
Utilizing Measured Reflectance for Real-time Rendering in Game
Engines

Lukáš Cezner*

Supervised by: Vlastimil Havran†

Department of Computer Graphics and Interaction
Czech Technical University in Prague

Prague / Czech Republic

Abstract

Having an appropriate reflectance model is a crucial part
of achieving realistic rendering. Currently, the vast major-
ity of renderers rely on physically-based analytic models
with a few parameters. In this paper, we consider another
approach and explore the possibility of using measured
reflectance data to render 3D objects covered with real-
world materials in real-time graphics. Specifically, we cre-
ated an implementation for two major game engines, Unity
and Unreal Engine 5, and compared it with the analytic
model. For these purposes, more than 200 samples of ma-
terials were measured, and an application was developed
to process the measured data.

Keywords: Bidirectional reflectance distribution func-
tion, real-time rendering, game engine, direct lighting

1 Introduction

One of the main tasks in computer graphics is to com-
pute realistic images. This task can be achieved using the
rendering equation, which incorporates a bidirectional re-
flectance distribution function (BRDF, see Section 1.2).
This function is often described as an analytic model,
a polynomial with certain parameters.

In the following sections, we present a different method
for expressing a BRDF, which involves an interpolation of
values obtained from real-world materials. We describe
a workflow that consists of measuring the reflectance of
a material, processing the measured data, and rendering
the surface with these BRDF values.

1.1 Spherical coordinate system

The spherical coordinate system represents a vector v⃗ =
(x,y,z) using two angles θ ,φ and a radial distance r = ||⃗v||.
The angle θ is characterized as the angle between the vec-
tor v⃗ and the basis vector z, while φ denotes the angle be-
tween the basis vector x and the projection of the vector v⃗

*cezneluk@fel.cvut.cz
†havran@fel.cvut.cz

on the xy plane. The conversion between a Cartesian and
a spherical coordinate system can be described as:

x
y
z

=

r · sinθ · cosφ

r · sinθ · sinφ

r · cosθ

 ,

θ

φ

r

=

arccos
(

z√
x2+y2+z2

)
arctan( x

y )√
x2 + y2 + z2

 .

(1)
On many occasions, we used the spherical coordinate

system to describe the direction ω⃗ (a unit vector, r = 1).
An illustration of this situation is shown in Figure 1.

x
y

z

ω⃗

φ

θ

Figure 1: A direction vector ω⃗ in spherical and Cartesian
coordinate system.

1.2 Bidirectional Reflectance Distribution
Function

The bidirectional reflectance distribution function (BRDF)
is a mathematical representation of how light is reflected
from the surface of an opaque material. For a spe-
cific wavelength of light, this is a function of two di-
rection vectors ω⃗in, ω⃗out in spherical coordinates (ω⃗in =
(θin,φin), ω⃗out = (θout ,φout)) that represent the incoming
(light) direction l⃗ and the outgoing (view) direction v⃗. The
value of the BRDF is determined by the ratio of the re-
flected radiance Lout in direction ω⃗out to the incoming ir-
radiance Ein from direction ω⃗in [14]:

f (ω⃗in, ω⃗out) =
dLout(ω⃗out)

dEin(ω⃗in)
=

dLout(ω⃗out)

dLin(ω⃗in) · cosθin
[sr−1],

(2)
Physically plausible BRDFs must obey two restric-

tions: Helmholtz reciprocity and energy conservation.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)



Helmholtz reciprocity defines the relationship between
a light ray and its corresponding reverse ray that the value
of the BRDF function must be the same:

∀ω⃗in, ω⃗out ∈ Ω : f (ω⃗in, ω⃗out) = f (ω⃗out , ω⃗in). (3)

Energy conservation is a requirement that the overall
outgoing energy cannot exceed the incoming energy:

∀ω⃗in ∈ Ω :
∫

Ω

f (ω⃗in, ω⃗out) · cosθout dω⃗out ≤ 1. (4)

1.3 Rendering equation

The rendering equation [8] describes the total outgoing ra-
diance in direction ω⃗out at a specific point on the surface:

Lout(ω⃗out) = Lemit(ω⃗out)+∫
Ω

f (ω⃗in, ω⃗out) ·Lin(ω⃗in) · cosθ dω⃗in. (5)

where Lemit ,Lin are the emitted and the incoming radiance.
Due to the integral over a hemisphere and an incoming ra-
diance in it (resulting in the need of a recursive evaluation
of the equation), the exact value of this function is com-
putationally demanding. Therefore, this function must be
approximated, even more so with real-time rendering.

