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Abstract

This study proposes a new approach for semantic cell seg-
mentation that combines the use of neural networks and
involving humans in the loop with the aim of improving
the current state of digital pathology. The goal is to ob-
tain cell segmentation and classification from heart biopsy
images based on inaccurate data and simultaneously to re-
duce the demands on domain experts - doctors. In the
first step, the approach utilizes a segmentation model and
a combination of different datasets to detect the nuclei of
cells in the patches of whole slide images, which are used
to increase the amount of data. The proposed approach
employs knowledge distillation, a technique that involves
training a smaller ”student” model to mimic the output of
a larger ”teacher” model and their chaining. This is done
to overcome the limitations of having a small amount of
accurate data and a high proportion of inaccurate annota-
tions and to remove inaccuracies through chaining. The
proposed approach is evaluated against traditional meth-
ods and shows that it achieves improved performance in
terms of semantic cell segmentation. This demonstrates
the potential for the approach to be applied in biomedical
image analysis, where accurate and precise segmentation
is essential for downstream analysis.

Keywords: Segmentation, Classification, Knowledge
Distillation, Human-in-the-Loop, Weakly Annotated Data,
Digital Pathology

1 Introduction

The analysis of whole slide images is one of the important
components of pathologists’ diagnosis of Cardiovascular
diseases (CVDs). Research in this area is also progress-
ing because ∼ 17.9M people die each year from CVDs,
according to WHO[1], which is approximately one-third
of all deaths worldwide. CVDs are heart or blood vessel
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diseases, such as coronary heart disease, cerebrovascular
disease, and rheumatic heart disease. A heart biopsy is an
effective way to detect changes in the heart muscle. On
the other hand, this procedure is invasive, difficult for the
patient - especially if heart problems occur - and requires
sufficient time for sample collection, tissue processing and
following evaluation by a doctor. Analyzing images after
a heart biopsy can be a challenging task, as the tissue sam-
ples are often small and may be difficult to interpret.

Over the past 20 years, the field of pathology has
made significant advancements in digital imaging through
the development and improvement of whole-slide imag-
ing. Digital pathology is a technology that can benefit
from high-resolution digital images to aid in diagnosis and
treatment planning. It is becoming increasingly popular
in pathology departments, offering advantages over tra-
ditional, microscope-based methods of analyzing tissue
samples. A combination of machine learning and digi-
tal pathology can automate image analysis and hence has
the potential to revolutionise the field of pathology by im-
proving diagnostic accuracy, increasing efficiency, and re-
ducing costs. Currently, there are several automated tools
providing a biomedical image or biomarker analysis like
QuPath [4], MONAI [8], CellProfiler [14], or ImageJ [2].

This work presents a novel training strategy for weakly
annotated data applied in semantic cell segmentation from
histopathological heart biopsy images based on imprecise
annotations. The motivation is mainly to reduce the de-
mands on doctors, who can more easily detect problematic
areas based on accurate classification or, in conjunction
with rigorous quantitative analysis, detect small deviations
earlier and thus bring new knowledge to the given area.
The research is carried out in cooperation with experts
from the Institute for Clinical and Experimental Medicine
in Prague (IKEM).

To summarize, our main contributions are: (1) a robust
model for nuclei segmentation in different organs and res-
olutions; (2) an approach that classifies cells in histopatho-
logical data using knowledge distillation; (3) a teacher
model usable for training other students for different types
of data and different types of annotations; (4) a relatively
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small network that is well adapted to a specific task (cell
classification in H&E images).

2 Related work

Identifying individual tissue types or small cells in a
histopathological image is time-consuming and requires
experienced doctors. The solution to this pathology im-
age analysis challenge can be using deep learning algo-
rithms that can process and evaluate the images quickly
and segment effectively the needed areas - tumours, tis-
sues or cells. The main task of (binary) segmentation is
to distinguish the searched tissue from its surroundings,
while there is a semantic segmentation, where individual
segmented tissues have a different meaning. The encoder-
decoder architectures with interconnections known as U-
Net [17] proved effective, outperforming previously used
methods - a combination of sliding window and convolu-
tional networks. U-Net achieves quantitatively and quali-
tatively good results, even on a small amount of biomed-
ical data with extensive augmentation. Olaf Ronneberger
et al. [17] applied U-Net to a cell segmentation task in
light microscopic images as part of the ISBI cell tracking
challenge 2015, where they achieved on different partially
annotated datasets average IoU (Intersection over Union)
77.5% and 92% and significantly outperformed other al-
gorithms. The extension and improvement of the perfor-
mance come with the deeply-supervised architecture of U-
Net++ [20], which added more connections between the
encoder and the decoder along with the intermediate out-
puts.

