
A New Visualization Framework for Simulink 3D Animation

Tereza Hlavová
Supervised by: Jan Houška

Department of Computer Graphics and Interaction
Czech Technical University in Prague

Prague / Czech Republic

Abstract

This paper focuses on visualization and interaction with
a 3D scene in the Simulink 3D Animation tool for MAT-
LAB. Our goal is to improve its visual quality, physics
simulation capabilities, and performance. We propose
a new rendering component using Three.js, a JavaScript
3D graphics library. We describe an implementation of
the rendering component and its addition to the software.
Compared to its predecessor, the new renderer supports
some of the new visual features of the X3D format ver-
sion 4.0, mainly physically based rendering (PBR), image-
based lighting (IBL), and improvements in simple colli-
sion detection. We demonstrate the improvements and
changes using official examples from Simulink 3D Ani-
mation.

Keywords: MATLAB, Three.js, Simulink 3D Anima-
tion, physical simulation, physically based rendering

1 Introduction

In the last decades, 3D graphics have come a very
long way with new breathtaking improvements in visuals
promised and realized every year. In contrast, a MAT-
LAB software tool Simulink 3D Animation (SL3D) has
been missing an up-to-date look, not receiving similar vi-
sual improvements in years. Features we wanted to focus
on include physically based rendering (PBR), image-based
lighting (IBL), and casting of shadows. PBR aims to rep-
resent an interaction between light and the surface of an
object more accurately than empirical local illumination
methods [12]. Under such model, objects with defined ma-
terials should look consistent under any lighting setup in
the scene, which was not the case for the empirical model
that SL3D used. IBL produces realistic reflections and am-
bient lighting from images and makes the objects appear
as if they belong to a given environment. Casting of shad-
ows can help better understand locations of lights and the
scene and relative locations of 3D objects.

MATLAB development teams have been encouraged to
transition their user interface components of Simulink and
MATLAB tools using Java or other third-party technolo-
gies to web technologies. The main version of SL3D uses

OpenGL 1.2.1 to render the scene and Java for its inclu-
sion in the MATLAB graphical output displaying windows
called figures. An experimental JavaScript-based branch
of SL3D already existed before our work, so we analyzed
its differences from the main version. The experimental
version used a modified version of a JavaScript library
called X3DOM for rendering 3D content [18]. X3DOM
library does not support all the features that SL3D needs,
mainly a LinePickSensor node needed for Simulink mod-
els imitating lidars, and therefore further modifications to
the library were needed. Additions and modifications to
the library are not trivial because it is declarative and the
actual library functionality is mostly undocumented. The
experimental version also performed poorly at stress tests
frequently resulting at the scene not being loaded and ob-
ject parameters not being updated in the scene.

We overviewed possible different directions of the de-
velopment looking at three JavaScript 3D graphics li-
braries. We proposed a completely new implementation of
its visualization component. We implemented a new ren-
derer, interaction methods with the 3D scene and its inclu-
sion to the rest of Simulink 3D Animation. Improvements
in rendering quality are shown in Figure 1. The work
was developed under HUMUSOFT s.r.o. for The Math-
Works, Inc.

In section 2 we will describe SL3D and proposed mod-
ifications in more detail. The implementation is then
overviewed in section 3 and the results are presented in
section 4.

2 Background

In this section, we will introduce the Simulink 3D Anima-
tion tool for MATLAB software, describe its use, imple-
mentation, and proposed goals and modifications for this
work. MATLAB is a computing environment as well as
a programming language developed by The MathWorks,
Inc. It is widely used together with Simulink, a block di-
agram environment used to design systems with multido-
main models, simulate before moving to hardware, and de-
ploy without writing code [14].

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) vrmaze old example. (b) vrmaze updated example.

(c) vrmaglev old example. (d) vrmaglev updated example with SSR.

(e) vr octavia old example. (f) vr octavia updated example.