2 Related work

In this section, we will describe two fields of study that
are related to this work: BRDF data sets and analytical
representation of BRDF.

2.1 BRDF data sets

The most well-known data set of measured BRDFs is the
MERL BRDF database, produced by Matusik et al. [11]
They used a spherically homogeneous sample, a station-
ary camera, and a light on a turntable. MERL database
contains 100 different isotropic materials, each of which
consists of 1,458,000 samples.

One of the newer data sets worth mentioning was pro-
duced by Dupuy and Jakob [4]. They invented an adaptive
parameterization, using which they can measure and store
only important parts of the BRDF 4D domain. By em-
ploying this method, their database currently includes 62
various materials.

2.2 Analytical models of BRDF

Currently, the vast majority of renderers rely on analytic
models. One of the fundamental models is the Phong il-
lumination model [15], which lacks both energy conserva-
tion and Helmholtz reciprocity. These problems were later
solved by Lafortune and Willems [10], who represent the
model as:

f (ω⃗in, ω⃗out) =
kd

π
+ ks ·

n+2
2π

· (max{⃗v · r⃗,0})n, (6)

where kd ∈ [0,1], ks ∈ [0,1] (kd +ks = 1) are coefficients
of the diffuse and specular part, r⃗ is a vector of ideal re-
flection of l⃗, and n ∈ [0,∞) is a parameter that defines the
shininess of the material.

Today, more complex models are used. A frequently
used model is, for example, the model developed by Wal-
ter et al. [21] It is based on the Cook-Torrance model,
which, unlike Walter’s model, does not satisfy energy con-
servation.

f (ω⃗in, ω⃗out) = kd · fd(ω⃗in, ω⃗out ,λ )+ ks · fs(ω⃗in, ω⃗out) (7)

The specular part of the model is based on microfacet
theory and is decomposed into three parts: Fresnel func-
tion F , geometric attenuation G, and distribution function
D:

fs(ω⃗in, ω⃗out) =
F ·G ·D

4 · (⃗n · l⃗) · (⃗n · v⃗)
, (8)

where n⃗ is a normal of the surface. For Fresnel function
F in real-time graphics, the Schlick approximation [16]
is used. Geometric attenuation G is influenced by the cho-
sen distribution function F , for which several variants have
been introduced. The most used is GGX:

D =
α2 ·max{0,⃗h · n⃗}

π · cos4 θh(α2 + tan2 θh)2 , (9)

G ≈ G1(⃗v) ·G1(⃗l), (10)

G1(⃗x) = max
{

0,
x⃗ · n⃗
x⃗ · h⃗

}
· 2

1+
√

1+α2 · tan2 θx
, (11)

where h⃗ is a half vector (⃗h = l⃗+⃗v
||⃗l+⃗v||

), θh is an angle be-

tween h⃗ and normal n⃗, and θx is an angle between x⃗ and
normal n⃗. The parameter α defines the roughness of the
material.

3 BRDF Measurements

Acquiring measured BRDF data is the first step in the
workflow. We used MiniDiff v2 [17] (shown in Figure 2),
a portable contact scatterometer created by Synopsys (pre-
viously LightTec). It supports the measurement of BRDF
for isotropic materials at four angles of incidence for light
sources: θin ∈ {0◦,20◦,40◦,60◦}. For each angle of light,
it produces measurements of the RGB reflectance values
in the range of φout ∈ [0◦,360◦) and θout ∈ [0◦,75◦] with
a precision of 1◦. Therefore, the measurement of a single
sample consists of 324,000 BRDF values.

A limited number of material samples can be properly
measured as a result of the construction of this instru-
ment. Any sample that is not solid, is not homogeneous, is
squashy, has bumps (such as plaster), contains tiny holes
(like most fabrics), or is partially transparent (like certain
types of plastic) will produce invalid results.

