
Real-time Rendering of Atmosphere and Clouds in Vulkan

Matěj Sakmary*

Supervised by: Jaroslav Sloup†

Department of Computer Graphics and Interaction
Czech Technical University in Prague

Prague / Czech Republic

Abstract

This work presents a Vulkan-based implementation ren-
dering volumetric clouds and atmosphere. We combine
previously published solutions to produce a single unified
look. We use Raymarching as the main method to ren-
der both the atmosphere and clouds. Furthermore, we use
multiple precomputed look-up tables (LUTs) proposed by
Hillaire to speed up the rendering of the atmosphere. We
enhance these methods with the option to render volumet-
ric clouds using a precomputed three-dimensional texture
setup storing procedurally generated noise. With our final
solution, we can render images in a high dynamic range.
We apply post-processing effects and use adaptive lumi-
nance to transform the image into a low dynamic range for
presentation.

Keywords: Volumetric clouds, Real-time rendering, At-
mosphere, Vulkan

1 Introduction

Having a realistic and believable atmospheric model when
rendering dynamic environments in interactive applica-
tions is an important part of creating virtual worlds. The
atmosphere and cloud configuration can instantly change
the mood of the scene. This is especially important for ap-
plications that require dynamic time of day and weather.
In addition, these effects are also interconnected and af-
fect each other, making them even harder to simulate. De-
spite the gradual increase of computing power available in
personal computers, simulating complex light interactions
that produce the appearance of sky and clouds along with
the constraint of displaying such effects in real time is still
difficult. To avoid these problems, we are forced to adapt
a number of approximations, gaining a significant reduc-
tion in the problem complexity. The goal of this work is to
provide a complete solution to render dynamic clouds and
the sky in real time. To achieve this, we combine multiple
well-described techniques into a single solution.

In Section 2, we describe various approaches to render-
ing volumetric media along with their strengths and weak-

*sakmamat@fel.cvut.cz
†sloup@fel.cvut.cz

nesses. A short summary of the relevant topics in physics
follows in Section 3. For brevity’s sake we only provide
a short description meant as a reference. More detailed
descriptions, along with explanations, can be found in a
textbook on these topics [11]. Lastly, in Sections 4 and 5
we propose the solution and describe our implementation.
The images rendered by our implementation can be ob-
served in Figures 7 and 8.

2 Related work

As we focus on real-time rendering, we will only describe
methods that are relevant in this context. The most phys-
ically accurate method to render volumetric effects is to
use path tracing [8, 10]. This method sends rays from the
camera and follows them as they bounce when hitting ob-
jects in the scene until they reach a light source. Although
using this method produces the most physically accurate
effects, the computational complexity is very high. This is
caused by the number of rays we need to trace to reduce
the noise in the final image.

Another approach proposed by Hosek or Wilkie [7, 15]
is to use fitted mathematical models. Methods leverag-
ing this principle usually build a set of parameters from
measured data used to evaluate the look of the sky. These
models are very fast; however, due to the dependence on
the data measured in the real world, these methods do not
provide the option to change the parameters of the atmo-
sphere. In addition, when the parameters of the atmo-
sphere are changed, a new model has to be fitted. This
is unsuitable for the goal of this work because we want
our method also to visualize planets different from Earth.

Finally, many methods use raymarching to achieve their
results [2]. Offering a good compromise between physical
accuracy and speed, it is very popular in problems requir-
ing rendering volumetric effects, such as clouds, mist, or
atmospheres. Unlike path-tracing, ray marching does not
spawn additional rays. Instead, multiple steps are taken
along a ray, sampling the medium at each step. These
medium samples are then used to calculate the final look
of the ray-marched medium. Consequently, we chose to
use ray marching in our implementation.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)



2.1 Atmosphere

The first methods for rendering physically based atmo-
spheres evaluated only single scattering by ray march-
ing the atmosphere from viewpoint for each pixel on the
screen [13]. Although omitting multiple scattering has
performance benefits, it does not produce realistic looking
results, especially for more dense atmospheres, which re-
sults in overly dark scenes. Due to this, methods that take
into account multiple scattering were introduced [3, 16].

