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Abstract

The focus of this paper is real-time visualization of and in-
teraction with scatterplots with hundreds of thousands of
data points, where the points are organized into a hierar-
chy of clusters. We present a technique that automatically
selects a color palette for the clusters of the selected level.
The level of the cluster hierarchy and the color palette are
dynamically adjusted by zooming the scatterplot. Further-
more, the technique improves visibility of the displayed
clusters by reducing occlusion of the overlapping clusters.
We demonstrate the visualization technique using two real
medical datasets containing 2D coordinates of hundreds of
thousands points.

Keywords: hierarchical data, cluster visualization, scat-
terplot, dynamic color palette

1 Introduction

Applications of different clustering algorithms in
biomedicine play a key role in advancement of data
analysis. Namely, protein-protein interactions (PPI)[9]
and protein expression, genomic sequence analysis, MRI
image analysis etc., require different cluster analysis and
assumptions. Hierarchical clustering as a method of clus-
ter analysis aims to build a hierarchy of similar clusters to
identify informative natural clusters of observations, adds
additional complexity to this problem. The visualization
aims to present the properties of such datasets, that is the
hierarchical structure, the density of the clusters and their
mutual overlaps as well. This is important for physicians
to distinguish substantial overlap in diseases spectrum [1].

The clustering algorithms can be divided into hierarchi-
cal and partitioning. Hierarchical clustering algorithms
can be subdivided into agglomerative (bottom-up clus-
tering) and divisive (top-down), which perform recursive
partitioning. Since the boundaries of the clusters cannot
be objectively defined, hundreds of clustering algorithms
have been proposed, each with different priorities. Thus, it
cannot be said which algorithms are better or worse, as the
algorithm’s performance is often dependent on the char-
acteristics of the information demanded as well as on the
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dataset itself.
To present the data, reduction from n-dimensional to 2D

or 3D space is needed. Based on the deformation of space
caused by the dimension reduction, the dimension reduc-
tion algorithms can be divided into linear, nonlinear, and
those that have been implemented in both linear and non-
linear variants. PCA is a commonly used linear method
that flattens the data along axes of minimal variance. t-
SNE, a nonlinear method, aims to separate clusters in the
data and avoid overlap of clusters of different categories,
which may distort the data as the clusters might have over-
lapped in the original data. MDS has been implemented
both as linear and nonlinear. This method reduces dimen-
sion while minimizing distortion of mutual distances be-
tween data points. An overview of the clustering and di-
mension reduction algorithms is provided by Wenskovitch
et al. [10].

In this paper, we present our progress on the scatterplot
visualization of large datasets of medical observations rep-
resented as n-dimensional data points organized into a hi-
erarchy of clusters. Hierarchy is given as a tree, whose
leaves contain points in 2D space. The hierarchy subdi-
vides data points into clusters based on their mutual prox-
imity. At the same time, some of the nodes in the hierarchy
maintain the assignment of all their child nodes to a cer-
tain population. These nodes are disjunctive and provide
complete coverage, meaning that every point in the data
set is associated with exactly one population. Therefore,
while the nodes of the hierarchy signify spatial proximity
and clustering in the data points, some of the nodes also
categorize the clusters into populations. Overlaps of clus-
ters of different populations signify interactions between
the populations.

The challenges of visualizing such observations are the
scale of the data, namely the high count of points, causing
heavy overdraw, and the high number of categories, which
is only amplified by the hierarchical structure of clusters.
The next challenge is the overlap of points of different
categories, which makes the separation of points difficult.
The characteristics of the data also rule out the utilization
of position as a visual channel, as the data are represented
as a set of hundreds of thousands points, whose original
n-dimensional position is projected into 2D using dimen-
sion reduction techniques (e.g., PCA, NMF, t-SNE). This
leaves us to separate clusters only by color since high point
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count limits utilization of visual channels such as size and
shape of points as well. We propose a visualization tech-
nique that allows for the analysis of such data. The pro-
posed approach has three main contributions:

1. Real-time visualization rendering, allowing interac-
tive close-up examination of visualized data.

2. Color separability of clusters and their identification
in the hierarchy.

3. Identification of cluster density and their overlaps.

2 State-of-the-art

The overdrawing issue can be reduced by data abstraction
techniques, such as binning, contouring the density func-
tion (that is, converting dense parts of the clusters into ar-
eas while outliers are displayed as points), or subsampling
of the data.

