
Distributed Surface Reconstruction

Patrick Komon, BSc*

Supervised by: Projektass.in Diana Marin, BSc MEng †

Institute of Computer Graphics
Vienna University of Technology

Vienna / Austria

Abstract

As 3D scanning technology is advancing, both quality and
quantity of available point cloud data is increasing. Many
applications require the reconstruction of the surface of
a scanned object as a 3D model. As scans become ex-
ceedingly detailed, point clouds become larger and sur-
face reconstruction more computationally challenging. A
fast and scalable solution for the reconstruction problem
is needed. We constructed and implemented a scalable
distributed surface reconstruction algorithm called DIS-
TRIBUTEDBALLFILTER based on the recently developed
BALLFILTER algorithm. We executed our implementa-
tion on the VSC3+ high performance computing cluster
and empirically analysed its speedup as well as its parallel
scaling behaviour. In our tests for DISTRIBUTEDBALL-
FILTER we achieved running times around five times faster
than with BALLFILTER.

Keywords: Surface reconstruction, Point cloud, Dis-
tributed memory, Parallel computing

1 Introduction

In recent years, 3D scanning technology has become eas-
ier to obtain and use. As a consequence, more scanned
data is made available as part of private or public projects.
One such project is “Wien gibt Raum” [19] in which more
than 100 terabytes of point cloud data was collected. It
is often favourable or necessary to work with 3D models
consisting of points, edges and faces that represent real-
world objects rather than point clouds. Thus the challenge
is to create a model from the point cloud that most accu-
rately represents the scanned object. In computer graphics,
this problem is known as surface reconstruction. Introduc-
ing noise and outliers, as they are present in most real-life
scans, makes solving this problem even more challenging.
Large point clouds require fast and scalable surface recon-
struction algorithms so that a 3D model can be calculated
in reasonable time.

*e11808210@student.tuwien.ac.at
†dmarin@cg.tuwien.ac.at

1.1 Related work

There are several approaches for surface reconstruction.
You et al. [21] categorize the existing surface reconstruc-
tion algorithms based on their methodology into inter-
polation, approximation and learning-based approaches.
While soft-computing approaches are mentioned sepa-
rately, they will not be further explained as they are not
relevant to this work.

Interpolation approaches (also called combinatorial ap-
proaches) try to reconstruct the surface that (exactly) goes
through all sampled points. Usually they use the Delaunay
complex or the Voronoi diagram of the point cloud. The
CRUST algorithm introduced by Amenta et al. [1, 2] is a
well known Delaunay-based combinatorial approach. In
their work, they also introduced the notion of ε-sampling,
relating surface features with the sampling density. It in-
spired multiple variants, each improving reconstruction
quality for specific cases, for example POWERCRUST,
which improves in noisy and under-sampled regions [3].

Approximation approaches try to find the surface by
finding a function that best agrees with all sampled
points, similar to curve fitting. Widely used in prac-
tice, SCREENEDPOISSON surface reconstruction [7] ap-
plies Poisson‘s equation to solve the reconstruction prob-
lem. However, it requires knowledge of the surface normal
for each sampled point.

Learning-based approaches facilitate some form of ma-
chine learning. One recent example is POINTS2SURF [6],
which managed to reduce the reconstruction error by 30%
compared to SCREENEDPOISSON.

1.2 BALLFILTER algorithm and limitations

Recently, Ohrhallinger [12] developed a new Delaunay-
based reconstruction algorithm called BALLFILTER. As
the corresponding paper is not published yet, we cannot
explain its inner workings. In general, it calculates the De-
launay complex and filters its triangles. By design, BALL-
FILTER is a serial algorithm and therefore is limited by the
physical capabilities of a single machine. This effectively
limits the size of data sets it can process in reasonable time.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

1.3 Distributed approach

In this paper, we address these limitations from a par-
allel computing perspective by introducing a distributed-
memory parallel version of BALLFILTER. DISTRIBUT-
EDBALLFILTER first subdivides the input into a three-
dimensional grid with overlapping cells. Then BALLFIL-
TER is run on each grid cell separately. Finally, all results
are collected and merged together to create the final result.