Figure 1: Scenes from official Simulink 3D Animation examples, old lighting model versus using PBR, IBL and shadow
casting.

2.1 Simulink 3D Animation

Simulink® 3D Animation™ is a tool under MATLAB
software that links Simulink models and MATLAB algo-
rithms to 3D graphics objects in virtual scenes [15]. With
this tool, the user can load a 3D scene into a scene editor,
modify its content, view the scene in a viewer, or connect
attributes of the scene to those of a Simulink model to vi-
sualize the scene and its updates in a viewer.

SL3D in the MATLAB release version R2024a works
with standardized scene formats VRML [3] and its suc-
cessor Extensible 3D - X3D, version 3.3 [4]. It supports
a list of features of the standard that are part of the Im-
mersive Profile of X3D version 3.3. Both are declarative
file formats describing 3D objects and scenes, as well as
their behavior and user interaction. They are designed by
the Web3D Consortium. The standards offer users a wide

range of built-in scene node types for transformations, ge-
ometry, material definitions, and a prototyping concept
used for creating new custom node types. To work with
a 3D scene in Simulink, the tool offers library blocks. The
blocks can write data into a 3D scene or read data from the
3D scene. This creates a connection between the fields of
the scene nodes and the parameters in Simulink blocks.

The software tool can be divided into four main imple-
mentation parts:

• MATLAB interface,

• internal scene representation,

• canvases,

• editor/viewer.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

The simplified software architecture outline can be seen
in Figure 2. Most of the interface is implemented in MAT-
LAB. The underlying functionality, scene storing and han-
dling, is implemented in C++. There, the loaded 3D scenes
are kept in an internal representation in classes loosely
based on the OpenVRML Library [11]. C++ functions can
be called from MATLAB functions with one main module
called vrclimex. The other direction of communication is
realized through callbacks. Users can either work directly
with prepared functions or they are able to interact with
the scene through virtual canvas classes, which maintain
up-to-date modifiable scene properties.

Figure 2: Simplified outline of Simulink 3D Animation
architecture. The highlighted components were modified
for the purposes of this work.

2.2 Proposed Modifications

The two SL3D versions take completely different ap-
proaches to the way the rendered images are produced and
delivered to the user. The main branch encapsulates ren-
dered frames directly to figures by performing traversal of
the scene graph loaded into the internal scene represen-
tation. The experimental branch maintains its own sep-
arate renderer running in MATLAB’s HTML UI compo-
nent. This component internally uses a Chromium browser
and displays HTML5 and JavaScript content. The HTML
UI component runs independently from the MATLAB pro-
cessing and offers a JSON-based communication channel
without any synchronization guarantees. We performed
stress tests on the experimental version before our imple-
mentation. In these tests, we periodically created a new
canvas and checked for correctly loaded scene properties
in the MATLAB canvas. Not a single instance out of 50
ensured the correct load of the chosen scene viewpoint.
Testing an animation of a sphere object on a circular tra-
jectory without any additional wait resulted in 1633 ig-
nored animation steps out of 2000. Based on that we con-
cluded that a communication protocol is needed to ensure
the delivery of scene updates and user requests between
the MATLAB interface and the renderer in the HTML UI

component.
For the rendering component itself, we considered

open-source 3D graphics libraries: the previously used
X3DOM, X ite [7], and Three.js [10]. The license of
X ite demands the source code of the software using it
to be publicly available and thus is not fit for commer-
cial use. X3DOM does not offer flexibility for the imple-
mentation of missing features or modifications in general.
We decided to completely re-implement the experimental
branch, adding a new renderer using the Three.js library. It
offers control over scene building, animating, and render-
ing and thus also the flexibility that X3DOM lacks. Possi-
ble support of real-time physics simulation in SL3D could
be also added this way in the future because Three.js is ca-
pable of including ammo.js [9], which is a direct port of
Bullet Physics Engine [6] into JavaScript. X3DOM offers
a physics simulation component [1] too, but there is no
user documentation, no official examples and we were not
able to produce working examples ourselves during test-
ing.