With these constraints, 216 measurements of materi-
als were produced, mainly papers and swatches, but also

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 2: MiniDiff v2 with calibration samples.

metal, plastics, felt wool, and stiff foam. Some sam-
ples are wood (plywood, chipboard, planed wood), cloth,
and leather. Anisotropic materials were measured for two
φin angles of light that are approximately perpendicular
and stored as independent measurements. The miniatures
of all material samples are shown in Figure 9.

4 Processing

During the processing stage, two primary tasks need to be
performed: extrapolation and export to the look-up table
(LUT) image data. For this reason, we have created an
application that also enables us to visualize data and ver-
ify its validity. This application was developed as modular
and general as possible: internally it works with measure-
ments as a point cloud, and loading data from a new file
format can be easily added.

4.1 Extrapolation

BRDF data for grazing angles (θout > 75◦) are unavailable,
so we must extrapolate them from the measured range.
Specifically, for each 3D texture slice corresponding to
a particular θin, the values f (θe) are calculated from the
value f (θb) of the nearest known measurement (in our sce-
nario θb = 75◦) as an interpolation of the scale of f (θb)
from 1 to the parameter r ∈ [0,∞):

f (θe) = f (θb) · ((1−α)+α · p),

α = b
(

min
{

θ −θb

m
,1
}
, l
)
,α ∈ [0,1],

(12)

where m represents the maximum expected distance be-
tween the known measurement at θb and the calculated
value at θe (in our scenario m = 90◦−75◦ = 15◦). Figure
3a shows an example of extrapolated BRDF values. The
function y = b(x, l) can be described as finding the coor-
dinate y of a point with the specific coordinate x on the
restricted quadratic Bezier curve, illustrated in Figure 3b,

specified by l ∈ [0,1]. This curve has a fixed starting point
P⃗0 = (0,0), an ending point P⃗2 = (1,1), and a parameter-
ized control point P⃗1 = (l,1− l):

y = b(x, l) if ∃t :
[

x
y

]
= 2 · (1− t) · t ·

[
l

1− l

]
+ t2. (13)

The equation for this function is solved by testing the
roots of the variable t.

0

f (θ)

θ

p · f (θb)

f (θb)

θb θb +m

(a) Chart of BRDF values by θ (extrapola-
tion area is orange).

x

y

P0

P1

P2

1− l

l

(b) Used Bezier
curve.

Figure 3: Extrapolation of BRDF data with the parameters
p = 0.2 and l = 0.3.

This extrapolation was developed to be easily com-
puted. If parameter p = 1, this extrapolation produces
the same results as clamping values outside the measure-
ment region, which is preferable for materials that exhibit
mainly diffuse reflection, because it is expected that the
BRDF value will not depend much on the outgoing direc-
tion ω⃗out . For glossy materials, it is recommended to set
the parameter p < 1, because decreasing the value of the
BRDF with increasing θout (consequently increasing the
distance from the direction of ideal reflection) will roughly
estimate the shape of the reflection lobe.

4.2 Export to LUT image

During rendering, the isotropic BRDF data are stored as
a 3D texture constructed from several 2D textures, slices
with the fixed third texture coordinate. The isotropic
BRDF has three independent parameters and has φin = 0.
Therefore, each slice represents the BRDF values for
a specific θin in an equirectangular projection with a spher-
ical coordinate system ω⃗d = (θd ,φd) aligned with the di-
rection of specular reflection, i.e. the direction θd = 0◦,
φd = 0◦ corresponds to θout = θin,φout = φin+180◦. Slices
are arranged in row-major order in an image file with as-
cending θin in a single composite image.

For rendering in Unreal Engine, it is necessary to gener-
ate a single texture (referred to as an atlas) that merges all
measured BRDF samples being used (see Section 5.3). An
example of an atlas is illustrated in Figure 5. The layout of
an atlas is the same as that for a single BRDF, but instead
of the slice itself, the atlas contains a regular grid. Each
cell in the grid corresponds to a slice of a single BRDF tex-
ture with the same θin. Cells within the grid are organized
similarly to slices in 3D texture, following a row-major
order.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)



φd

θd

θin = 0◦ θin = 20◦

θin = 40◦ θin = 60◦

Figure 5: An example of an exported atlas image for 9 dif-
ferent materials.