Such methods usually rely on precomputing parts of
the computation and storing them in 2D, 3D, and 4D ta-
bles called Lookup Tables (LUTs) to speed up the eval-
uation. This significantly improves the rendering time.
Where previously the same evaluation was repeated hun-
dreds of times, now it is only computed once at the begin-
ning. The results are then accessed whenever needed. The
main drawback of these methods is the inability to change
the atmosphere parameters in real time. Whenever the at-
mosphere parameters change, all of the LUTs used have to
be recalculated, which is a very expensive operation. This
results in a long delay before seeing the changes. Another
disadvantage is that, because the results are obtained by
raymarching each pixel, the performance is tied to the res-
olution of the screen.

Hillaire et al. [6] introduced solutions to overcome the
above-mentioned problems. The first proposal was a new
method to evaluate multiple scattering inspired by a dual-
scattering approximation used when simulating multiple
scattering effects in hair. This reduced the time to precom-
pute LUTs greatly, enabling the update of the atmosphere
parameters with almost no delay. The second proposal
was to precompute the final sky-view and the aerial per-
spective into fixed-size latitude/longitude textures, which
are later sampled and upscaled. This effectively decouples
the computation complexity from window resolution and
introduces additional speed improvements. Bruneton [2]
provides a good general summary and comparison of var-
ious sky models described in this section.

2.2 Clouds

We summarize previous approaches to rendering clouds
that are most interesting or relevant to our work. One
possible approach was to represent clouds as volumes of
particles. For example, Yusov [17] presented a particle-
based rendering method. The clouds were modeled using
randomly rotated and scaled copies of a single reference
particle. The complex optical properties of the reference
particle were precomputed, making this process viable for
use in real-time applications.

Another technique was presented by Bouthors et al. [1].
By combining meshes to represent low resolution cloud
boundaries together with procedural volumetric hypertex-
tures, which add the detail under the mesh boundary, an
efficient cloud representation was achievable. When ren-
dering, the cloud surface is covered with circular collec-

tors that are used to evaluate the incoming light. Using
this information along with a set of precomputed transfer
tables, light is integrated. The cloud representation, how-
ever, is not trivial to tweak. This, along with the relatively
high overall complexity of the described method, is why
simpler methods were developed.

The more recent work by Schneider and Vos [12] uses
a fully procedural set of volumetric noise textures to pro-
duce similar results. These noise textures are used to rep-
resent changes in density in a medium caused by clouds.
The clouds are then rendered by ray marching the cloud
volume and sampling the medium. This method allows to
completely change the overall look of the cloud layer by
only tweaking a few parameters while simulating dynamic
lighting conditions caused, for example, by changing the
time of day. Due to the above reasons, we use this method
in our implementation.

3 Physical model

Light transport in participating media is a well-studied
problem in computer graphics, described in detail in many
articles. This section summarizes the fundamentals of
light propagation in the atmosphere relevant to this work
and is strongly motivated by works that previously de-
scribe these topics [5, 6, 11].

When electromagnetic radiation travels through the at-
mosphere, it collides with the molecules that make up the
atmosphere. During this collision, part of the energy car-
ried by the radiation is absorbed, part is reflected (scat-
tered), and part is emitted. The amount of extinct, scat-
tered and absorbed energy is given by the respective ex-
tinction, scattering and absorption coefficients denoted as
βe,βa, and βs. The absorption coefficient is defined as

βa =
4πni

λ
(1)

where λ is the wavelength of radiation in vacuum and ni
is the complex part of the index of refraction. Thus, this
coefficient denotes the rate of energy attenuation per unit
of distance at a point x. Similarly, we define a scattering
coefficient. The extinction coefficient is then defined by
the sum of the absorption and scattering coefficients

βe = βa +βs. (2)

To correctly compute attenuation over a path where
the extinction coefficient varies, integrating the coefficient
along the entire path of the ray is required. So, the amount
of light that arrives at the point x2 from the point x1 given
the intensity of light at this starting point and extinction
coefficient βe is given by equation 3