Classifying cells in histology images is challenging due
to the high intra-class variability and inter-class similarity.
Many papers deal with this problem using various modifi-
cations of convolutional neural networks (CNN). The first
significant improvement in CNN results came with VG-
GNet [19], which demonstrated not only the positive in-
fluence of model depth on classification success but also
the advantages of using relatively small reception fields
(convolutional filters with size 3×3). VGG-16 and VGG-
19 versions differ in the number of VGG blocks (16 vs
19), where one VGG block consists of several convolu-
tion layers followed by a max-pooling layer. In 2016 He
et al. [12] proposed using residual blocks in the neural
network. Applying skip connections or shortcuts made it
possible to go deeper with the architecture and increased
the network’s learning ability. Similar to VGG, there are
several versions of the Deep residual network architecture
or ResNet, such as ResNet-18, ResNet-50 or ResNet-152.
Xception [7] model outperforms on ImageNet classifica-
tion dataset many state-of-the-art models such as VGG-16,
ResNet-152 or Inception V3. This architecture is based
entirely on depthwise separable convolution layers, which
provide great computational efficiency. With the goal of
application in diagnostics, where you cannot rely on high-
performance computers, some authors try to design mod-

els ”as simple as possible”. This is the case with RCCNet
[5], which was created with the aim of colon cancer nu-
clei classification and has 1.5M learnable parameters com-
pared to VGG-16 with 138M parameters.

To deal with weakly annotated data, there is the human-
in-the-loop method, based on domain experts’ involve-
ment in interacting with artificial intelligence to obtain
more accurate annotations[16]. Most of the research in-
volving experts in the process consists of three main
phases: training the preliminary model, predicting unseen
data with the preliminary model, and correcting predicted
annotations using domain experts. Predictions and correc-
tions are performed in the loop until certain conditions are
met. Annotations can be corrected not only by experts but
also through crowdsourcing, either by manual correction
from a domain expert or by marking them as correct or
incorrect [11, 3].

With weakly annotated data or small amounts of data,
training a robust model that achieves the expected results
is challenging. For this reason, different approaches are
used to utilize the currently available resources optimally.
A knowledge distillation approach works with weakly an-
notated data, transferring knowledge between two or more
models. The principle of this approach, called Teacher-
Student architecture, is to train a Teacher on a small
amount of data or weakly annotated data and then train
the student using the trained Teacher. In this case, the an-
notations obtained by the Teacher are used in training the
student. Several methods are based on Teacher-Student
architectures, including Teacher-Student chaining[18] or
substituting Teacher and Student in the training process[6].
Both methods aim to use weak or insufficient annotations
to train the best possible model well generalized to the de-
sired task.

Pathologists in IKEM use QuPath for analyzing data
- nuclei and higher morphological structures. QuPath
can segment cells using parametric methods like color
thresholding based on H&E staining for segmentation,
whereas, for classification, there are three methods: K-
nearest neighbors, Random Forest, and Artificial Neural
Network (ANN). The disadvantage of this tool is the ex-
cessive dependence of the results on the initial setting by
the doctor, which may differ each time based on different
concentrations of staining color and therefore result insuf-
ficient.

3 Dataset

In our study, we work with two publicly available histolog-
ical datasets Lizard[9], MoNuSeg[13] and custom dataset
based on IKEM data. All three datasets contain histolog-
ical images stained with hematoxylin and eosin staining.
Images from each dataset are shown in Figure 1. By com-
bining them, we created the largest dataset for nuclei seg-
mentation in multiple organs with different magnifications
to create a robust model for segmentation.
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Figure 1: Comparison of datasets: A - IKEM, B - Lizard,
C - MoNuSeg after normalization using Macenko method.

3.1 Lizard

Lizard dataset [9] consists of regions of interest (ROI)
from Whole Slide Images (WSI) scans of the colon region.
This dataset is designed to segment and classify nuclei and
consists of six different datasets. Lizard is the largest his-
tological dataset, with 238 ROI images and approximately
495K nuclei. The nuclei annotations were generated based
on a multi-step approach consisting of segmentation and
classification by the HoverNet [10] neural network to re-
fine automatic and semi-automatic predictions, with the
pathologist involved throughout the workflow to refine the
segmentations and classifications. Table 1 shows the num-
ber of nuclei in the images.