Heimerl et al. [5] designed a technique of binning data
points into a honeycomb grid, with each cell containing a
bar graph or pie chart representing the distribution of in-
dividual categories in the cells. The background of the
cell can also be saturated to communicate the density of
the data points. However, the often complex structure of
clusters in our data and rapid changes in cluster density,
would require a high number of cells to keep the visual-
ization representative. Breaking continuous areas of sin-
gle color into a number of small icons, coupled with the
much higher number of categories than Heimerl et al. [5]
planned for, would lead to visual clutter and decrease the
discernability of categories significantly.

Chen et al. [4] in their article demonstrate subsam-
pling by sampling a density function, reducing overdraw-
ing while preserving density information and relative rep-
resentation of data categories compared to original data.
Visualization by contouring the density is also provided,
but overlapping colored areas causes color mixing, thereby
significantly reducing the discernability of colors while
losing density information of as well. However, sampling
a density function seems feasible and may be employed in
further developments of our work.

The color separability of many categories can be im-
proved by using a dynamic color palette, which takes ad-
vantage of situations where only some categories have sig-
nificant representation on the screen. Such a technique was
developed by Waldin et al. [8]. The technique, named
Chameleon, also provides hierarchical subdivision of the
color space, which too is desired for our purposes.

Chameleon is designed for coloring the internal struc-
tures of viruses and cells. Here, at the highest level of
the hierarchy are the structures of the virus, such as the
lipid envelope and the capsid, in which the individual pro-
teins can be distinguished after zooming in, as well as the
domains and the atomic structure of the proteins. When
gradually zooming in, only one or a few structures from

a) b) c)

Figure 1: Hierarchical subdivision of color when zooming
in on certain cluster. a) Color wedges are allocated only
for the top level of hierarchy. b), c) With increased zoom,
lower levels of hierarchy are visualized with distinct col-
ors. The size of the color wedges corresponds to the hy-
pothetical relative representation of individual clusters and
subclusters on the screen.

higher levels of the hierarchy can fit on the screen, so there
is no need to divide the color space among all of them but
only among the visible ones. Thus, for each structure on
a higher level, a larger part of the color space can be allo-
cated, which can be further divided to be allocated to lower
structures, as can be seen in Figure 1.

3 Our Approach

We have decided to visualize the data as-is, without ab-
straction or resampling. A dynamic color palette with hi-
erarchical coloring is employed to improve cluster discern-
abilty, while rendering points with transparency will allow
for visualization of density and overlaps of the clusters.
The visualization is GPU accelerated to achieve interac-
tive real-time rendering.

3.1 Dynamic color palette

The method of coloring data points is based on the dy-
namic color palette developed by Waldin et al. [8], but with
regards to the different characteristics of the data, several
modifications have been made. The first modification is
given by the fact that the data are individual points, not
forming distinguishable continuous objects such as pro-
teins. Therefore, it is impossible for the color spaces of in-
dividual hierarchy nodes to overlap, thereby reducing the
space available to nodes at lower levels of the hierarchy.
Furthermore, the number of hierarchy levels can be greater
than it is in the case of visualizing a virus or cells. There-
fore, the dynamic palette method [8] is applied at all levels
of the hierarchy, except for the last one, where we do not
have to consider the needs of any subclusters, and thus.
maintaining color discrenibility remains the only priority.
The color space is thus – in correspondence to the hierar-
chy – recursively divided into smaller and smaller sections
(Figure 1).
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Figure 2: a) HCL implementation by Zeileis et al. [11].
b) HCL implementation from Catalano framework [3] sat-
isfies the property of isoluminance better, notably in the
dark green part of the spectra.