This removes the memory restriction imposed by using
a single machine. Moreover, it enables scaling the input
size while still maintaining acceptable run times. We aim
at utilizing parallel infrastructure, as is present in state-
of-the-art high-performance computing (HPC) clusters, to
execute BALLFILTER on much larger data sets than pre-
viously possible. We evaluate its performance and scaling
behaviour from a parallel computing perspective and com-
pare it against the original algorithm. Specifically, DIS-
TRIBUTEDBALLFILTER will has been tested and run on
the VSC-3+ cluster [5].

2 Background

In this chapter, we will be revisiting some theoretical ba-
sics. First, we will cover the Delaunay complex. Then, we
will briefly mention important aspects of the BALLFILTER
algorithm. Lastly, we will go over typical assumptions of
the distributed-memory parallel computing model.

2.1 Delaunay complex

Many surface reconstruction algorithms are based on the
Delaunay complex (commonly referred to as Delaunay tri-
angulation). In particular, they operate by examining the
tetrahedrons obtained from calculating the Delaunay com-
plex for the input point cloud. The challenge then becomes
finding the subset of tetrahedrons that most closely recon-
structs the original object.

The Delaunay complex of a three-dimensional point set
S consists of (non-overlapping) tetrahedrons as well as all
of their vertices, edges, triangles. These tetrahedrons must
be constructed from points of S and cover its entire convex
hull. Furthermore, they must fulfil the empty-sphere prop-
erty, that is, the circumsphere of each tetrahedron must not
contain any (other) vertices. For every set of points the De-
launay complex can be calculated in O(n logn) time [9].

2.2 BALLFILTER reconstruction method

Because the paper presenting the BALLFILTER algorithm
is not published yet, we cannot provide details about its
function. The most important steps are calculating the
Delaunay complex and filtering its triangles. It can re-
construct open surfaces and runs in O(n logn) time for n
points.

2.3 Distributed-memory parallel computing

In the distributed-memory parallel computing model there
is a number of p processes that are connected via a com-
munication network. Each process can only access its
own local memory. Processes can only interact with
each other by communicating over the communication net-
work. There are several paradigms, standards and frame-
works providing means for communication. For high-
performance computing, the most used is the Message
Passing Interface (MPI) [10]. It utilizes the paradigm of
message passing. Processes communicate with each other
by explicitly sending and receiving messages [17]. Costs
for such operations are determined by the concrete topol-
ogy of the communication network.

We will be using the notion of speedup. The (absolute)
speedup Sabs of a parallel algorithm is its improvement
over a baseline sequential version, in our case BALLFIL-
TER [15]. The relative speedup Srel measures the improve-
ment of multiple processes over using a single one.

3 Method

In the following, we will explain in detail how the par-
allelization of the algorithm works. First, we will ex-
plore how the input is subdivided. Next, we will discuss
how those parts are distributed among multiple processes.
Then, we will examine the parallel reconstruction step and
derive its parallel runtime complexity. Lastly, we will dis-
cuss how the resulting partial meshes are merged back to-
gether.

3.1 Splitting into overlapping tiles

The approach for input subdivision was developed by
Brunner [4] and is thoroughly explained in their dedicated
work. We will only explain the most important aspects.

Splitting the input into independent parts is necessary
to enable parallelism. We will be splitting the point set
along a regular 3D grid into cells. The grid is axis-aligned,
covers the entire point cloud and the number of grid cells
along each axis is given as input parameters x, y and z, cre-
ating a total of s = x×y×z cells. The grid cell dimensions
are calculated based on the minimal and maximal coordi-
nates present in the point cloud.

However, the union of the Delaunay triangulations of all
grid cells is not equal to the Delaunay triangulations of the
entire point clouds, as triangles constructed from vertices
in different, neighbouring cells will be missing. Visually,
this leads to cuts along the 3D grid in the resulting model.
Put differently, we have to make sure not to miss triangles,
which have vertices in different grid cells.