L(λ ,x2) = L(λ ,x1)exp
[
−

∫ x2

x1

βe(x)dx
]

(3)

where λ is the wavelength of the radiation considered. The
exponential term is often referred to as transmittance and

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)



is denoted by T

T (x1,x2) = e−
∫ x2

x1 βe(x)dx. (4)

We also have to consider the scattering effects of the
atmosphere. Unlike absorption effects, when radiation is
scattered away, it is added to the atmosphere at a differ-
ent point. The radiation scattered away is not uniform in
all possible directions. To represent the directional dis-
tribution of the scattered light, we use a scattering phase
function denoted by P(cosθ) where θ is

cosθ =−→
ω

′ ·−→ω (5)

with −→
ω ′ being the incoming direction of the light and −→

ω

being the direction of the ray we consider. We can formu-
late the scattering phase function so that it depends only
on the parameter Θ because the particles in the atmosphere
are spherical or randomly oriented.

Taking this into account, the scattering formula is de-
noted as follows:

dLscat(λ ,x,
−→
ω ) =

∫
4π

βs(y)P(cosΘ)L(λ ,x,−→ω ′)d−→ω ′ ds.

(6)
By combining the two previously described effects (Eq. 3
and Eq. 6), we get the following form:

L(λ ,x,−→ω ) = T (x,x0)L(λ ,x0,−−→
ω )︸ ︷︷ ︸

direct light f rom the sun

+
∫ x0

x
βs(y)T (x,y)

∫
4π

P(cosΘ)L(λ ,y,−→ω ′)d−→ω ′ dy︸ ︷︷ ︸
in−scattered light along the ray

(7)

where λ is the wavelength of the radiation considered, x
is the origin of the ray, and −→

ω is the direction of the ray.
The second term (i.e. direct light from the sun) almost di-
rectly corresponds to Equation 3. We rewrote the second
part, corresponding to the in-scattered light, as follows.
We can take the coefficient βs from the inner integral, as it
remains constant in the integrated area. Since we consider
in-scattered light along a ray, as opposed to Equation 6
where we consider in-scattered light at a single point, we
integrate over the entire ray and weigh the results by trans-
mittance.

Next, we will describe two models used to substitute the
real scattering phase function P(cosΘ). First, for particles
that are much smaller than the wavelength of incident ra-
diation, such as clear air molecules or ozone, the Rayleigh
scattering phase function is used. We use the model pro-
posed by Costa et al. [5]

PR(θ) = 0.7629(1+0.932 · cos2(θ)) · 1
4π

(8)

Second, for particles comparable to or larger than
the wavelength of the incident radiation, dust or water
droplets, for example, Mie’s theory was used. Larger par-
ticles, such as aerosols, tend to scatter light strongly for-
ward. We use the double Henyey-Greenstein phase func-
tion approximation proposed again by Costa et al. [5]

Figure 1: The order in which individual Sky LUTs are
drawn. Please note that the color values of LUTs have
been scaled in order to be properly visible.

PM(θ ,g1(λ ),g2(λ ),α(λ )) =

α ∗Pf b(...)+(1−α)∗Pf b(...)
(9)

Pf b(θ) =
(1+g2

1(λ ))

(1+g2
1(λ )−2g1(λ )cos(θ))

3
2
. (10)

For more details on scattering or extinction coefficients,
see [5].

4 Proposed solution

As mentioned above, to speed up the time taken to render
the atmosphere, it is beneficial to precompute certain parts
of the rendering equation and store them in multidimen-
sional tables. We use the LUT setup proposed by [6], four
LUTs storing precomputed parts of Equation 7. Individual
LUTs and their dependencies can be seen in Figure 1.

4.1 Atmosphere precomputations

Transmittance LUT introduced by Bruneton et al. [3] is
used to store the transmittance T described by Equation 4.
When the atmosphere is ray-marched, the value of T is
used frequently to model the atmosphere light attenuation.
To compute this value, a second ray must be traced towards
the light source. Given the overall smooth distribution of
the atmospheric transmittance, we precompute the trans-
mittance value for the entire atmosphere.

