
seek to determine the parameters of established material
models, resulting in a more constrained search space that
ensures the use of physics-based models. Early work on in-
verse rendering for material parameter estimation [8] used
material dictionaries, aiming to approximate the appear-
ance of real-world materials as a combination of dictionary
entries. More recently, advances in differentiable rendering
[22, 33, 21, 16, 37] have enabled inverse rendering applica-
tions by applying gradient-based optimization directly on
the material parameters.

Initially, differentiable renderers have applied code-level
automatic differentiation to find gradients of either the ren-
dered image, or an objective function defined on that image,

1Access at https://github.com/sapo17/BachelorThesis.

with respect to input parameters. In order to reduce the
computational cost and memory footprint of automatic dif-
ferentiation, analytic back-propagation formulations have
been developed [22, 33]. One issue that has received a lot
of attention in recent research, is that derivatives of pixel
values (which are integrated according to the rendering
equation) can contain discontinuous integrands if a silhou-
ette edge moves across the pixel due to a change of scene
parameters [16, 36, 17, 38].

Modern ray tracing renderers use importance sampling to
reduce noise due to MC sampling, based on either the mate-
rial’s scattering behaviour, the light sources, or combining
both through multi-importance sampling. Consequently,
similar sampling strategies have also been investigated for
differentiable ray tracing. Zeltner et al. [36] analyzed nu-
merous potential approaches and mathematically classified
various estimators for differential light transport. Prior to
the work by Vicini et al. [33], many techniques used sta-
tistically biased gradient estimation methods. Their work
proposed a new back-propagation algorithm that runs in
constant memory and linear computation time. Addition-
ally, this method provides a way to handle highly specular
materials such as smooth dielectrics and conductors. Our
work builds upon their method, which is implemented in
Mitsuba 3 [11].

Inverse Rendering for translucent material reconstruc-
tion. The work by Gkioulekas et al. [8] is one of the initial
inverse rendering research regarding translucent material
reconstruction. They introduced an optimization frame-
work to measure the bulk scattering properties of homo-
geneous materials. Their primary focus was describing
homogeneous materials by two scalar values and one angu-
lar function: scattering coefficient, absorption coefficient
and phase function. Similar to our project, Gkioulekas et
al. [8] also incorporated gradient-based optimization with
MC rendering. However, they specifically used stochastic
gradient descent for the optimization. Moreover, in their
optimization procedure, they used a material dictionary to
invert the radiative transfer equation. The material dictio-
nary contained a variety of common materials, including
liquid, solid, and publicly-available collections of tabulated
phase functions.

Yang et al. [35] proposed another inverse rendering ap-
proach for heterogeneous translucent materials from a sin-
gle input photograph. Their method can obtain the material
distribution and estimate material parameters from the pro-
vided reference image. Yang et al. introduced an iteration
process for optimizing the scattering and absorption co-
efficient. Deng et al. [7] introduced another approach to
reconstruct translucent objects using differentiable render-
ing. They extended previous methods using a bidirectional
scattering-surface reflectance distribution function (BSS-
RDF). To handle the noise introduced by the BSSRDF inte-
gral, they proposed a dual-buffer method for evaluating the
loss during optimization. In this work, we make use of the
dual-buffer method and observe improved optimization con-
vergence over standard error metrics (see our results in §5).
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3 Parameter estimation

In this section, we briefly recap the underlying theory of the
rendering process and the core principle of differentiable
ray tracing. Next, we present the material parameters of
interest, and finally state the problem we address.

3.1 Background and theory

Let us start with the well-known rendering equation as
formulated by Kajiya [12], also referred to as the light
transport equation (LTE). As we are primarily interested in
translucent materials, we consider the angular form of the
LTE, see also [25, 12]:

L(p,ωo) = Le(p,ωo)︸ ︷︷ ︸
Emission

+
∫

S2
Li(p,ωi) f (p,ωi,ωo)dωi︸ ︷︷ ︸

Scattering

. (1)

Here L(p,ωo) describes the radiance (power per area, solid
angle, and color channel) leaving a point p in direction ωo
due to light emitted at or scattered through p. The incident
radiance results from recursively applying the LTE such
that Li(p,ωi) = L(p′,−ωi), where p′ is a point directly
visible from p in direction ωi. Monte Carlo (MC) ray
tracing approximates this recursive integral as a sum of
randomly sampled scattering rays. The same concept has
been extended to volumetric rendering, including scattering
and attenuation in participating media [25].