We solve this problem by considering points in an area
around every grid cell in addition to the points within it.
This area is given by the so-called padding. We call the set
of all points within a grid cell and its surrounding padding

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 1: Delaunay-triangulated 2D point cloud, subdi-
vided into a regular grid. Tiles are highlighted by coloured
borders with varied thickness for readability.

a tile. The set of tiles is not a partition of the point cloud
but a set of overlapping subsets. The number of tiles is
equal to the number of grid cells. The padding is added
to the grid cell dimensions, extending the cell along each
axis in positive and negative directions.

The input subdivision is illustrated in Figure 1. Tiles
are regions with coloured borders. The vertices of red-
coloured triangles belong to the upper left tile. The ver-
tices of green-coloured triangles belong to the upper right
tile. In the overlap region, there are triangles with all ver-
tices belonging to both tiles. These will be part of the De-
launay triangulations in each tile separately and thus be
considered for reconstruction by BALLFILTER. While this
cannot lead to holes in the resulting mesh, it may lead to
redundant triangles. This may be fixed as part of a post-
processing step, see 3.4.

Two vertices of a triangle can only be in two differ-
ent tiles exclusively, if the edge between these vertices is
longer than double the padding. This case is illustrated in
Figure 1, where between green and red tile, there are two
white triangles. These will be missing in the separate De-
launay triangulations of each tile. However, by choosing a
padding relative to the parameters used for BALLFILTER,
we ensure that all triangles that BALLFILTER considers are
also present in the Delaunay triangulation of at least one
tile.

Checking a single point for tile membership requires
checking its coordinates against the grid as well as the
padding. This can be done in O(1), therefore calculating
the memberships of all points can be done in O(n).

The overlap between tiles leads to the duplication of
some points of the input set. In particular, the maximal

number of tiles that may be overlapping each other at any
given location dictates the (maximal) factor of duplication.
Choosing a padding smaller than half the tile dimensions
in each direction would imply a maximum of four overlap-
ping tiles in the 2D case (see Figure 1) and eight overlap-
ping tiles in the 3D case.

Therefore, for DISTRIBUTEDBALLFILTER, any point
of the input set may be part of up to eight tiles and thus be
duplicated up to eight times. The total number of points n′

after splitting is n′ ≤ 8n and is in O(n). From here on we
assume n′ = cn with some constant factor c < 8.

3.2 Work distribution

The next step is to assign the tiles to a fixed number of p
processes (also called machines or nodes). We assume all
processes are capable of performing the same amount of
work in the same time (assumption of identical machines).
The running time of the entire program is determined by
the running time of the slowest process. There is no as-
sumption about the distribution of the points. There may
be significant differences in the number of points between
tiles. We call an execution of BALLFILTER for a single
tile a job. The challenge is to assign jobs to processes in
such a way that the total running time is minimized. This
problem is well known as load balancing [8].

There are various ways of approaching this problem and
generating optimal solutions can be computationally com-
plex. Instead of trying to find optimal solutions, we will
focus on efficiently finding a solution, that is reasonably
close to the optimum, thus approximating it.

Formally, we want to assign jobs in such a way, that the
maximum running time within all processes is minimized.
The running time for processing a tile is dependent on the
number of points it contains. Thus, the goal is to minimize
the total number of points (that is, the sum of the tile sizes)
any single process gets assigned.

To minimize this sum, we will be using list-scheduling
with the longest-processing-time-first (LPT) rule. It is a
simple and fast approximation algorithm for the schedul-
ing problem, that guarantees a 4/3-approximation [20],
i.e. the calculated schedule is slower than the optimal by
factor 4/3 at the most. In each iteration, a job is assigned
to the process with the least number of points to process
yet. The jobs are assigned in order from highest number of
points to lowest. Sorting the jobs can be done in O(s logs),
with s being the number of tiles. The process assignment is
done in O(s log p). As it only makes sense for p processes
to process at least s tiles, it holds that p ≤ s. Therefore,
calculating the assignment is in O(s logs).