For Multiscattering LUT a new approach proposed by
Hillaire [6] was used. We precompute the scattering con-
tribution denoted by Equation 6 at several discrete points
in the atmosphere. The incoming radiance from the Sun
(L(λ ,x,−→ω ‘) in Equation 6) should be weighed by the

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 2: From left to right separate RGBA channels stor-
ing Worley noise and all of the channels combined to-
gether in the rightmost image.

transmittance. Here, we use the Transmittance LUT to re-
trieve the values instead of computing them directly.

Sky-View LUT represents the far sky mapped into a
latitude/longitude texture that is much lower in resolu-
tion than the final image. This LUT stores the values of
Equation 7. Similarly to the above, we use the Transmit-
tance LUT to retrieve transmittance values. Additionally,
we also interpolate values stored in Multiscattering LUT
when marching each ray instead of computing in-scattered
light along the ray (Equation 7). The highest visual fre-
quency is introduced by the Sun. Thus, we orient the Sky-
View LUT so that the sun is always present at the same
position in the texture. We map the values non-linearly, by
adding more samples near the horizon.

Lastly, we use Aerial (AE) perspective LUT. The
Aerial perspective refers to how we see objects as they re-
cede into the distance from the viewpoint. A 3D lookup
table is precomputed. To parameterize along the z-axis,
we use the distance from the viewing position. At each
depth level, a 2D LUT is fitted to the camera view frustum.
Each layer of the Aerial Perspective LUT contains the
luminance of the atmosphere (Equation 7) and the aver-
age transmittance at the corresponding depth (Equation 4).
Similarly to Sky-View LUT at each depth level we use the
results stored in Transmittance and Multiscattering LUTs
to speed up the computation.

4.2 Rendering process

The process of rendering a single frame is divided into four
parts. The first part computes the four LUTs used to render
the atmosphere. The second part draws all of the scene
objects and terrain. Along with this, the atmosphere, its
effects, and clouds are also rendered. The next step is to
map the values from the HDR range into LDR that is used
by the image presented to the screen. The final step renders
the user interface that controls various parameters of the
atmosphere and clouds. Moreover, our rendering process
includes a fifth standalone part, which is to compute the
Worley noise texture later used to draw the clouds. We
reuse this texture instead of recomputing it each frame.

We based our work on a popular approach to cloud ren-
dering, first introduced by Schneider and Vos [12], which
relies on the use of inverted Worley noise. The compu-
tation of non-inverted Worley noise can be split into two
parts. First, a number of points are randomly distributed
in a desired volume for 3D texture. After this, for each

Look up table Resolution size
Transmittance LUT 256 × 64 128 KiB
Multiscattering LUT 32 × 32 8 KiB

Sky-View LUT 192 × 128 198 KiB
Aerial Perspective LUT 32 × 32 × 32 256 KiB

Total 590 KiB

Table 1: Parameterization and LUT sizes used to render
the atmosphere.

voxel in the desired area, the distance to the nearest point
was calculated and stored. Inverting Worley noise simply
consists of storing dmax − d, where dmax is the maximum
possible distance between a point and a voxel and d is the
distance from the currently processed voxel towards the
nearest point. We precompute multiple 3D textures that
contain Worley noise with various frequencies. These tex-
tures are then sampled by raymarching the cloud.

We follow the method proposed by Lague [9]. It uses
two 4-channel 16-bit float textures. Both textures store
separate Worley noises with increasing frequencies in each
of the RGBA channels. The red channel then stores Wor-
ley noise with the lowest frequency, and the alpha channel
stores noise with the highest frequency. These textures can
be seen in Figure 2.

The texture will have to be tiled multiple times to cover
the entire skydome. This gives another requirement for
the texture to be tileable (seamless) along all three dimen-
sions.

5 Implementation

As in most performance-dependent applications, this work
was implemented using C++. The Vulkan API was used
as an interface to the GPU.