Most importantly for us, the function f (p,ωi,ωo) en-
codes the material’s optical properties, and is commonly
referred to as the bidirectional scattering distribution func-
tion (BSDF). For convenience of notation, we assume the
cosine term accounting for the projected solid angle is
included in the BSDF. The BSDF is composed of a reflec-
tive part, the bidirectional reflectance distribution function
(BRDF) and a transmissive part, the bidirectional transmit-
tance distribution function (BTDF).

Inverse and differentiable Rendering. So far we have
summarized how a virtual scene, including material de-
scriptions, can be rendered via ray tracing. We now move
on to the problem of inverse rendering, where we aim to
find scene parameters, such that the resulting image fulfills
certain requirements. In particular, our problem is finding
the parameters of the material models, such as to match
given reference images. Inverse rendering is commonly
defined as an optimization problem of the form

ming(y(x)), subject to h(x)≤ 0, (2)

where g defines the optimization objective (or loss) function
on the rendered image y given scene parameters x, and
h defines additional constraints (e.g., min/max parameter
values).

In order to solve this optimization problem more ef-
ficiently, differentiable rendering provides derivatives
(δy/δx), which allows gradient-based optimization tech-
niques to successively improve the parameters with respect

to the specified objective [38]. In the simplest form, the
objective takes the L2 norm of the difference between the
rendered and the reference image, thus g(y) = ||y− yre f ||2.
The dual buffer method by Deng et al. [7] proposes an alter-
native objective function that is better suited to handle the
noise introduced by the MC rendering. Rather than taking
one differentiable rendering step, the dual buffer method
takes two independent rendering steps y1, y2, per iteration.
Instead of the standard L2 loss, we now compute the loss
in each iteration as g(y1,y2) = (y1 − yre f ) · (y2 − yre f ).

Finally, in order to acquire the gradients required for
optimization, Mitsuba 3 implements a path-replay back-
propagation method [22, 33]. Formally, we take the deriva-
tive of Eq. (1) with respect to the scene parameters x:

δxL(p,ωo) = δxLe(p,ωo)︸ ︷︷ ︸
Emission

+
∫

S2
[δxLi(p,ωi) f (p,ωo,ωi)︸ ︷︷ ︸

Transport

+Li(p,ωi)δx fx(p,ωo,ωi)︸ ︷︷ ︸
Material

]dωi.

(3)

This equation describes the scattering of derivatives analo-
gous to the LTE. The individual terms are:

• Emission: differential radiance is emitted when the
emitted radiance Le depends on x.

• Transport: differential radiance scatters in the same
way as normal radiance, according to the BSDF f .

• Material: surfaces with a parameter-dependent BSDF
emit differential radiance proportional to incident ra-
diance.

Note that along each ray, we find δLi(p,ωi) = δL(p′,−ωi),
analogous to the forward rendering. While in an abstract
sense, the gradient of the objective function could be com-
puted as δg/δx = (δg/δy)(δy/δx), doing so would be
computationally expensive due to the large size of δy/δx
(which can be thought of as a matrix of derivatives for each
image pixel with respect to each scene parameter). Instead,
the back-propagation method uses the (partial) derivative
of the objective function δg/δy as a source of “adjoint
radiance” which is then traced from the virtual camera into
the scene, scattered according to Eq. (3) and “collected” at
the scene parameters.

In this work, we rely on the ADAM optimizer [13] to
solve the parameter estimation problem. This method is
a general-purpose method that applies gradient descent
with momentum and an adaptive strategy to estimate the
learning rate per parameter. As such it is well suited to non-
linear optimization problems that may contain spurious
local minima. Using a momentum strategy can prevent
getting stuck in these local minima and increase the chances
of finding a good solution.