3.2 MoNuSeg

MoNuSeg is a multi-organ dataset and contains 37 histo-
logical images together with their annotations. Similar to
the Lizard dataset, we work with binary annotations to seg-
ment the nuclei. Table 1 shows the total number of nuclei
in this dataset.

3.3 IKEM dataset

The IKEM dataset contains 25 WSI scans, each compris-
ing three to five tissue sections (called fragments) from the
heart region. The WSI format can store information about
a given tissue in several resolutions with relatively small
memory requirements, where the highest reaches dimen-
sions up to 48724×17910.

Dataset Nuclei count Immune cells Muscle cells Other cells

Lizard 495 179 - - -
MoNuSeg 21 623 - - -

IKEM SSA 470 563 118 950 130 022 221 591
IKEM WSA 469 591 127 521 127 259 214 811
IKEM EA 6 834 1 947 2 794 2 093

Table 1: The number of nuclei in each dataset along with
their classifications.

Cooperating pathologists provide us:

• QuPath project with trained object detectors and clas-
sifiers

• cell annotations as GeoJSON-s obtained by QuPath
automatically

• several Artificial Neural Networks (ANN) classifiers

• 4 335 manual annotations on 6 WSI scans with 6 834
nuclei. We call these annotations expert annotations
(EA).

The pathologists pre-trained the ANN classifier by itera-
tive manual correction of cell classifications. We used this
classifier to generate strong synthetic annotations (SSA).
Then, we randomly selected one significantly weaker clas-
sifier from the previous iterative improvements and gener-
ated weak synthetic annotations (WSA). The resulting dis-
tributions of immune, muscle, and other cells are shown in
Table 1.

4 Proposed method

Our study aimed to create a comprehensive approach for
analyzing nuclei in histological images, from segmenta-
tion to classification and applicable to various tissue and
organ types.

We focus on the problem of weak annotations that are
generated by the QuPath tool using an Artificial Neural
Network that has been trained by doctors. Our method’s
objective is to leverage weak annotations with minimal de-
mands on doctor input effectively.

4.1 Data preprocessing

All data provided by IKEM, whether obtained automati-
cally by QuPath or expert annotations, have the first pro-
cessing step in common.

Preprocessing 1 (Fig. 2) consists of several steps to
ensure efficiency and fast data processing by neural net-
works. The data are stored as multidimensional matrices,
which greatly increases the memory requirements. For this
reason, we chose to save in three resolutions - original, ½,
and ¼. At the same time, with the aim of reducing memory
requirements, images are divided into fragments, where
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Figure 2: Overview of the proposed approach showing individual training phases, together with inputs, data flow and
outputs. The result offers three trained models - one cell segmentation and two cell classification models.

Figure 3: WSI scan with 3 fragments (red marked)
and patch subdivision (grey marked). In preprocessing,
only individual tissue fragments are stored based on their
bounding boxes, so an unnecessary white area is omitted.

the position is chosen according to the smallest possible
bounding boxes of individual parts of the tissue.

After saving the fragments as separate entities in dif-
ferent resolutions, optional image data normalization fol-
lows. We chose Macenko normalization [15] to reduce
bias between datasets, which arose as a result of staining
in another laboratory.

The proposed approach needs annotations in the format
of multidimensional masks, so the original GeoJSONs are
converted to multichannel images. Each channel contains
information about one type of desired nuclei.

The images and corresponding annotations (of all
datasets) are divided into patches of the selected size, in
this case, 512×512, where we use the sliding-window ap-
proach without an overlay as shown in Fig. 3. Lizard and
MoNuSeg images are stored as binary masks (1-nucleus,
0-background), while images of incompatible dimensions
were zero-padded. IKEM data is converted to binary form

when loading images during segmentation training with
regard to their further use in classifications.

The second part of preprocessing (preprocessing 2 in
Fig. 2) uses nuclei segmentation from Phase I. (Fig. 2).
For each nucleus segmented, we identified a class using
generated synthetic annotations and expert annotations.
We assigned each nucleus to one of the classes: other (0),
immune (1), muscle cells (2) and background (3). The
background class was assigned to nuclei identified by our
model but not segmented and classified by QuPath.