4.3 Previewing BRDF data

The developed application supports two ways of preview-
ing the measured BRDF data: as a reflection lobe for a spe-
cific angle of light ω⃗in and rendering of a 3D object illu-
minated by an environment map.

The reflection lobe, illustrated in Figure 4a, can be de-
scribed as a deformed sphere where the distance between
the points from the origin corresponds to a specific BRDF
value in a particular direction. This visualization method
is beneficial for verifying the validity of specific values
and gaining insight into the general form of a BRDF.

In contrast, rendering of a 3D object illuminated by
an environment map, shown in Figure 4b, can be practi-
cal for comparing the real-world and rendered versions of
the material. It is computed as a numerical integration of
the rendering equation over a hemisphere, where the input
radiance is sampled from the environment map in a partic-
ular direction.

5 Rendering in game engines

We implemented a shader for two major game engines,
Unity and Unreal Engine 5, which compute direct lighting
using a 3D LUT image created in the previous step.

5.1 BRDF evaluation

In practical terms, we assume that the initial slice of the
texture corresponds to θin,0 = 0, with each subsequent
slice increasing its angle linearly (i.e. θin,i+1 = θin,i +∆;
∆ ∈ R+, specifically in our case ∆ = 20◦). Consequently,
the value of a BRDF point in a normalized texture coordi-
nate can be represented as:u

v
w

=


φd
2π

θd
π

θin
θin,m

 , (14)

where θin,m is an angle of the last 2D slice in the 3D tex-
ture.

To read the BRDF data from the texture, native trilinear
interpolation is used. In the selected coordinate system de-
scribed in Section 4.2, two points with the same (u,v) in
a different 3D texture slice (different texture coordinate w)
describe the change of the lobe around the specular reflec-
tion, which is more valuable information than the linear
interpolation of the BRDF values with fixed ω⃗out , because
it is expected that the main difference between the 3D tex-
ture slices will be in the specular part of the BRDF. For ex-
ample, in Figure 6, interpolation with fixed ω⃗out produces
two smaller lobes, which does not represent the correct be-
havior.

θ0

θ1

θ0.5

(a) Interpolation between slices
parameterized with ω⃗out .

θ0

θ1

θ0.5

(b) Interpolation between slices
parameterized with ω⃗d .

Figure 6: Comparing of interpolations of BRDF values
(dotted line) of the cosine lobe (⃗r · v⃗)20 (⃗r is a direction of
ideal reflection) between slices with specified θin.

(a) A reflection lobe. (b) 3D object illuminated by an environment map.

Figure 4: Implemented methods for previewing BRDF data.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)



This approach is inappropriate for materials that exhibit
substantial retroreflective properties, but such cases are not
within the scope of this work.

BRDF is evaluated in a tangent space of the specified
point on a 3D object surface. This tangent space, illus-
trated in Figure 8, is derived from the normal vector n⃗ and
the tangent vector t⃗, which is formed by projecting the in-
coming direction ω⃗in onto a plane perpendicular to the nor-
mal n⃗.

To evaluate the BRDF values from the 3D texture, it is
necessary to transform the view direction ω⃗out into ω⃗d in
the texture coordinate system. This can be done through
the rotation matrix from normal n⃗ to the direction of spec-
ular reflection ω⃗r = (θin,π):

S = (Rz(π) ·Ry(θin))
T =

−cosθin 0 −sinθin
0 −1 0

−sinθin 0 cosθin

 .

(15)
After rotation, the spherical coordinates of the view di-

rection v⃗ are related to ω⃗r, therefore they are ω⃗d . Hence,
the normalized texture coordinates are calculated using
this formula: u

v
w

=


fφ (S·⃗v)

2π

fθ (S·⃗v)
π

fθ (⃗l)
θin,m

 , (16)

where the function f maps Cartesian coordinates to
spherical, l⃗ and v⃗ represent the light and the view direc-
tion in the introduced tangent space.