To prevent one dominant cluster from taking up all the
color space, Waldin et al. [8] have imposed limit on the
maximal size of the color wedge allocated to a single clus-
ter. This way, the maximal size of one single color wedge
at the k-th level of the hierarchy is ak, where a, ranging
from 0 to 1, is the size limit. To maintain the distinguisha-
bility of colors at lower levels of the hierarchy, the size
limit a was set to a value higher than recommended by
Waldin et al., namely 0.75 instead of 0.5. Also, because
the number of subclusters may vary significantly across
clusters, the size limit may be too high for some clusters
with only a few subclusters. Thus, we have imposed an
additional size limit at the top level of the hierarchy. The
limit is the number of descendants ni of a i-th cluster at the
top level of the hierarchy multiplied by an appropriately
chosen constant 0.08. In conclusion, the maximal size for
cluster at k-th level of the hierarchy being descendant of
i-th top-level cluster is

min(0.08ni,0.75) ·0.75k−1. (1)

The original method sets size of color wedge allocated
to individual clusters proportionally to the number of sub-
clusters visible on the screen. In our case, even at a high
level of zoom, most subclusters are present on the screen
due to the wide scattering of the clusters. This results in al-
most no color space being released when zooming. There-
fore, we have decided to size the color wedge proportion-
ally to the number of points in the given cluster located
on the screen. Allocating by the number of points is very
aggressive, which achieves a good distinction of points ac-
cording to their belonging in the hierarchy. On the other
hand, in certain situations, the assigned colors may change
significantly when the view changes, possibly confusing
the user. The limits imposed on the maximal size of color
wedges reduced this artifact. Other applicable methods
are normalizing the number of points in individual clus-
ters, weighting by the square root of the number of plotted
points, or blending uniform and weighted color allocation.

3.2 Color model

HCL is a family of color models having channels hue,
chroma and luminance. HCL models are isoluminant and
perceptually uniform and thus often used in computer vi-
sualizations [8][4][7]. We have used the implementation
of the HCL color model developed by Zeilies et al. [11],

Figure 3: Top line: coloring using hue only. Bottom line:
coloring using hue and brightness.

which contains HCL-to-RGB conversion chain. Part of the
chain is XYZ-to-RGB conversion, where we have used
Catalano’s implementation [3] instead, since in our ex-
perience it better satisfies the property of isoluminance
(see Figure 2). The HCL color model is implemented as
CIELAB with axes A∗ and B∗ transformed to polar coordi-
nates. The hue channel is used to differentiate the clusters,
as it is the only one that does not visually imply sorting.

But, since the first level of hierarchy of visualized
data contains over twenty nodes, comparing to the
data, for which the dynamic color palette developed by
Waldin et al. [8] was designed, where first level of hierar-
chy only contains up to ten nodes, the hue channel alone
proved to be insufficient to reliably distinguish clusters of
data points (see Figure 3). This is also due the used model
CIELAB not being perfectly hue uniform [6] and in the
area of the blue hues, distance between distinguishable
hues is greater than it is for the other color hues.

Therefore, two channels, hue and luminance, are used
in coloring the first level of the hierarchy. The chroma
channel is not utilized because it interferes with the hue.
Hue is used as the primary channel, where each group uses
a different hue. Luminance is used as a complementary
channel to avoid blending in with the background. Be-
cause the technique of color optimization used by Waldin
et al. is only designed for optimizing color palette in one
dimension, a low number (five) of fixed brightness levels is
used, which are assigned to successive nodes in the clus-
ter hierarchy. The order of the used luminance levels is
permuted so that adjacent sections in the hue channel are
not assigned adjacent luminance levels, thereby increas-
ing the tonal distance of the colors assigned to successive
clusters. All nodes in the hierarchy are colored using the
same luminance level as their parent. The use of two chan-
nels improved the separability of clusters, as can be seen
in Figure 3.