To identify the class of each nucleus, a patch is gener-
ated around it and SSA and EA are utilized to determine its
classification. Patch size 16× 16 is used for multiple and
32× 32 for the original image size. For the original size,
we used a larger patch size to contain only one nucleus, as
opposed to multiscale data, where in some cases, a 16×16
patch contains more than one nucleus in the smallest mag-
nification and only part of it in the highest.

When training models in all steps, the data is divided
with a random distribution in the ratio of 70:15:15 into
training, testing and validation parts.

4.2 Nuclei segmentation

In the initial stage of our comprehensive approach, we aim
to segment nuclei in histological images.

In Phase I (Fig 2), we experimented with two tradi-
tional architectures, U-Net and U-Net++, commonly used
in medical data segmentation. We modified both architec-
tures by replacing the Upsampling layer with the inverse
convolution layer, ConvTranspose. The benefit of using
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ConvTranspose, a form of learning upsampling, is that it
results in a larger number of trainable parameters, leading
to a more robust model with a larger capacity.

We train models with all three datasets and a total of
1.93M nuclei in 512× 512 patches. We trained our mod-
els using the Dice Loss function and Adam optimizer. The
training process lasted for 30 epochs using 0.3 as dropout
and 0.0001 as the learning rate. The best model was se-
lected based on the validation loss function.

4.3 Classification

The following steps in this approach focus on obtaining
the classification of the cells found in the images in the
IKEM dataset using the Knowledge distillation approach.
The task of the resulting model is to classify cells into
three classes - muscle cells, immune cells and others. We
chose teacher-student chaining with three models, where
first, the weak ANN trains the complex ResNet-18 model
in phase II. Subsequently, in phase III, the teacher trans-
fers the information to the RCCNet model, fine-tuned in
the phase IV by involving an expert.

The chosen loss function in all classification-trainings is
CrossEntropy, optimized by Adam over 30 epochs.

4.3.1 Classification - Teacher

In Phase II, a network called a teacher is trained, which is
necessary for the next process. After training on weakly
annotated data (WSA and SSA), the goal is to obtain a
robust classification model that can extract the essential
information from weak annotations. The task consists in
assigning each of the cells (based on our nucleus segmen-
tation) to one of the classes required by the experts.

The specificity of this step also lies in the created dataset
(described in 4.1 Data Preprocessing), where based on its
different versions (various patch-size, normalization, vari-
ous resolutions) more experiments were performed.

The selection of architecture focuses on state-of-the-art
classification models with a large learning capacity, such
as ResNet-16, ResNet-18, Xception or VGG. The ResNet
architecture was changed for the needs of the chosen patch
size, and the VGG architecture was modified (using only
one VGG block with two linear layers) to process small
images and preserve information efficiently. All these ar-
chitectures are trained on multiscale data only, which leads
to using the best architecture to classify data in the orig-
inal magnifications to perform all the following steps in
experiments.

In the training process, the demands on doctors are
significantly reduced, especially by the processing of a
weakly annotated dataset created by QuPath, but also by
the fact that we do not require designing or setting param-
eters as QuPath does. The result is a classification model
that can obtain enough important information and features
from weakly annotated data and can thus be used for cre-
ating annotations in the next step.

4.3.2 Classification - Student

Our proposed method is training a network called Student
to obtain a relatively small classification model specified
for the given task. The goal is the same as when train-
ing the teacher (described above) - classifying cells based
on small patches of images of a heart biopsy. However,
the access to the provided data and the training process -
aimed at transferring relevant knowledge from the teacher
to the student, followed by specification by adding an ex-
pert to the loop - is different. We can divide this step into
two phases: training (phase III) and fine-tuning (phase IV).

During the training process, the same patches of im-
ages are used for training as in the initial teacher training.
The difference is that the teacher determines the label for
each segmented nuclei. When training a student, we work
with the highest resolution and use a teacher who has been
trained on images with the highest resolution.

We chose RCCNet as the student architecture. The
training duration depends on the network size, which is
important to optimize as much as possible. The evaluation
is done after each epoch against the SSA, where the model
achieving the best results is saved.

In the last Phase IV, an already partially trained student
model is trained again on expert annotations with the aim
of precise specification for a given task - refining predic-
tions by applying the human-in-the-loop approach.