To perform testing and performance evaluations, the
same testing scene was established in both game en-
gines. This scene contains six models (specifically Stan-
ford Bunny [18], Stanford Armadillo [9], Phlegmatic
Dragon [7], Stanford Dragon [3], Utah Teapot [13] and
Spot [2]) with six different materials. The rendered image
from this scene is shown in Figure 7.

b⃗

t⃗

n⃗

ω⃗in

θin

ω⃗r

θin
ω⃗out

φd

θd

Figure 8: The tangent space used for BRDF evaluation.

5.2 Unity

Unity [20] has three rendering pipelines: build-in, univer-
sal (URP), and high definition (HDRP). The shader for
rendering measured BRDF was implemented for the built-
in render pipeline because modifying a BRDF evaluation
in other pipelines is not officially supported and requires
a bit of reverse engineering [22].

The built-in rendering pipeline uses forward rendering
by default, and therefore the implementation of the shader
was straightforward. Each material has an input texture
with BRDF data and evaluates the lighting in the fragment
shader for each light that affects the object [19].

5.3 Unreal Engine 5

Unreal Engine [6] has a pipeline based on deferred shad-
ing. A shader, editable by a user, writes the necessary data
for lighting (such as position, normal, and BRDF param-
eters) to the G-buffer (an off-screen framebuffer) [12]. In
the G-buffer, it is not feasible to store the whole texture
with measured BRDF data. Instead, it is necessary to store
only an index of a sample in the atlas.

(a) Render with measured BRDF materials. (b) Render with the Lafortune-Phong materials.

Figure 7: The test scene rendered in Unity (it appears almost identical in Unreal Engine). Differences between the ana-
lytical model and measured BRDFs are mostly noticeable in a specular part, where the highlights of the Lafortune-Phong
model do not have soft endings.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)



During the second pass, lighting is calculated for every
pixel on the screen based on data stored in the G-buffer.
This pass is a part of the rendering engine, and making
changes to the BRDF evaluation requires directly editing
the source code of the engine. It involves modifying the
shader and structure of the G-buffer, editing the UI compo-
nents in the material editor, and incorporating some logic
for manipulation with the atlas [1].

6 Discussion

6.1 Performance

The rendering speed was evaluated in the test scene in
both game engines. The shader using measured BRDF
was compared with the shader using the Lafortune-Phong
analytic model [10]. This choice was determined due to
differences in default shader models between game en-
gines. Additionally, default shaders provide support for
indirect lighting, which the current shader implementation
does not offer.

Performance measurements were performed on a Linux
PC with Intel i5-9600K @ 4.5 GHz CPU and Nvidia
GeForce GTX 1660 GPU. Both game engines use the
Vulkan API for rendering. The measured BRDF shader
is slightly slower (approx. 2−3%).

Unity
2022.1.19f1

Unreal
Engine 5.1.1

Measured BRDF 10.05 ms
(99.5 fps)

12.37 ms
(80.9 fps)

Lafortune-Phong 9.72 ms
(102.9 fps)

12.12 ms
(82.5 fps)

Table 1: Average rendering time of the test scene with
three directional lights on 4K resolution. The average was
calculated from 15 seconds run with 5 seconds warm-up.

6.2 Drawbacks

The primary disadvantage of this method is the increased
memory usage caused by the requirement to store the LUT
texture. Each measurement from the created dataset took
around 1 MB of VRAM (361 · 181 · 4 pixels in RGB9 E5
format, 4 bytes per pixel), but a LUT texture with denser
measurements (which means higher resolution of the tex-
ture) will require significantly larger amounts of memory.

Another drawback is the restriction of rendering only
direct lighting. For performance reasons, game engines
make some assumptions that cannot be easily fulfilled with
tabularized BRDF data. For example, Lumen Global Illu-
mination in Unreal Engine uses a single simplified analytic
model [5].

Figure 9: Miniatures of all measured samples in the dataset.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)



6.3 Future work

One of the possible improvements is to expand the imple-
mented shader to support anisotropic materials. It will re-
quire manually rotating the scatterometer or another scat-
terometer with anisotropic support and extending the LUT
texture to four dimensions. Because 4D textures are not
generally supported, performing linear interpolation along
a single axis needs to be realized within a shader by addi-
tional steps. Furthermore, memory consumption will in-
crease even further, necessitating the implementation of
some form of data compression.