5.1 Application resources

In this section, we describe all the application resources
and their format. We will mostly omit small uniform and
storage buffers used only for parameterization, as they are
multiple orders smaller than the LUT textures and have no
real effect on the memory requirements of the application.

When rendering the atmosphere, four previously de-
scribed LUTs have to be computed. We use a 16-bit
RGBA texture for each LUT. The parameterization that
we decided to use can be seen in Table 1.

In addition to the above, we use two volumetric tex-
tures, Base Noise LUT and Detail Noise LUT, which
store Worley noise. Similarly to LUTs used to render the
atmosphere, these textures store 16-bit floating point val-
ues in each of the channels. The parameterization, along
with the size, can be seen in Table 2.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)



Look up table Resolution Size
Base Noise LUT 256 × 256 × 256 128 MiB

Detail Noise LUT 128 × 128 × 128 16 MiB
Total 144 MiB

Table 2: Parameterization and LUT sizes used to store
Worley noise.

5.2 Main draw loop

Because most of the command buffers in our implementa-
tion are prerecorded and do not need to be reconstructed,
the main purpose of the draw loop is to keep the GPU fed
with as much work as possible. In order to do this, we
have multiple frames in flight. By default, in our imple-
mentation, two frames are in flight at the same time.

At the start of our loop, we check if we do not already
have more images in flight than we want. For this purpose,
we create a fence for each frame in flight that we want to
have. When we are sure that the number of frames in flight
is less than the maximum specified values, we continue by
acquiring the next image index from the swap chain. This
prevents the above-mentioned issue of slowly overflowing
our command queues.

Figure 3: Flow diagram of the draw loop execution order.
CPU parts as well as CPU-GPU synchronization points are
colored blue. Similarly, GPU parts and GPU-GPU syn-
chronization are colored red.

Because swapchain images might be returned out of or-
der, we have an array of structures containing all of the
data that change during the process of rendering one frame
and a fence specifying whether the data are currently be-
ing used by some in flight frame. Whenever a new image
is acquired from the swapchain, we check the correspond-
ing frame data structure fence. Only after the fence has
been signaled is an appropriate command buffer submit-
ted to GPU. Whenever we finish rendering any frame, a
structure fence is signaled, allowing another frame to be
submitted. Figure 3 shows a flow diagram visualizing the
entire draw loop.

For each frame, four command buffers are submitted
to the GPU. The first pair of command buffers can start
executing immediately. Since the second pair of command
buffers writes directly into a swap chain image, we need

Figure 4: Flow diagram showing dependencies between
individual operations in LUTs command buffer. All parts
are either executed on GPU or are GPU-GPU synchroniza-
tion, so they are all marked red.

to make sure that the corresponding image is available for
us to write. We use an additional array of semaphores.
Each semaphore is signaled when the presentation engine
is finished using the corresponding image.

5.3 Command buffer descriptions

The four parts of the proposed solution described in the
previous section are directly linked to four command
buffers that are submitted to the GPU for each frame. In
this section, we provide a fairly detailed description of
the commands that are submitted in each command buffer.
We will also describe the GPU-GPU synchronization that
takes place inside each of the command buffers. Think of
this section as a description of Vulkan-specific parts in our
implementation. This, of course, is not everything that is
Vulkan-specific in our application; however, as we did not
believe those other parts unique to our implementation, we
decided to omit them.

In our implementation, we use compute shaders to fill
out all LUTs. Each LUT is computed by one shader in one
dispatch. The compute dispatch commands are recorded
in the order shown in Figure 1 in the command buffer.
Because there are data dependencies between individual
LUTs, we need to introduce synchronization between the
individual dispatch commands. We use pipeline barriers
after each dispatch, waiting after each drawcall. This is
to ensure that all of the compute work previously submit-
ted has been finished before issuing another dispatch. Fig-
ure 4 shows the visualization of the execution order in this
command buffer, as well as the synchronization performed
between executions.