Fine-tuning differs from training mainly in the data and
its processing, where expert annotations are used in this
step. When training, instead of using all the data, we
look for a suitable lower limit of the count of cells (the
same count from each cell class), which is necessary for
a sufficient improvement of the results. To prevent over-
fitting, which could occur with a small amount of data,
some experiments with different hyperparameters settings
were performed with values for learning rate from interval
≤0.00005, 0.001≥ and dropout rate from ≤0, 0.5≥.

The student obtains more accurate information from re-
liable annotations, which should be reflected in better se-
mantic segmentation and reducing or eliminating the error
from the original weakly annotated data. The result is a
relatively small network that is well adapted to a specific
task, and at the same time, it can be quickly and efficiently
modified by the next round of fine-tuning.

5 Evaluation

We ran all our experiments on a computer with a graphic
card NVIDIA RTX 2080 Ti with 11GB of GPU RAM and
32GB of total memory RAM.

5.1 Nuclei segmentation

For segmentation, we trained U-Net and U-Net++, where
the final nuclei segmentation model is chosen based on the
metrics achieved on the test set. Based on the value of
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Model Accuracy [%] Precision [%] Recall [%] Dice [%]

U-Net 97.75 72.19 90.56 79.66
U-Net++ 97.44 67.92 92.71 78.04

Table 2: Evaluation of segmentation models U-Net and U-
Net++ on test data.

Figure 4: Segmentation results on WSI scans with and
without normalization from the IKEM dataset against
QuPath segmentation.

Dice over the test set, which was 79.66% for U-Net and
78.04% for U-Net++, we selected the trained U-Net model
for further processing. Results are shown in Table 2.

The proposed method for nuclei segmentation was qual-
itatively evaluated and compared to the results obtained
through automatic segmentation using QuPath. The re-
sults showed that the proposed method performed slightly
better than QuPath. QuPath’s approach for segmentation
relies on defining threshold values for each staining and
following statistical methods.

To further evaluate the segmentations, we quantitatively
compared the segmentations produced by our models on
WSI scans with the QuPath tool segmentations using the
metrics Intersection over Union and Dice score. The re-
sults of U-Net and U-Net++ on data without and with
normalization using Macenko’s method are presented in
Figure 4. The evaluation of WSI scans revealed that in
both cases, the U-Net architecture performed better than
U-Net++, both without image normalization and with nor-
malization using Macenko’s method.

5.2 Classification - Teacher

We evaluated strong and weak synthetic annotations
against expert annotations, using metrics such as F1 Score,
Accuracy, Precision and Recall. The evaluation was based
on the cell segmented by the U-Net model. During this
process, 574 segmented nuclei were identified as back-
ground. The results presented in Table 3 showed that weak
synthetic annotations perform better than strong ones.

Data F1 [%] Accuracy [%] Precision [%] Recall [%]

SSA 82.01 81.82 82.44 81.82
WSA 82.34 82.23 82.56 82.23

Table 3: Comparison of classifications obtained using
strong and weak synthetic annotations compared to expert
annotations.

Test set Doctor set
IKEM data F1 [%] Accuracy [%] F1 [%] Accuracy [%]

SSA 86.20 86.24 81.89 81.55
SSA & Macenko 82.90 82.66 81.54 81.24
WSA 85.64 85.34 82.04 81.75
WSA & Macenko 82.57 82.49 81.98 82.00

Table 4: Evaluation of Teacher architecture ResNet-18 on
the test set and doctor annotations.

After evaluating the performance of ResNet-16, VGG-
4 and Xception architectures on multiscale data using
16× 16 patch, we identified that the ResNet-16 architec-
ture achieved the highest F1 Scores. Therefore, we used
the residual block-based architecture for our experiments
on original-size data using 32×32 patch size. Due to the
increase in patch size, we moved to architecture with a
larger learning capacity - ResNet-18 as the Teacher model
in all the following analysis steps.

We trained the selected ResNet-18 architecture on
data without and with normalization using Macenko with
strong and weak synthetic annotations. The results of
training ResNet-18 as a Teacher model on these different
data combinations can be found in Table 4.

When comparing the results of training the ResNet-18
model on data with and without Macenko normalization,
the model performs better on data without applying nor-
malization for both test data and expert annotations. In
our analysis, we also compared the performance of the
ResNet-18 model when training on SSA and WSA from
QuPath. As shown in Table 4, the results indicate that
training on SSA performs better on the test set. However,
in the case of expert annotations, the results are better in
the case of training using WSA. This may be caused by the
fact that the doctors selected the ANN as the best based on
a qualitative evaluation and visual comparison.