3.3 Data density

Visual encoding using the luminance channel excludes
the rendering of points using transparency, because in the
case of a white1 (achromatic in general) background, lu-
minance interferes with transparency, that is, the differ-
ence in the brightness of the colors of individual clusters
is not discernible; darker clusters only look sparser. Also,
when transparency is used, colors will be mixed, which
will worsen the distinguishability of individual clusters,
and new colors may even appear. Therefore, in order to

1Visualization uses black background by default, as it makes clusters
stand out better, white background mode was added for print.

Proceedings of CESCG 2023: The 27th Central European Seminar on Computer Graphics (non-peer-reviewed)



preserve the distinctness of the individual clusters, the ren-
dering is performed without transparency.

However, this introduces two new problems: the depen-
dence of the visualization results on the rendering order
(Figure 4a, b), which distorts the information about clus-
ters overlap and loss of the data density information.

The rendering order issue was resolved by performing
a depth test and assigning a random depth to each point.
This way, the overlap of the groups depends on their den-
sity; a denser group has a statistically greater chance that
out of the number of points falling within one pixel on
the screen, its point will have the smallest depth of all and
thus will be displayed over the others. This technique also
achieves proper visualization of cluster overlaps without
mixing colors. Figure 4 compares the differences on two
overlapping clusters, blue one linearly falling off in down
direction and brown one linearly falling off in left direc-
tion.

We will now demonstrate that the probability of a clus-
ter being on top in a given pixel corresponds to its relative
representation at the pixel. The depth of cluster X at pixel
p contributing to the pixel with l samples is the minimum
of l samples of uniform random variable with range 0 to
1. The probability of one such sample being lower than
x ∈ ⟨0;1⟩ is x. Therefore, probability of l samples being
lower than x is xl , which is the CDF function of cluster
depth at the pixel. Thus, when cluster X is contributing to
a pixel with l samples, and all other clusters (Y ) combined
contribute with k samples, probability of X being on the
top is calculated as difference between two random vari-
ables with CDF functions

FX (x) = xl , (2)

FY (y) = yk. (3)

The sum of two random variable is calculated as a con-
volution. The formula for sum can be modified to differ-
ence as such:

P(X +Y ≤ z) =
∫

∞

−∞

fX (x)FY (z− x)dx, (4)

P(X −Y ≤ z) =
∫

∞

−∞

F ′
X (x)FY (z+ x)dx, (5)

although in case of difference, the formula is not commu-
tative anymore. The formula can be further modified to

P(X ≤ Y ) =
∫ 1

0
lxl−1xkdx. (6)

The result of the integral is

P(X ≤ Y ) =
l

l + k
. (7)

As we can see now, when k+ l is normalized to 100, the
probability of X being on the top is l%.

As for visualizing the data density, the transparency set-
tings of the plotted points have been made available to the

a) b) c) d)

Figure 4: a), c) Blue over brown. b), d) Brown over blue.
a), b) No depth test. c), d) Depth test with randomized
point depth.

a) b) c)

Figure 5: a) Single-pass rendering. b) Two-pass render-
ing. c) Single-pass with lower transparency causes order-
dependent result. Unlike in Figure 4, an exponential falloff
is used here.

user so that s/he can view the density if necessary, even
though this distorts the information about the points be-
longing to groups. In this mode, it is necessary to disable
the depth test so that no points are neglected and to disable
the use of the luminance channel, as it would distort the
perceptual transparency.

When visualizing data density using transparency, we
find that for high transparency settings, very sparse areas
where there are only a few points, surrounded by a black
background, are hard to see, and at low transparency set-
tings, the difference in density between the rims and the
centers of the clusters cannot be discerned. We cannot
increase transparency, as due to alpha blending, clusters
drawn last would cover earlier drawn clusters, as can be
seen in Figure 5c, top right, where the blue cluster incor-
rectly covers the brown cluster. Therefore, a non-linear
dependence between transparency and density is needed.
We implemented this as rendering with transparency in
two passes (comparison in supplementary video 2) .2 At
first, all points are rendered with a transparency lower than
the user set, and on each screen pixel, only the first point
that fell into the pixel is rendered. Then all the data is re-
rendered over the previously drawn data using the trans-
parency level set by the user. In both passes, the points
are drawn in the same order so that the distortion given by
color mixing is the same in both passes.