5.3.1 Worley noise command buffer

As mentioned above, sometimes an additional LUT com-
mand buffer may be submitted that computes the 3D Wor-
ley noise textures. We again opt for compute shaders when
generating this texture.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 5: Flow diagram showing dependencies between
and execution order of Worley noise command buffer.

Following the approach used by [9] in the first pass, we
render Worley noise, followed by the second pass, which
normalizes the values in the range between 0 and 1. We
used a separate one-channel texture for each of the final
four textures in the first pass. These four textures are com-
bined into a single 4-channel texture in the second pass.

The only synchronization that we have is between the
first and second passes. In our case, a single pipeline bar-
rier is inserted. This makes sure that all writes and reads in
the compute shader stage by previously called dispatches
have finished before we normalize and combine all chan-
nels together. The entire execution process can be seen in
Figure 5.

5.3.2 Sky command buffer

Next we render all objects in our scene and draw the sky
with clouds. The ordering here is important; we first ren-
der all objects before drawing the sky and clouds. This is
because drawing the sky, clouds, and atmosphere requires
depth information about the rest of the scene. After all
scene objects were rendered far sky is drawn where no
object was drawn in the previous pass. Then, the clouds
are rendered. Lastly, the aerial perspective is applied. We
used the depth when raymarching the clouds as well as the
index into the aerial perspective LUT.

In order for aerial perspective to correctly apply on
clouds, we also need information about how far the clouds
are from the viewing point stored in the depth texture. Be-
cause Vulkan does not allow a read and write the same
texture from the same shader, we introduce a second depth
texture. When rendering clouds, we use the first depth
texture as an input and combine it with the depth of the
rendered clouds. We write this result into the second out-
put texture. Figure 6 shows how every pass reads or writes
resources from the framebuffer.

We divide this command buffer into multiple subpasses
and use subpass dependencies for image transitions as well
as synchronization. Each subpass is responsible for one of
the phases described above. After each subpass finishes, a
set of barriers corresponding to Figure 6 is executed.

Figure 6: Visualization of writes and reads performed by
each pass. We also show when transitions from output at-
tachment into input attachment inside a framebuffer occur.

5.3.3 Post process and GUI command buffers

At the end of each frame, the post-processing of the fi-
nal image and the drawing of the UI follow. To draw the
UI, we use the ImGUI library [4]. The UI gives the user
control over the parameters used while rendering the sky.
Position of the Sun in the sky, scattering and absorption
coefficients, atmosphere height, and falloff of Rayleigh
and Mie particle density. As for the clouds, the height
where the could layer starts, the thickness of the cloud
layer, phase function parameters, and weights and scales
of the noise textures used. It is also possible to control the
relevant tonemapping parameters.

For the purposes of tonemapping, we first need to cal-
culate the average luminance of the current image. We use
a two-pass compute approach described by [14]. In the
first pass, a histogram of the luminance values in the im-
age is constructed. The second pass reads this histogram
and calculates the weighted sum. This sum is then used
to calculate the adaptive average luminance of the scene.
Our post-process fragment shader then reads this average
value and uses it for tonemapping. A pipeline barrier is
inserted between the construction of the histogram and the
calculation of the average luminance. A second pipeline
barrier is inserted before tonemapping to ensure that the
previous average luminance was written. The last com-
mand buffer draws the UI on the screen. We do not need
any synchronization, everything is handled internally by
the ImGUI implementation.

6 Results

In this chapter, we present the results obtained by using
our implementation. We also provide the performance for
Earth-like setup. The scene was tested on two comput-
ers - PC1 with AMD RYZEN 7 1700 & NVIDIA GTX
1080 and PC2 with Intel Core i7 7700HQ & NVIDIA
GTX 1050 (mobile). Most of our frame budget was spent
on raymarching clouds (see Table 3). Performance is

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) Sparse cloud cover with the sun nearing sunset. Aerial per-
spective. Effects are clearly visible on the terrain towards the
sun.

(b) Clouds during sunset. The clouds become much darker as not
much sunlight reaches them through the atmosphere.