3.3 Processing tiles

Each process executes BALLFILTER on every tile it was
assigned. The result of BALLFILTER is a set of triangles,
represented by the indices of the vertices in the original
point cloud. The run time of a single process is the sum

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

of the run times of BALLFILTER for the set of all tiles LT
assigned to this process, thus

O

(
∑

ti∈LT
|ti| log |ti|

)
.

The term with the largest tile size dominates this sum, so
the largest tile of each process dictates its asymptotic run
time. The overall run time is determined by the slowest
process, which is the one with the largest tile. Therefore,
the overall bound can be expressed as

O(|ti| log |ti|) with ∀t j ∈ T : |ti| ≥ |t j|.

Hence, the running time of DISTRIBUTEDBALLFILTER
is dependent on the distribution of points within the tiles,
which itself depends on the distribution in the point cloud,
the chosen grid and the padding.

In the best case, every process is assigned exactly an
equal part of all points (after duplication), i.e. a number
of cn

p points. Therefore, the largest tile ti can contain at
most this many points, formally |ti| ≤ cn

p . Since LPT list-
scheduling guarantees a 4/3-approximation and BALL-
FILTER can be done in O(n logn), this implies a bound
for the parallel running time in

O
(

4
3
|ti| log |ti|

)
= O

(
4
3

cn
p

log
cn
p

)
= O

(
4c
3

n
p
(logc+ logn− log p)

)
= O

(
n logn

p

)
.

In the worst case, almost all points are assigned to a
single process. This may happen when the tile sizes are
extremely unbalanced, e.g. if two tiles with sizes cn− 1
and 1 should be assigned to two processes. As the largest
tile may be of size cn, the run time of the slowest process
and thus the parallel running time is in

O(|ti| log |ti|) = O(cn logcn)

= O(n(logc+ logn))

= O(n logn)

which is (asymptotically) equal to running BALLFIL-
TER on the original point cloud. Due to duplicated points
and communication overhead, the actual run times of DIS-
TRIBUTEDBALLFILTER are expected to be higher than
BALLFILTER in this case. However, such cases may be
mitigated most of the time by carefully choosing the pa-
rameters for splitting.

3.4 Merging results and output

Upon finishing executing BALLFILTER on all assigned
tiles, each process sends the resulting triangles to a sin-

gle process, which joins all received sets together and out-
puts the final model. The padding causes all triangles that
are considered by BALLFILTER to be entirely contained
within at least one tile. Therefore, there is no need to ex-
plicitly connect the meshes of neighbouring tiles, the result
is simply the union of all triangle sets.

However, as mentioned in 3.1, reconstructed triangles
may be part of more than one tile. In this case, merging
the results generates redundant geometry in the resulting
mesh. Removal of those triangles is possible as a post-
processing step. We will not take redundant triangle re-
moval into account for running time considerations and
because it does not interfere with the visual quality of the
reconstructed model.

3.5 Summary

To summarize, DISTRIBUTEDBALLFILTER processes a
set of n points using the following steps. Note that the
point duplication caused by tile overlap is assumed to be a
constant factor as discussed in 3.1.

1. Split the input point cloud into tiles in O(n) (on a
single node).

2. Calculate schedule in O(s logs) (on a single node).

3. Perform BALLFILTER in parallel worst case
O(n logn), best case O(n logn

p) (on p nodes).

4. Merge results from nodes in O(n) (on a single node).

The overall asymptotic run time complexity is
O(n logn) in the worst and O(n+ n logn

p) in the best case.

4 Implementation

In this chapter, we will briefly mention the technology
used as well as discuss the implementation structure.

4.1 Technology

For the implementation, C++ has been used as it offers
both, performance and high-level abstractions. As input
splitting involves a large number of simple operations, has
been use CUDA to utilize the large scale shared-memory
parallelism possible on GPUs [11]. For distribution of the
tiles to the processes, we use the distributed file system
of the VSC-3+ cluster, BeeGFS. For the reconstruction
step performed on each tile, the original implementation
of BALLFILTER has been. For the merging step, each pro-
cess’ outputs are sent back to a single node using Open-
MPI [14].