7 Conclusion

In the preceding sections, we explained the utilization of
measured reflectance for real-time rendering in computer
graphics. We described the process from acquiring mea-
sured BRDF data, and processing them, to computing the
radiance of a pixel in a shader. A total of 216 material
samples were measured, and a tool was developed to pro-
cess and visualize the data. Although the method outlined
may have some limitations, in specific scenarios, it may be
more appropriate than a generic analytic model.

Acknowledgments

This work was supported by the Grant Agency
of the Czech Technical University in Prague, No
SGS22/173/OHK3/3T/13.

References

[1] 0ne3y3. New shading models and changing the
GBuffer, 12 2022. https://dev.epicgames.

com/community/learning/tutorials/2R5x/

unreal-engine-new-shading-models-and-c

hanging-the-gbuffer [Accessed 2024-03-04].

[2] Keenan Crane, Ulrich Pinkall, and Peter Schröder.
Robust fairing via conformal curvature flow. ACM
Transactions on Graphics (TOG), 32(4):1–10, 2013.

[3] Brian Curless and Marc Levoy. A volumetric method
for building complex models from range images. In
Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH ’96, page 303–312, New York, NY, USA,
1996. Association for Computing Machinery.

[4] Jonathan Dupuy and Wenzel Jakob. An adaptive pa-
rameterization for efficient material acquisition and
rendering. Transactions on Graphics (Proceedings
of SIGGRAPH Asia), 37(6):274:1–274:18, Novem-
ber 2018.

[5] Epic Games. ShadingModels.ush, Unreal En-
gine source code. https://github.com/EpicG

ames/UnrealEngine/blob/5ca9da84c694c6e

ee288c30a547fcaa1a40aed9b/Engine/Shade

rs/Private/ShadingModels.ush#L343 [Ac-
cessed 2024-03-04].

[6] Epic Games. Unreal Engine, 1998–2024. https:

//www.unrealengine.com/en-US.

[7] Jiřı́ Filip, Radek Holub, Vlastimil Havran, Jaroslav
Křivánek, and Daniel Sýkora. Phlegmatic Dragon,
2007. https://web.archive.org/web/2022

0710054500/https://dcgi.fel.cvut.cz/c

gg/eg07/index.php?page=dragon [Accessed
2022-07-10].

[8] James T. Kajiya. The rendering equation. In Pro-
ceedings of the 13th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH ’86, page 143–150, New York, NY, USA,
1986. Association for Computing Machinery.

[9] Venkat Krishnamurthy and Marc Levoy. Fitting
smooth surfaces to dense polygon meshes. In Pro-
ceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH ’96, page 313–324, New York, NY, USA,
1996. Association for Computing Machinery.

[10] Eric Lafortune and Yves Willems. Using the Mod-
ified Phong Reflectance Model for Physically Based
Rendering. Technical Report CW 197, Department
of Computing Science, K.U. Leuven, 11 1994.

[11] Wojciech Matusik, Hanspeter Pfister, Matt Brand,
and Leonard McMillan. A data-driven reflectance
model. ACM Transactions on Graphics, 22(3):759–
769, July 2003.

[12] Michael Muir. Unreal Engine Lighting. https:

//dev.epicgames.com/community/learning

/tutorials/Le7b/unreal-engine-lighting

[Accessed 2024-03-04].

[13] Martin Newell. Utah Teapot, 1975. https://gr

aphics.cs.utah.edu/teapot/ [Accessed 2024-
03-09].

[14] F.E. Nicodemus, J.C. Richmond, J.J. Hsia, W.I. Gins-
berg, and T. Limperis. Geometrical considerations
and nomenclature for reflectance. Applied Optics,
9:1474–1475, 1977.

[15] Bui Tuong Phong. Illumination for computer gen-
erated pictures. Commun. ACM, 18(6):311–317, 6
1975.