3.2 Microfacet models and Disney BSDF

Modeling surface reflection and transmission often origi-
nates from the idea that rough surfaces can be represented
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as a collection of small microfacets. The scattering of
light from a group of microfacets is statistically modelled
by microfacet-based BRDFs [25]. Walter et al. [34] in-
troduced a microfacet distribution function, called GGX,
which has been shown to be equivalent to the microfacet
distribution introduced by Trowbridge and Reitz [30]; see
also [24]. Microfacet models not only require the distri-
bution of facets, but also need to account for some facets
being obscured by others (also known as masking) and
some will be shadowed. Smith’s masking-shadowing func-
tion [25] addresses these effects. More recently, Walter
et al. [34] reviewed microfacet theory and extended it to
simulate transmission through rough surfaces. Mitsuba 3
[10] implements this variant in its Rough-dielectric BSDF
model, which we make use of in this project. Further-
more, Mitsuba 3 allows two types of participating media
in the scene: homogeneous and heterogeneous, which can
be used to simulate translucent materials such as milk or
skin, but also clouds and fog [10]. Therefore we com-
bine a Rough-dielectric BSDF and a homogeneous interior
medium to simulate and optimize volumetric scattering
effects in translucent materials.

Burley et al. [3] proposed a general-purpose BRDF (also
known as Disney Principled BRDF). They compared their
new model with measured materials in terms of the mi-
crofacet models [29, 5, 34]. Their BRDF blends metallic
and dielectric BRDF models and includes a microfacet
reflection with anisotropic roughness and an optional sec-
ondary clearcoat reflection. The Disney BSDF [9] extends
the dielectric BRDF with integrated subsurface scattering
and blends in a specular BSDF based on a new specular
transmission parameter, arriving at a unified BSDF model
including refraction and subsurface scattering effects. For
the specular BSDF, they follow the GGX model and ex-
tend the microfacet reflection to refraction. Mitsuba 3 [10]
implements the model proposed by Burley et al. [9] in
its Principled BSDF material, which we also use in this
project.

3.3 Material parameters

Following the summary of material models, we now briefly
list the parameters of these models we use in our optimiza-
tion pipeline. For surface-only materials, i.e. the Disney
Principled BSDF, we have:

• base colour (albedo) c (can be textured),
• surface roughness α ,
• specular transmission σs (blending between the BRDF

and BTDF lobes), and the
• index of refraction η .

Note that we do not use secondary reflection effects such
as clear-coat materials, or metallic reflections here. For
volumetric rendering, i.e. Rough Dielectric BSDF with
homogenous medium [34, 11], we additionally consider

• a volumetric albedo colour (texture) and
• an extinction coefficient σt describing the absorption

as light traverses the material.

3.4 Problem statement

In summary, our goal is to estimate optical material param-
eters x = {c,α,σs,η ,σt} in a given 3D scene, such that the
rendered result best approximates one (or more) reference
image(s). Therefore, we require

• a (set of) reference image(s) and
• a Mitsuba scene file, including the initial guess for the

material parameters, and virtual cameras correspond-
ing to the reference images as input to our system.

To solve this problem, we combine differentiable render-
ing with a gradient-based optimization procedure. To use
our approach, however, we first need to meet the above-
mentioned requirements, which we discuss in the first part
of the next section.

4 Method

In this section, we first introduce the experimental and then
the computational part of our approach.

4.1 Scene and image acquisition

Here, we focus on 3D scene construction and reference
image acquisition. For validation tests where the Bunny
[31] model is in use, we utilized the readily available Mit-
suba scene from their documentation [11] and modified the
parameters we introduced in §3.1. However, for synthetic
data, users may also construct a scene in a 3D modelling
tool such as Blender [4]. For example, for the Dragon [6]
model test case in §5.1, we constructed a scene in Blender
and exported it using Mitsuba’s Blender Add-on [20]. For
validation tests, we then rendered (using Mitsuba) the ac-
quired scenes to get the reference images.