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

Schedule MergeBallFilter1 BallFilteri...

BallFilterj BallFilterk...

...

BallFilterl BallFilters...

Schedule

Schedule

Process 1

Process 2

Process p

......

Split

Send all tiles
via distributed

file system

Send results
via MPI call

Split executable Reconstruction executable

Figure 2: Implementation of DISTRIBUTEDBALLFILTER

4.2 Structure

Splitting the input point cloud and performing surface re-
construction are implemented in separate executables. The
output of the splitting step, which is also the input of the
reconstruction step, consists of a set of files, each repre-
senting a tile (tile file). This promotes decoupling of in-
put splitting and reconstruction and allows exchanging im-
plementations as well as introducing additional process-
ing steps. On the VSC3+, tile files are written to the dis-
tributed file system, making all tiles available to all nodes
after the splitting step.

Then the reconstruction executable is started on all
nodes in parallel. Each process calculates the job schedule
(tile file assignment) independently. Compared to calcu-
lating it on a single node and communicating it to all oth-
ers, it is still faster because no communication is required.
Then each process runs BALLFILTER on each of its as-
signed tiles. When finished, all nodes send their results to
the node with the least load. This node then merges the
results and outputs the model. The entire process is vi-
sualized in Figure 2. Notice, the structure differs slightly
from the one proposed in 3.5. We deliberately chose this
approach due to the availability of a distributed file system.

5 Results and Evaluation

In this chapter, we will discuss the results of our imple-
mentation on specific data sets and parameter combina-
tions. First, we will give an overview of the hardware en-
vironment and explain the data sets and parameter combi-
nations selected for testing. Moreover, we will visualize
the running times and reason about the effect of scaling
the number of processes p or the input size n. Finally,
we compare these times to the original implementation of
BALLFILTER.

5.1 Hardware environment and Datasets

The algorithm has been run on the VSC-3+ cluster. It
consists of various types of nodes with different hardware
specifications [5]. We used two different node types. For
the splitting step, we used a single node with a NVIDIA
Pascal GeForce GTX 1080 GPU. For the reconstruction
step, we used a number of identical nodes, containing two
Intel Xeon E5-2660v2 2.2GHz processors with 10 cores
each (so 20 cores in total) and 64GiB of RAM. The recon-
struction step has been run multiple times while varying
the number of nodes used in order to analyse the scaling
behaviour.

As input point clouds for testing, two data sets have
been selected, both obtained via photogrammetry provided
by Pix4D [13]. They were chosen based on their large
size and real world relevance. The point clouds were trun-
cated to create inputs of various sizes n. In order to ob-
serve the running times of DISTRIBUTEDBALLFILTER on
scaled input, n is varied while keeping the number of nodes
p fixed.

5.2 Parameters

The parameters for BALLFILTER only influence the qual-
ity of the resulting 3D model and generally do not signifi-
cantly impact performance. For this reason, we keep them
fixed for all runs at the values recommended in [12].

Splitting the input requires three parameters, x, y and z,
denoting the number of tiles along each axis, respectively.
Correctly choosing these parameters is vital for work dis-
tribution and in turn has a great impact on the overall run
time. Although not strictly needed, information about the
distribution of points in the input point cloud is helpful for
picking concrete values. During testing, these values will
be picked based on the number of nodes to employ.

The number of processes p is closely related to the num-
ber of tiles. Generating less tiles than there are nodes allo-
cated would leave some nodes idle, waiting for the others
to finish, so p ≤ s. Having more tiles allows for better
work distribution and may enable faster overall running

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

times. This also depends on how balanced the tiles are to
begin with. However, using more tiles than nodes leads to
overhead by point duplication. At some point, the benefit
of better work distribution is exceeded by the additional
work of processing duplicated points. In our tests, we will
use s = p and s = 2p.