[16] Christophe Schlick. An inexpensive brdf model for
physically-based rendering. Computer Graphics Fo-
rum, 13(3):233–246, 1994.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

https://dev.epicgames.com/community/learning/tutorials/2R5x/unreal-engine-new-shading-models-and-changing-the-gbuffer
https://dev.epicgames.com/community/learning/tutorials/2R5x/unreal-engine-new-shading-models-and-changing-the-gbuffer
https://dev.epicgames.com/community/learning/tutorials/2R5x/unreal-engine-new-shading-models-and-changing-the-gbuffer
https://dev.epicgames.com/community/learning/tutorials/2R5x/unreal-engine-new-shading-models-and-changing-the-gbuffer
https://github.com/EpicGames/UnrealEngine/blob/5ca9da84c694c6eee288c30a547fcaa1a40aed9b/Engine/Shaders/Private/ShadingModels.ush#L343
https://github.com/EpicGames/UnrealEngine/blob/5ca9da84c694c6eee288c30a547fcaa1a40aed9b/Engine/Shaders/Private/ShadingModels.ush#L343
https://github.com/EpicGames/UnrealEngine/blob/5ca9da84c694c6eee288c30a547fcaa1a40aed9b/Engine/Shaders/Private/ShadingModels.ush#L343
https://github.com/EpicGames/UnrealEngine/blob/5ca9da84c694c6eee288c30a547fcaa1a40aed9b/Engine/Shaders/Private/ShadingModels.ush#L343
https://www.unrealengine.com/en-US
https://www.unrealengine.com/en-US
https://web.archive.org/web/20220710054500/https://dcgi.fel.cvut.cz/cgg/eg07/index.php?page=dragon
https://web.archive.org/web/20220710054500/https://dcgi.fel.cvut.cz/cgg/eg07/index.php?page=dragon
https://web.archive.org/web/20220710054500/https://dcgi.fel.cvut.cz/cgg/eg07/index.php?page=dragon
https://dev.epicgames.com/community/learning/tutorials/Le7b/unreal-engine-lighting
https://dev.epicgames.com/community/learning/tutorials/Le7b/unreal-engine-lighting
https://dev.epicgames.com/community/learning/tutorials/Le7b/unreal-engine-lighting
https://graphics.cs.utah.edu/teapot/
https://graphics.cs.utah.edu/teapot/


[17] Synopsys. MiniDiff V2 User’s Manual, 2021.

[18] Greg Turk and Marc Levoy. Zippered polygon
meshes from range images. In Proceedings of
the 21st Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’94, page
311–318, New York, NY, USA, 1994. Association
for Computing Machinery.

[19] Unity Technologies. Rendering paths in the Built-in
Render Pipeline. https://docs.unity3d.com/2
022.1/Documentation/Manual/RenderingPa

ths.html [Accessed 2024-03-03].

[20] Unity Technologies. Unity, 2005–2024. https:

//unity.com/.

[21] Bruce Walter, Stephen R. Marschner, Hongsong Li,
and Kenneth E. Torrance. Microfacet models for
refraction through rough surfaces. page 195–206,
2007.

[22] Bronson Zgeb. Custom Lighting in URP with Shader
Graph, 2021. https://bronsonzgeb.com/in

dex.php/2021/10/04/custom-lighting-i

n-urp-with-shader-graph/ [Accessed 2024-
03-04].

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

https://docs.unity3d.com/2022.1/Documentation/Manual/RenderingPaths.html
https://docs.unity3d.com/2022.1/Documentation/Manual/RenderingPaths.html
https://docs.unity3d.com/2022.1/Documentation/Manual/RenderingPaths.html
https://unity.com/
https://unity.com/
https://bronsonzgeb.com/index.php/2021/10/04/custom-lighting-in-urp-with-shader-graph/
https://bronsonzgeb.com/index.php/2021/10/04/custom-lighting-in-urp-with-shader-graph/
https://bronsonzgeb.com/index.php/2021/10/04/custom-lighting-in-urp-with-shader-graph/

	Introduction
	Spherical coordinate system
	Bidirectional Reflectance Distribution Function
	Rendering equation

	Related work
	BRDF data sets
	Analytical models of BRDF

	BRDF Measurements
	Processing
	Extrapolation
	Export to LUT image
	Previewing BRDF data

	Rendering in game engines
	BRDF evaluation
	Unity
	Unreal Engine 5

	Discussion
	Performance
	Drawbacks
	Future work

	Conclusion