The real-world case is more complicated. During imag-
ing, a controlled environment is crucial to accurately de-
termine all scene parameters that could affect the resulting
image, particularly scene geometry and light position(s).

We propose multiple approaches, first, users may recon-
struct the imaged environment manually. This task can
get seriously complicated and requires relatively adequate
skills in modelling. For the alginate [18] material test cases,
we only partially had this difficulty. We were provided with
a “material scanner”—a small light-proof container with
fixtures for camera and light placement—where we pho-
tographed the alginate samples. Fortunately, we were also
provided with the corresponding 3D model that we used in
Blender. However, we still had to approximate the model
of the sample alginate materials, camera positions, and the
radiance values of the lights. Please note that we processed
images from the real-world to remove the background.

Our second approach utilizes a photogrammetry tool
Metashape [1]. Using Metashape, we not only acquired
the geometry of the imaged bird statue (third row in Fig. 5)
but also the camera positions from photographs. Using
Metashape, (1) we first loaded images and used the Align
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Images functionality, (2) then used the Build Mesh function-
ality, (3) next, exported mesh and camera locations with
the X3D format, (4) and lastly, imported the X3D file into
Blender. Once we had a scene in Blender, we utilized the
Mitsuba Blender Add-on [20] to export and use it in our
tool. We found our second approach useful specifically for
opaque materials.

Another technique we employed involved naive vertex
position optimization that is supported by Mitsuba 3 and
our tool. As shown in the fourth row of Fig. 5, from a
scaled-sphere object the optimization recovers a rough bird
statue. Geometry reconstruction on its own is a fascinating
and challenging research topic, and we will omit the details
in this work.

4.2 Optimization

We are now ready to introduce the computational part of
our approach, combining the differentiable renderer Mit-
suba 3 with an ADAM optimizer to estimate the material
parameters.

Using our software tool, we first load a virtual 3D scene
file, which includes the initial material parameters x0. We
also load the (set of) reference image(s), yre f , which will be
used in the objective function (selecting either the L2 norm
or the dual buffer method as introduced earlier). Next, we
select the material parameters of interest (x0), which get
assigned to a newly initialized ADAM optimizer by our
tool. Optionally, we also select the following optimization
hyper-parameters (default values in braces). The maximal
number of iterations for the optimization (100); the number
of samples per pixel (spp = 4) for each rendered image;
the loss tolerance ε , where optimization stops if the loss
g < ε (0.001); the learning rate, which adjusts the step
size at each iteration (0.03); and minimum and/or maximum
clamp values, which define box constraints for specific pa-
rameters. For example, an RGB color value must be in the
interval [0,1] per channel; by default, most parameters2 are
constrained to [0,1]. Note that virtual camera and refer-
ence image resolutions are overridden by our tool accord-
ing to the aspect ratio of the loaded image and restricted
to (256 × AspectRatio,256). This restriction originates
mainly from memory limitations.

Initializing xi = x0, we then run the following optimiza-
tion loop for each camera pose (i.e. reference image): (1)
Perform a differentiable rendering step with respect to xi
resulting in an image yi. (2) Evaluate the objective func-
tion g(yi). (3) Back-propagate δg/δy using Mitsuba 3, to
obtain δg/δxi. (4) Take an ADAM optimization step to
find updated parameters x̃i+1. (5) Ensure legal values for
xi+1 by clamping x̃i+1 using box constraints. (6) Update
the scene with xi+1. Repeat until either the loss tolerance,
or the maximal iterations are reached.

Additionally, our software tool also provides conve-
nience functions. To streamline the above-mentioned pro-

2The interested reader may find the default values in the constants.py
file of our repository.

cess, we propose a mini-tool with a GUI 3. To execute the
optimization, users can simply load a Mitsuba 3 scene and
a (set of) reference image(s), and select the appropriate
material parameters. Our tool automatically selects integra-
tors and scene resolution, sets default hyperparameters, and
presents differentiable scene parameters for optimization
upon scene loading. At the end of the optimization, our tool
provides the necessary visualizations and ability to export
the obtained results.