5.3 Measured running times

For a closer examination, we chose the eclepens data
set. The exact running times for various runs with different
parameter combinations are listed in Table 1 as well as
the absolute and relative speedup. Tsplit and Treconstruct are
the times for running the split and reconstruct executables
respectively as shown in Figure 2.

The running time of the split step are consistently very
low. In comparison, the running times of the reconstruc-
tion step are dominating the total running time. As this
paper’s main focus is the reconstruction step, we will ne-
glect Tsplit and refrain from analysing its impact on the
total running time.

Figure 3: Input point cloud (left) and reconstruction (right)
of the eclepens (8 million points) data set calculated
using DISTRIBUTEDBALLFILTER with 16 processes and
32 tiles in 11.43s.

5.4 Scaling behaviour and speed-up

Figure 4 shows the running times of the original (shared-
memory) implementation of BALLFILTER and our im-
plementation of DISTRIBUTEDBALLFILTER ran with 16
nodes and 32 tiles for different versions of eclepens.
The data set has been truncated to specific sizes (from
20 = 1 to 25 = 32 million points) to simulate growing input
size.

BALLFILTER has an asymptotic running time bound of
O(n logn). The asymptotic running time bound of DIS-
TRIBUTEDBALLFILTER is O(n logn) for the worst and
O(n+ n logn

p) for the best case. The distributed version is
in the worst case (asymptotically) as fast as the original al-
gorithm and faster in the best case. The factor by which it
is faster is called absolute speedup Sabs. In reality, the ab-
solute speedup will always be somewhere between 1 and
p, depending on the balance of the tile set which in turn
is based upon the distribution of points in the input point
cloud. If p is considered constant, the asymptotic run time
complexity for DISTRIBUTEDBALLFILTER is O(n logn)
for all cases and matches the one of BALLFILTER. There-
fore, the only difference between both running times lies

12 4 8 16 32
0

50

100

150

Input size n in millions of points

To
ta

lr
un

ni
ng

tim
e

in
se

co
nd

s

shared
linear speedup, p = 16

distributed, p = 16, s = 32

Figure 4: Running times of the original BALLFILTER vs
DISTRIBUTEDBALLFILTER with increasing input size for
eclepens

in the coefficient (which is ignored by asymptotic com-
plexities).

In our example, the distributed version with 16 nodes
was faster than the shared version for all input sets. Both
curves look similar, as their asymptotic running times sug-
gests. The absolute speedup increased with the size of the
input up to a factor of 5.32. The best possible absolute
speedup, i.e. linear speedup, would be 16, which would
lead to running times that are 1

16 th of the original shared
running times.

Now we will investigate how the running times change
when the number of processes p is scaled up. We executed
DISTRIBUTEDBALLFILTER on the eclepens data sets
with 16 and 32 million points multiple times, each time
doubling the number of nodes used. The number of tiles
was set to twice the number of nodes (s = 2p), so that in
cases of imbalance, the scheduling algorithm can balance
out the work between the processes. The running times are
listed in Table 1 and visualized in Figure 5.

For one node, DISTRIBUTEDBALLFILTER was slower
than the original implementation. That is to be expected
because of the overhead required by the distributed im-
plementation. Using two or more nodes, however, signifi-
cantly decreased the running times compared to the origi-
nal implementation.

As the absolute and relative speedup approach a value
of around 6, the running times stay the same even when the
number of nodes is increased. For larger numbers of tiles,
the additional work caused by duplicate points eventually
cancels out the performance gained by parallel execution.