Figure 7: Images of clouds and atmosphere obtained by
using Earth-like conditions.

highly dependent on the resulting cloud quality we want
to achieve. In all of our benchmarks, we only had a single
frame in flight. This slightly reduces the stability of the
frame rate, but in return gives more consistent measure-
ments.

6.1 Earth with medium cloud cover

Our first testing scene was an Earth-like atmosphere setup.
We can see that we are only barely hitting 60 frames-per-
second on PC1. The execution times of individual shaders
can be seen in Table 3. The main bottleneck is the cloud
rendering, which is expected as we raymarch each pixel.
The resulting images can be seen in Figure 7.

6.2 Fictional planet

The second scene uses cloud and atmosphere parameters
that are not based on reality. These settings are used to
demonstrate the flexibility of our implementation. Given
the procedural nature of our clouds combined with the
parameterizable atmosphere, we are able to completely
change the overall look and mood of the entire scene by
tweaking a few values. Additionally, these fictional set-
tings demonstrate the interconnected effects of both atmo-
sphere and clouds, producing consistent results even when
we change the values outside of the ranges we are able
to observe in the real world. The rendered images of the
fictional setup can be seen in Figure 8.

PC1 PC2
Shader 1080p 720p 1080p

Transmittance LUT 63.9 µs 63.9 µs 233.7 µs
Multiscattering LUT 51.0 µs 51.1 µs 208.4 µs

Sky-View LUT 33.3 µs 32.4 µs 129.7 µs
AE Perspective LUT 56.2 µs 56.4 µs 184.9 µs

Draw Terrain 2.9 ms 2.9 ms 10.86 ms
Draw Far Sky 216.7 µs 104.7 µs 979.9 µs
Draw Clouds 11.6 ms 7.15 ms 43.7 ms

Draw AE Perspective 278.3 µs 125.9 µs 1.26 ms
Construct Histogram 228.1 µs 103.6 µs 415.3 µs

Sum Histogram 3.3 µs 3.3 µs 3.9 µs
Tonemapping 341.0 µs 147.3 µs 1.12 ms

Total 15.79 ms 10.73 ms 59.1 ms

Table 3: Average execution times of each shader for the
Earth-like planet with clouds.

We have raised the Mie scattering and extinction coef-
ficients, as well as the Rayleigh scattering coefficient, by
almost two orders. Together with the increase in the dis-
tribution of particles throughout the medium, we are able
to simulate a very dense atmosphere. We achieved the
purplish-blue look of the atmosphere by leaving the blue-
wavelength component of the Rayleigh scattering coeffi-
cient lower. As a result, most of the light in the red-green
wavelength gets scattered away by the atmosphere before
reaching the eye of the observer. To match the aerial per-
spective effects with the sky look, we also lowered the
blue-wavelength component of the Mie absorption coef-
ficient, allowing more blue light to penetrate the atmo-
sphere.

7 Conclusion and future work

We have described the implementation of an intercon-
nected system to render atmospheric effects. We leveraged
the GPU for most of our computations, and thus reached
real-time frame rates. The model described previously by
Hillaire [6] was used to render the sky. In addition to this,
a technique presented by Schneider and Vos [12] was im-
plemented, which allows us to combine the atmosphere
model with procedurally generated clouds.

The implemented solution allows visualization of mis-
cellaneous settings ranging from ones based on reality to
entirely fictional. Although our implementation relies on
using multiple LUTs, it is still possible to change all the
parameters during the application’s run-time.

The most pressing issue of the implementation pre-
sented is the performance of rendering clouds. The cur-
rent cloud raymarching implementation is naive. We do
not take into account the distribution of the media to al-
ter the step size or change the sample distribution. Fur-
thermore, we do not temporally accumulate the raymarch

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) Dense cloud cover with a thick cloud layer. The atmosphere
is denser and the scattering and absorption coefficients of the par-
ticles were altered.

(b) Sun is near the horizon, and the atmosphere absorbs most of
the light before it reaches the cloud layer.