5 Results

In this section, we examine results produced using our
software tool and optimization approach. In the first part,
we evaluate results from synthetic data, where ground-truth
solutions are available for comparison. In the second part,
we show results for real-world data. Our tool uses the
NVIDIA CUDA variant of Mitsuba v3.2.1, and all timings
reported in the following have been measured on NVIDIA
GeForce RTX 2060 graphics card.

5.1 Validation tests

In this section, we examine material reconstruction from
synthetic data. These tests start from a virtual scene, with
given ground-truth parameters. The optimization must then
recover the correct material parameters from a dark and
opaque initial guess. First, in Figs. 2, 3, we show successful
results using the method described in §4.2. Table 1 also
shows the corresponding initial and optimized parameter
values and optimization hyperparameters. Please note that
we use a single reference image for the Bunny and four
images for the Dragon test cases.

In all cases, we observe that the dual buffer method [7]
is extremely useful in reconstructing the object’s material
properties, allowing for less restrictive constraints.

Furthermore, we observe that noise inherent to MC sam-
pling affects the optimization procedure, and a sufficient
number of samples per pixel (spp) is required to obtain
good convergence. We also use box constraints on certain
parameters, i.e. clamping to minimum or maximum val-
ues to prevent some parameters from moving to physically
implausible values. Especially the index of refraction (η)
often suffers from these issues. We believe this is due to
total internal reflection introducing discontinuous jumps in
light propagation paths. Another useful strategy to resolve
these issues is to split the optimization process into two
parts: first we optimize a group of parameters that work
well together (for instance excluding η). We then continue
from the optimized values from the first part and include
all parameters. Result using this procedure is shown in the
last row of Fig. 2.

Having established that our method is capable of re-
covering ground-truth material parameters, we now show

3We expect the use of this tool for academic purposes. The design and
HCI related topics are beyond the scope of this paper.
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Case Params. Init. Opt. (succ.) Ref. Opt. (unsuc.) Hyper. (succ.) Hyper. (unsuc.) Loss / Comp. time (succ.) Loss / Comp. time (unsuc.)

Bunny (P)

c 0.01, 0.01, 0.01 0.415, 0.853, 0.999 0.412, 0.824, 0.999 0.397, 0.833, 0.999 spp=8,
DBM,
ε=0.0001

spp=16,
MSE 0.0002 / 48.9s 0.0098 / 35.6sα 0.5 0.001 0.01 0.001

σs 0.02 0.904 0.9 0.912
η 1.54 1.495 1.49 1.747

Dragon (P)

c bitmap bitmap bitmap bitmap spp=16,
DBM,

h(σs)min=0.11

spp=8,
DBM 0.0015 / 231.3s 0.0528 / 180.9sα 0.7 0.001 0.001 0.135

σs 0.1 0.973 1 0.001
η 1.64 1.507 1.49 1.815

Bunny (R)

c 0.01, 0.01, 0.01 0.469, 0.844, 0.999 0.412, 0.824, 0.999 0.599, 0.924, 0.999 spp=16,
ε=0.0001,

DBM,
h(η)max=1.55

spp=8,
DBM 0.0005 / 237.3s 0.0025 / 154.6sα 0.5 0.014 0.01 0.001

σt 0.98 0.502 0.4 0.585
η 1.544 1.503 1.49 1.919

Dragon (R)

c volume volume volume volume spp=4,
DBM,
2-stage

spp=16,
DBM 0.0016 / 241.2s 0.0456 / 498.3α 0.7 0.011 0.01 0.307

σt 0.98 0.357 0.4 0.26
η 1.544 1.484 1.49 1.549

Table 1: Results from Figs. 2, 4; DBM=Dual Buffer Method, MSE=Mean Squared Err., P=Principled BSDF, R=Rough
dielectric BSDF, succ.=successful, unsuc.=unsuccessful.