To summarize, DISTRIBUTEDBALLFILTER performed
well on scaling up input size n as well as scaling the num-
ber of nodes p. Specifically, on the original eclepens
data set, when using 16 nodes, it was shown that DIS-
TRIBUTEDBALLFILTER outperformed BALLFILTER by a
factor of 5.66. We also observed that having a higher num-
ber of tiles can, and in many cases will, increase the overall
running time because it enables better work distribution,

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

p s = x× y× z Tsplit Treconstruct Ttotal Sabs Srel

eclepens
16 million
points

1 2 = 2×1×1 1.35175 88.8745 90.22625 0.88 1.00
2 4 = 2×2×1 1.59808 53.7387 55.33678 1.43 1.63
4 8 = 2×2×2 1.34450 31.4786 32.82310 2.42 2.75
8 16 = 4×2×2 1.25440 22.4666 23.72100 3.35 3.80
16 32 = 4×4×2 1.56540 14.8993 16.46470 4.82 5.48
32 64 = 4×4×4 1.66721 11.8065 13.47371 5.89 6.70

eclepens
32 million
points

1 2 = 2×1×1 1.56998 168.3390 169.90898 0.86 1.00
2 4 = 2×2×1 1.72504 96.3045 98.02954 1.49 1.73
4 8 = 2×2×2 1.62856 61.7569 63.38546 2.31 2.68
8 16 = 4×2×2 1.75069 36.3197 38.07039 3.84 4.46
16 32 = 4×4×2 1.84338 25.6505 27.49388 5.32 6.18
32 64 = 4×4×4 2.24963 23.7843 26.03393 5.62 6.53

Table 1: Parameter combinations and running times for eclepens

12 4 8 16 32
0

50

100

150

Number of processes p

shared
distributed, s = p
distributed, s = 2p

Figure 5: Absolute running times of the original BALL-
FILTER vs DISTRIBUTEDBALLFILTER with one tile per
process and two tiles per process respectively, run on
eclepens with 32 million points.

despite requiring more duplicated points. Figure 4 shows
that DISTRIBUTEDBALLFILTER is a large improvement
towards linear speedup.

6 Conclusion and Future Work

Finally, in this chapter we will briefly summarize this pa-
per’s results and give a short outlook on future work that
could be done on DISTRIBUTEDBALLFILTER.

6.1 Summary

In this paper, we presented a distributed-memory parallel
algorithm for 3D surface reconstruction. It works by split-
ting the input into overlapping chunks, reconstructing a
mesh from each chunk in parallel using BALLFILTER and
merging the chunk results back together.

We have shown the asymptotic run time complexity to
be O(n logn) in the worst and O(n+ n logn

p) in the best case,

depending on the distribution of points within the input
point cloud. We implemented the algorithm in C++ and
tested it on the VSC3+-cluster. In our test runs, we ob-
served that DISTRIBUTEDBALLFILTER improves the run-
ning times considerably compared to the original BALL-
FILTER.

6.2 Future Work

While we analysed mainly from an empirical perspective,
DISTRIBUTEDBALLFILTER can be analysed in a more
formal setting. Speedup and scaling properties can be
argued and proven formally in order to evaluate our ap-
proach in a more theoretical sense. Also, the best- and
worst-case asymptotic running time complexities could be
expressed in more concrete ways, as coefficients often-
times do matter in the practical comparison of algorithms.
Formally taking into account the distribution or balance of
the points within the input point cloud may yield further
insights into the properties of DISTRIBUTEDBALLFILTER
algorithm.

References

[1] Nina Amenta, Marshall Bern, and David Eppstein.
The crust and the β -skeleton: Combinatorial curve
reconstruction. Graphical Models and Image Pro-
cessing, 60(2):125–135, 1998.

[2] Nina Amenta, Sunghee Choi, Tamal Dey, and
Naveen Leekha. A simple algorithm for homeo-
morphic surface reconstruction. International Jour-
nal of Computational Geometry & Applications, 12,
September 2000.

[3] Nina Amenta, Sunghee Choi, and Ravi Krishna Kol-
luri. The power crust. In Proceedings of the Sixth
ACM Symposium on Solid Modeling and Applica-
tions, SMA ’01, page 249–266, New York, NY,
USA, 2001. Association for Computing Machinery.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

[4] Lukas Brunner. Technical report - work in progress.
TU Wien, 2022.

[5] VSC Vienna Scientific Cluster. Vienna Scienfic
Cluster (VSC) - website. https://vsc.ac.at/
systems/vsc-3/, 2022. [Online; accessed 13-
September-2022].