Figure 8: Images of clouds and atmosphere obtained by
using fictional conditions.

results across multiple frames, which would also bring a
performance improvement, as the number of steps needed
during the raymarch could be significantly reduced. Thus,
we believe that optimizing cloud raymarching is a promis-
ing direction. Alternatively, we expect that adding hard
and soft volumetric shadows along with godrays could im-
prove the appearance and realism of the resulting images.

References

[1] Antoine Bouthors, Fabrice Neyret, Nelson Max, Eric
Bruneton, and Cyril Crassin. Interactive multiple
anisotropic scattering in clouds. In Proceedings of
the 2008 symposium on Interactive 3D graphics and
games, pages 173–182, 2008.

[2] Eric Bruneton. A qualitative and quantitative eval-
uation of 8 clear sky models. IEEE transactions on
visualization and computer graphics, 23(12):2641–
2655, 2016.

[3] Eric Bruneton and Fabrice Neyret. Precomputed at-
mospheric scattering. Computer Graphics Forum,
27(4):1079–1086, 2008.

[4] Omar Cornut. Dear imgui graphical user interface
library. https://github.com/ocornut/imgui, 2023.

[5] Jonathas Costa, Alexander Bock, Carter Emmart,
Charles Hansen, Anders Ynnerman, and Claudio

Silva. Interactive visualization of atmospheric ef-
fects for celestial bodies. IEEE Transactions on Visu-
alization and Computer Graphics, 27(2):785—-795,
2021.

[6] Sébastien Hillaire. A scalable and production ready
sky and atmosphere rendering technique. Computer
Graphics Forum, 39(4):13––22, 2020.

[7] Lukas Hosek and Alexander Wilkie. An analytic
model for full spectral sky-dome radiance. ACM
Transactions on Graphics (TOG), 31(4):1–9, 2012.

[8] Eric P Lafortune and Yves D Willems. Rendering
participating media with bidirectional path tracing.
In Rendering Techniques’ 96: Proceedings of the Eu-
rographics Workshop in Porto, Portugal, June 17–19,
1996 7, pages 91–100. Springer, 1996.

[9] Sebastian Lague. Coding adventure: Clouds.
https://www.youtube.com/watch?v=4QOcCGI6xOU,
2019.

[10] Jan Novák, Andrew Selle, and Wojciech Jarosz.
Residual ratio tracking for estimating attenuation in
participating media. ACM Transactions on Graphics
(Proceedings of SIGGRAPH Asia), 33(6), November
2014.

[11] Grant W. Petty. A first course in atmospheric radia-
tion. Sundog Pub., 2006.

[12] Andrew Schneider and Nathan Vos. The real-time
volumetric cloudscapes of horizon: Zero dawn. SIG-
GRAPH Course note in Advance in Real-Time Ren-
dering in Games, 2015.

[13] Jaroslav Sloup. A survey of the modelling and ren-
dering of the earth’s atmosphere. In Proceedings of
the 18th spring conference on Computer graphics,
pages 141–150, 2002.

[14] Alex Tardif. Adaptive exposure from luminance his-
tograms. https://www.alextardif.com, 2019.

[15] Alexander Wilkie, Petr Vevoda, Thomas Bashford-
Rogers, Lukáš Hošek, Tomáš Iser, Monika Kolářová,
Tobias Rittig, and Jaroslav Křivánek. A fitted radi-
ance and attenuation model for realistic atmospheres.
ACM Transactions on Graphics (TOG), 40(4):1–14,
2021.

[16] Egor Yusov. High performance outdoor light scatter-
ing using epipolar sampling. GPU Pro, 5:101–126,
2014.

[17] Egor Yusov. High-performance rendering of realis-
tic cumulus clouds using pre-computed lighting. In
High Performance Graphics, pages 127–136, 2014.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)


	Introduction
	Related work
	Atmosphere
	Clouds

	Physical model
	Proposed solution
	Atmosphere precomputations
	Rendering process

	Implementation
	Application resources
	Main draw loop
	Command buffer descriptions
	Worley noise command buffer
	Sky command buffer
	Post process and GUI command buffers


	Results
	Earth with medium cloud cover
	Fictional planet

	Conclusion and future work