Figure 2: Our successful attempts for the Principled (first
and second rows) and Rough dielectric (third and fourth
rows) BSDF. For corresponding parameter values please
refer to Table 1.

additional comparisons and discuss potential pitfalls during
translucent material reconstruction in a short ablation study,
Figs. 4, 3 and Table 1. We compare the dual buffer method
(2×8 spp) to the single-image L2 error metric (1×16 spp)
on the Stanford bunny using the Principled BSDF (first row

0 25 50 75 100
Successful

0.00

0.03

0.06

0.09

0 25 50 75 100
Unsuccessful

Iteration

Lo
ss

Principled BSDF
Rough dielectric BSDF
Bunny
Dragon

Figure 3: Convergence plots (synthetic-data) from
(un)successful attempts. See also Figs. 2, 4.

Figure 4: Our unsuccessful attempts for the Principled (first
and second rows) and Rough dielectric (third and fourth
rows) BSDF. For corresponding parameter values please
refer to Table 1.

in Fig. 2 and 4 respectively). Although the visual result
might look acceptable, the numerical results (Table 1)—
specifically for the η parameter—are not satisfactory. Note
also the instability of the convergence compared to our
successful attempt (Fig. 3).

On our second test case, the Dragon using a surface
BSDF, we compare the optimization behaviour for differ-
ent samples per pixel (16 vs. 8) value, and relaxing the
minimum clamp value for the specular transmission (σs)
parameter. As shown in Fig. 4 (second row), the lower
sample count results in a visually worse appearance. As
shown in Table 1 (second row), the numerical results are
also not satisfactory.

Using the volumetric material model, we again test the
influence of noise on the optimization procedure. In the
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Case Params. Init. Opt. Hyper. Loss / Comp. time

Alginate (G)

c 0.1 0.1 0.1 bitmap spp=8,
DBM, 2-stage
h(α)max=0.7,
h(σs)min=0.4

0.0135/ 52.7sα 0.7 0.699
σs 0.1 0.429
η 1.54 1.156

Alginate (B)

c 0.1 0.1 0.1 bitmap spp=8,
DBM, 2-stage
h(α)max=0.6,
h(σs)min=0.5

0.0033/ 51.1sα 0.7 0.501
σs 0.1 0.573
η 1.54 1.397

Birdy (R)
c bitmap bitmap

spp=4,
MSE 0.2711/ 347.8sα 0.5 0.246

η 1.5 1.435

Birdy (SS)

c bitmap bitmap
spp=4,
MSE,

lr:p=0.0003
0.1511/ 516.6sα 0.5 0.813

η 1.5 1.172
p ss shape

Table 2: Results for real-world data. G=Green, B=Blue,
R=Reconstructed (using Metashape), SS=Scaled Sphere,
lr=learning rate.

third row of Fig. 4, we observe visually acceptable results,
whereas numerical results degrade when reducing the sam-
ples from 16 spp to 8. In this experiment, the η parameter
initially increases (moving away from the expected refer-
ence value), and subsequently, the extinction coefficient
(σt ) remains not recovered accurately. Also note, although
the resulting convergence plot and image (Figs. 3, 4) indi-
cate a successful attempt, the numerical results, specifically
the η parameter is far from the reference value (third row in
Table 1). Consequently, one should note that—specifically
in the case of real-world data, where the target value is
unknown—one cannot fully rely on the resulting visual rep-
resentations. Therefore for accurate results, one must also
consider the plausibility of the resulting numerical values.

Finally, applying the volumetric material to the more
complex Dragon scene in the fourth row of Fig. 4, we at-
tempt to optimize all parameters of interest simultaneously
(as opposed to the successful case presented earlier, where
we optimize in two stages). Interestingly the material’s
roughness (α) fails to reduce sufficiently from an initially
high value (fourth row in Table 1), resulting in a visually no-
ticeable mismatch between the optimization result and the
reference. Consequently, in some cases, we suggest sepa-
rating the optimization procedure into two parts, to acquire
acceptable results, as shown in the last row of Fig. 2.

5.2 Real-World applications

In this section, we perform material reconstruction from
real-world data. In particular, we aim to acquire optical
material properties for two novel alginate specimens [18].
As these alginate specimens are relatively thin, we use
the Principled BSDF [3, 9], which has proved easier to
optimize in the test cases discussed previously.