5.3 Classification - Student

Our evaluation of the trained models, called students, fo-
cused on the RCCNet architecture. We trained these mod-
els using the previously trained teachers from the previous
step, utilizing different versions of the data, including both
strong and weak synthetic annotations and data with and
without normalization. After evaluating each model on the
test set, we further evaluate the trained model using expert
annotations. The results of the different data versions can
be found in Table 5.

Based on the results presented in Table 5, the RCCNet
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Test set Doctor set
IKEM data F1 [%] Accuracy [%] F1 [%] Accuracy [%]

SSA 85.06 84.16 81.76 81.57
SSA & Macenko 81.84 81.03 82.02 82.02
WSA 85.13 84.96 81.71 81.42
WSA & Macenko 81.88 81.14 82.00 81.88

Table 5: Evaluation of Student architecture RCCNet on the
test set and doctor annotations after training using Teacher
architecture.

F1 [%] Accuracy [%]
Labels count

(per class)
Before

fine-tuning
After

fine-tuning
Before

fine-tuning
After

fine-tuning

100 81.88 80.47 81.90 80.80
250 81.92 80.73 81.95 81.30
400 82.17 79.85 82.25 80.56
550 82.64 81.21 82.79 82.29
750 83.17 80.15 83.43 81.19
850 83.73 78.40 84.13 79.13
1000 84.24 78.89 84.74 80.26
1250 83.55 82.47 84.24 82.62
1500 83.30 84.93 84.23 85.58
1750 82.57 83.99 83.88 84.50
1900 82.73 84.81 85.17 87.23

Table 6: Evaluating the performance of the student archi-
tecture on strong annotations with normalization before
and after fine-tuning.

model performed better on data without normalization and
using SSA within the test set. However, the normalized
data performed better for expert annotations. Using WSA
performed better for the test set and for expert annotations,
the results were better using SSA. The results suggest that
by training the student with the teacher, we achieved a
higher level of generalization in the trained student model,
leading to the improved classification of medical data us-
ing normalization.

Our last evaluation is focused on students fine-tuning
based on gaining information from expert annotations.
Fine-tuning aims to find the smallest number of anno-
tations needed to improve RCCNet students trained by
ResNet-18 teachers. For these experiments, we perform
a grid search over the chosen nuclei counts for each class
concerning the class that contained the smallest number
of annotations. We experimented with nuclei counts of
100, 250, 400, 550, 750, 850, 1000, 1250, 1500, 1750 and
1900. Each of the above values represents the per-class
count, which we divided into training and validation sets.
The test set, over which we computed the metrics for fine-
tuned models, is created from the remaining number of
nuclei in the dataset.

As presented in Table 6, the results indicate that fine-
tuning the pre-trained RCCNet model using SSA and nor-
malized data led to improved performance compared to
the initial training. Specifically, using 1500 nuclei per
class during the fine-tuning process resulted in a higher

F1 Score and Accuracy than before fine-tuning or using
lower nuclei counts. However, utilizing a small sample of
medical data to fine-tune the RCCNet model led to worse
results.

6 Conclusion & Discussion

This study presents a novel robust approach for cell seg-
mentation and classification, evaluated on WSI scans of
heart biopsy. This approach can generally be applied to
any histological images from different organs and different
types of cells. Our method consists of traditional methods
used in medicine combined with novel methods for work-
ing with weakly annotated data.

Using the Knowledge distillation and the Teacher-
Student architecture for nuclei classification, we have
identified that it is possible to improve results by using
this approach under certain conditions. In this work, we
specifically use Teacher-Student chaining. According to
our results, the best use of this technique appears to be in
the case of normalized data. We identified that there might
be an improvement in the results after fine-tuning the stu-
dent model.

An improvement in the results for normalized data was
observed when the number of manually annotated cells per
class reached a threshold of 1500, suggesting it may be a
suitable cut-off point for expert annotations.

A potential limitation is a total number of cells man-
ually annotated by pathologists. If more cells were an-
notated, further experiments could be performed to more
accurately evaluate the impact of fine-tuning the student
model on the medical annotations.

Future research may explore the potential of the
Teacher-Student architecture without relying on ANN an-
notations. This could involve training an initial teacher
model on a set of medical annotations and using it to train
a student model on previously unseen data, allowing for
further analysis and investigation of the approach.
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