[6] Philipp Erler, Paul Guerrero, Stefan Ohrhallinger,
Niloy J. Mitra, and Michael Wimmer. Points2Surf:
Learning Implicit Surfaces from Point Clouds. In
Computer Vision – ECCV 2020, pages 108–124.
Springer International Publishing, 2020.

[7] Michael Kazhdan and Hugues Hoppe. Screened
poisson surface reconstruction. ACM Trans. Graph.,
32(3), July 2013.

[8] Jon Kleinberg and Éva Tardos. Algorithm design,
chapter 11.1 Greedy Algorithms and Bounds on the
Optimum: A Load Balancing Problem. Pearson Ad-
dison Wesley, Boston, Mass. [u.a.], internat. ed.. edi-
tion, 2006.

[9] Geoff Leach. Improving worst-case optimal delau-
nay triangulation algorithms. In In 4th Canadian
Conference on Computational Geometry, page 15,
1992.

[10] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard Version 4.0, June 2021.

[11] NVIDIA Corporation. CUDA Toolkit - project
website. https://developer.nvidia.com/
cuda-toolkit, 2022. [Online; accessed 13-
September-2022].

[12] Stefan Ohrhallinger. Personal communication. TU
Wien, 2022.

[13] Pix4D SA. Pix4D - website. https://www.
pix4d.com/, 2022. [Online; accessed 13-
September-2022].

[14] The Open MPI Project. OpenMPI - project website.
https://www.open-mpi.org/, 2022. [On-
line; accessed 13-September-2022].

[15] T. Rauber and G. Rünger. Parallel Programming:
for Multicore and Cluster Systems, chapter 4.2.1
Speedup and Efficiency. Springer Berlin Heidelberg,
2010.

[16] SchedMD LLC. Slurm Workload Manager -
project website. https://slurm.schedmd.
com/overview.html, 2021. [Online; accessed
13-September-2022].

[17] B. Schmidt, J. Gonzalez-Martinez, C. Hundt, and
M. Schlarb. Parallel Programming: Concepts and
Practice, chapter 9.1 Message Passing Interface. El-
sevier Science, 2017.

[18] The CGAL Project. CGAL - project website.
https://www.cgal.org/, 2022. [Online; ac-
cessed 13-September-2022].

[19] Stadt Wien. Wien Gibt Raum - project web-
site. https://digitales.wien.gv.at/
projekt/wiengibtraum/, 2022. [Online; ac-
cessed 13-September-2022].

[20] Xin Xiao. A direct proof of the 4/3 bound of LPT
scheduling rule. In Proceedings of the 2017 5th Inter-
national Conference on Frontiers of Manufacturing
Science and Measuring Technology (FMSMT 2017),
pages 486–489. Atlantis Press, 2017/04.

[21] Cheng Chun You, Seng Poh Lim, Seng Chee Lim,
Joi San Tan, Chen Kang Lee, and Yen Min Jasmina
Khaw. A survey on surface reconstruction techniques
for structured and unstructured data. In 2020 IEEE
Conference on Open Systems (ICOS), pages 37–42.
IEEE, 2020.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)

https://vsc.ac.at/systems/vsc-3/
https://vsc.ac.at/systems/vsc-3/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.pix4d.com/
https://www.pix4d.com/
https://www.open-mpi.org/
https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/overview.html
https://www.cgal.org/
https://digitales.wien.gv.at/projekt/wiengibtraum/
https://digitales.wien.gv.at/projekt/wiengibtraum/

	Introduction
	Related work
	BallFilter algorithm and limitations
	Distributed approach

	Background
	Delaunay complex
	BallFilter reconstruction method
	Distributed-memory parallel computing

	Method
	Splitting into overlapping tiles
	Work distribution
	Processing tiles
	Merging results and output
	Summary

	Implementation
	Technology
	Structure

	Results and Evaluation
	Hardware environment and Datasets
	Parameters
	Measured running times
	Scaling behaviour and speed-up

	Conclusion and Future Work
	Summary
	Future Work