Please note that we use a single for the alginate and
multiple reference image(s) for the bird statue test cases.
Furthermore, note that interreflections play a role in the
alginate test cases, albeit we kindly remind that they were
photographed in the material scanner without the influence
of external objects or light sources. On the other hand, inter-

Figure 5: Results from alginate [18] materials (1. and 2.
row) and a bird statue (3. and 4. row). For corresponding
parameter values please refer to Table 2.

reflections do not play a role in the bird statue experiments.
Note also in the bird statue experiments we specifically use
Mitsuba’s constant emitter as the primary light source.

Figures 5, 6 shows results for both (green and blue)
translucent alginate specimens. We again employ the strat-
egy to split the optimization into two parts for both results.

We first only allow one constant RGB colour, and in the
second stage extend the optimization to a bitmap texture
image. We obtain visually acceptable results, even though
the virtual geometry is not perfectly matched to the real-
world images, resulting in errors along the outer edge of
the specimens, seen in the absolute error images in Fig. 5.
Table 2 summarizes the numerical results corresponding to
Fig. 5.

For both cases, we apply specific minimum and maxi-
mum clamp values for the α and σs parameters. Without
these additional constraints, we obtained visually identical
results, albeit with physically unreasonable parameter val-
ues. Note also how the two-stage strategy is noticeable in
the convergence plots (Fig. 6). For both alginate materials,
we initialize an RGB texture with the previously optimized
base color (c) at the start of the second stage (iteration 50).
In the second stage of the optimization, we also observe a
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Figure 6: Convergence plots from real-world data.
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noticeable decrease in loss. Consequently, the texture plays
a significant role in representing the object as it contains a
substantial amount of information.

Finally, in Fig. 5 and Table 2, we also show the results
of a more complex opaque object. In Fig. 5, the third row
showcases results utilizing the geometry obtained through
Metashape [1], where only the c, η , and α parameters of
the object were optimized. The fourth row features results
using a (scaled) sphere object, with optimization of c, α ,
η , and vertex positions (p) parameters. Note that while we
optimize the p parameter of the scaled sphere object, we
use a box constraint, namely the bounding box value of the
reconstructed object (third row in Fig. 5).

In conclusion, we acknowledge the complexity of real-
world material and geometry reconstruction and emphasize
the importance of a comprehensive data acquisition pro-
cess that accounts for various factors, including lighting,
image acquisition, object and light positions, and geometry
reconstruction. However, as shown in Fig. 1, with accurate
measurements, and thorough experimentation, material and
geometry reconstruction can be successfully achieved.

6 Conclusion

In this paper, we describe a material reconstruction pipeline
using the Mitsuba 3 differentiable renderer. Our software
tool is capable of reconstructing material properties from
a scene description file and multiple images. We focused
on translucent material reconstruction, which we validated
using synthetic data and demonstrated on real-world speci-
mens. We tested our approach on both surface-only Princi-
pled BSDF, as well as a volumetric Rough dielectric BSDF
with homogeneous participating media.

A difficulty we noted was the scene and image acqui-
sition complexity. Regarding translucent materials, we
observed that the noise introduced by MC sampling af-
fected the parameter estimation procedure. Employing the
dual buffer method noticeably improved our results. Our
analysis showed that certain parameters, like the index of
refraction, created discontinuities in scattering behaviour
and made it difficult to achieve accurate convergence. In
some cases, we found that two-stage optimization was nec-
essary. When optimizing a texture for a material’s albedo,
highly localized parameters can have a stronger impact
than global material parameters, which can lead to inaccu-
rate reconstruction. Our findings showed that additional
constraints, such as imposing a max. clamp value on some
parameters, were necessary for certain scenarios.

In the future, we aim to improve our geometric mod-
elling and image acquisition procedures, which will allow
for a more accurate representation of physics-based real-
ity. Based on the evidence obtained from our results, we
conclude that our approach will be beneficial for different
translucent material reconstruction tasks in various applica-
tions.
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Ruiz, and Wenzel Jakob. Radiative backpropagation:
An adjoint method for lightning-fast differentiable
rendering. ACM Trans. Graph., 39(4), 2020.
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