3.4 Color assignment order

Looking at Figure 6, we notice that some very close or
overlapping clusters of points are colored in similar col-
ors, thus merging and creating the impression of a single

2https://drive.google.com/drive/folders/
1yLt3SFyOHZMTO00O3J20oP4wAha0KPrk?usp=sharing
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c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)

c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)c)

d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)d)

Figure 6: a),b) Co-located groups colored with a similar
shade. c) Disjointed cluster. c) and d) might create im-
pression of one disjointed cluster.

group. For example, the two clusters, a) and b), are colored
in a similar shade of green. An easy distinction between
those two clusters could be achieved by permuting the or-
der of colors so that the co-located clusters are colored by
colors distant in the color space, as proposed by Lu et al.
[7]. But this may create the problem of two distant clus-
ters dyed with a similar color creating the impression of
one disjointed cluster, as shown in Figure 6 by clusters c)
and d). Similar shades of color are easier to recognize if
placed close to each other. Thus, we decided not to per-
mute the color spaces.

3.5 Context selection

Waldin et al. [8] mention improving the discernability of
user-selected area of interest by desaturation of the sur-
roundings. In our case, the context selection aims to give
a full overview of clusters of the hierarchy (see supple-
mentary video 2, time 0:04) . However, since the mere
desaturation of the surroundings turned out to be an in-
sufficiently discriminating channel (see Figure 7b), the
luminance channel was additionally used to brighten of
the surroundings. Desaturation needs to be used together
with brightening, as brightening alone makes colors ap-
pear more saturated. Saturated background is undesirable,
as it draws users’ attention away from the selected con-
text. Desaturation and brightening are already sufficiently
distinctive, but there remains the problem of covering the
highlighted cluster with a denser cluster (7c), which can
be solved by moving the highlighted cluster to the fore-
ground, but this results in the suppression of the con-
text, and we lose information about the background of the

a) b)

c) d)

Figure 7: A comparison of context highlighting methods:
a) No context highlighting. b) Highlighting with chroma.
c),d) Highlighting with chroma and luminance. d) High-
lighting cluster is brought to front, thus not overlapped by
any cluster.

marked cluster (7d). The user is given the option to switch
between these two methods since it cannot be conclusively
said which one is better. Comparing to 7a, we can now see
that the context selection gives us an overview of the clus-
ter, which would otherwise remain unknown.

4 Results

An application visualizing clusters of real measured hier-
archically grouped data in real-time was created. Run-
ning on AMD Ryzen™ 5 3500U APU with integrated
Radeon™ Vega 8 GPU, we have measured 30 FPS on a
dataset with 250,000 points and 68 leaf nodes in the hier-
archy and 45 to 60 FPS on a dataset with 800,000 points
and 50 leaf nodes, which shows that the number of cate-
gories has a higher performance impact than the number
of points. This is due to synchronization between CPU
and GPU, caused by querying the number of drawn points
after each node drawn. Therefore, smooth running of the
visualization on low-end hardware might require rework-
ing the querying to be made for all nodes at once and thus
making only one query per frame.

Due to the unavailability of hierarchy data, cluster
data were additionally divided into subclusters using the
Kmeans++ method [2], resulting in three levels of hierar-
chy. The application is written in the Java language and
utilizes GPU accelerated rendering trough the JOGL li-
brary, which is a Java binding for OpenGL.

The visualization allows to distinguish individual clus-
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Figure 8: Hierarchical coloring.

ters in a multilevel hierarchy, as shown in Figure 8, where
zoom at three consecutive levels is depicted. Individual
clusters at any level of the hierarchy can be highlighted
(Figures 9, 7) by double-clicking on the cluster of interest.
To make selection easier and to allow the selection of an
entire subtree or of a cluster overlapped by other clusters,
a visualization of the hierarchy as a tree was added to the
visualization (Figure 9). The selection is done by double-
clicking on a node in the tree.

Figures 10b and 11b demonstrate improvements
achieved by two-channel coloring and nonlinear trans-
parency. A comparison of these two figures also shows dif-
ferences between discernability-based visualization (Fig-
ure 10) and density-based visualization (Figure 11). The
density based visualization allows for precise perception
of the shapes of the two large blue clusters at the top left
of the visualizations, but at a cost of lower discernability
of the clusters’ category.

4.1 Limitations

An unsolved issue is the color inconsistency of the dy-
namic color palette at high zoom. In most cases, the color
difference between adjacent subclusters is satisfying, but
typically in very scattered clusters, there are cases where
the color shades of the subclusters are very far from each
other, and significant color changes occur when the view
is moved or zoomed in or out (supplementary video 1) . In
a related issue, color differences between clusters having a
relatively low number of points are small, making distin-
guishing them difficult, as can be seen in Figure 6, clusters
c) and d). However, context highlighting can be used to
resolve this issue.

Since only the division of groups at the population level

of the hierarchy was available at the time of design, it was
necessary to extend the hierarchy artificially for testing
purposes. To subdivide the available data into a multi-level
hierarchy, the K-means++ [2] method was used, which is a
heuristic hierarchical clustering method often used in sta-
tistical data analysis.

5 Conclusion

A visualisation of hierarchically clustered multi-
categorical data of medical measurements was created.
Such a visualisation is important for medical diagnoses
and development. The visualised properties are the
density of the clusters, their mutual overlaps and the
hierarchical structure.

The nodes of the hierarchy are separated by color with
color resolution of twenty-six clusters. Due to the large
number of categories, it was necessary to use two color
channels, hue and brightness, to achieve resolution. Af-
ter zooming in, up to seventy clusters can be distinguished
with the use of the dynamic color palette. It takes advan-
tage of the fact that the vast majority of these seventy clus-
ters are not visible on the screen when zoomed in. When
zooming in, it was necessary to increase the size of the ren-
dered points, which is proportional to the degree of zoom,
in order to maintain color resolution. In the application, it
is possible to specify at which zoom levels coloring with
different colors should be activated at individual depths of
the hierarchy.

Due to the mutual exclusion of cluster discriminabil-
ity and density visualization, two visualization modes
were created. Density-focused mode renders points with
transparency, while discriminability-focused mode ren-
ders fully opaque points. Both modes respect the mu-
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Figure 9: Context selection and hierarchy visualization.
The selected hierarchy can also be seen it the tree.

tual overlap of the clusters, i.e., that where several clusters
overlap, the color distribution corresponds to the density
of the individual clusters. In the case of opaque rendering
of points, the overlap visualization was achieved by acti-
vating the depth test and randomizing of the point depth.

5.1 Further developments

Visualisation of the hierarchy can be augmented to dis-
play the relative frequency of points in individual clusters
by scaling individual nodes in the hierarchy visualisation
proportionately.

The dynamic color palette can be extended to two di-
mensions, that is both hue and luminance being assigned
dynamically based on the situation. This would improve
the utilization of the available color space and the discern-
ability of the clusters as well.

A mentioned but unexplored method is to place labels
in the visualization, which would make it easier to dis-
tinguish and identify individual clusters. The labeling of
the clusters needs to consider the density and overlapping
of the clusters, as naive label placement would produce
ambiguous or confusing labeling. Čmolı́k and Bittner
[12] propose a method that evaluates places of possible
label anchoring based on local opacity salience, overlap
salience, and the distance from the edge of the labeled ob-
ject.

The technique of subsampling the data might also be
helpful in achieving the visualization of the density of
clusters while maintaining the distinctness of the clusters.
A suitable subsampling technique is described by Chen et
al. [4], aiming specifically at improving the visualization
of overlapping clusters in a multi-class scatterplot.
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