Rendering VRML and X3D version 3.3 worlds only ac-
cording to their standards would not use the wide variety
of features Three.js is capable of. In order to massively en-
hance the visual capabilities of SL3D we suggested imple-
menting new features also in the internal scene represen-
tation. A new X3D standard version 4.0 [5] was approved
in December 2023. Its additions and changes might be
crucial for this and future work. Possibly the most im-
portant addition is the inclusion of PBR through Physi-
calMaterial node and shadow casting through castShadow
field in a Shape node. We finished this work before the
official finalization of the standard version when also an
EnvironmentLight node was still a part of the standard as
well before being removed for the finalized release, which
included IBL.

3 Implementation

This section will describe the principles of the implemen-
tation of the most important modification decisions.

3.1 Architecture Changes

After solving X3D format version control in the internal
scene representation, new nodes and also new fields en-
hancing the existing nodes had to be marked accordingly.
After these modifications, the software was capable of
loading nodes and fields required for the Immersive pro-
file of X3D 4.0 specification into the internal scene.

A message ID confirmation system was needed to en-
sure that no exchanged information was outdated. We
implemented a new communication protocol between the
renderer’s code running in the HTML UI component and
the rest of the architecture - mainly regarding updates from
the internal scene but also requests from and to the MAT-
LAB interface.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) Standard Java-based Simulink 3D Animation. (b) Experimental Simulink 3D Animation, newly implemented.

Figure 3: Modification of scene and canvas properties propagation.

In the main branch, the propagation of scene modifi-
cations into the rendered frame was ensured by calling a
drawnow function. It executes and flushes all scene mod-
ification calls. It is usually called by Simulink after every
simulation step or by the editor upon user interaction. For
updates in the scene event system, an internal idle timer
also executes the calls on a periodic basis. This propa-
gation of scene modification to the viewport in the main
branch is visualized in Figure 3a.

For the experimental branch, we implemented a virtual
canvas registration process for scene updates. The updates
get stored in update queues. Upon a drawnow call, an
update message is produced from all and sent back to all
canvases registered for the scene. The scene modification
propagation to the viewport in the new experimental ver-
sion can be seen in Figure 3b.

The scene has to be exported for the renderer of the ex-
perimental branch because it is run separately. For mes-
sages that describe a scene or part of the scene, we used
encoding into JSON format using a library called RapidJ-
SON [2]. Scene nodes are mapped to objects, and field to
object properties. The initial scene export into JSON for-
mat is built using a modified internal scene traversal which
effectively prints out all information deemed important for
the functionality of the external renderer. Scene modifi-
cation updates created upon a drawnow call also use the
same export functionality but are limited to the nodes they
relate to.

3.2 JavaScript Renderer

As stated before, we implemented the Javascript renderer
using the Three.js library. The main script starts after
MATLAB calls its initialization function. It sets up the
communication protocol control and constructs a render-
ing pipeline.

3.2.1 Scene Import and Updating

Three.js is not originally meant to work with VRML or
X3D files. Its own scene representation and overall li-
brary functionality differ from the said file format stan-
dards. It was important for us to use as much already ex-
isting functionality of this powerful library to fit the stan-

dards, but even with those efforts many node types did not
have matching Three.js equivalents, or at least not entirely.

The scene maintained in the renderer has to accept up-
dates from the internally maintained one while also fol-
lowing the VRML mechanisms of reusing nodes. Thus we
decided to use two main structures in the renderer. There
is a scene graph, which is rendered by Three.js, and all
its nodes are inherited from Three.js classes. Then there
is a map of nodes that holds references to all instances
under every node ID. Both structures are held in a scene
script that is also responsible for managing scene naviga-
tion, user interaction, and rendering settings propagation
to the scene nodes. It also provides a map of functions for
node building and updating out of the JSON representa-
tion.

Similarly to the internal scene class inheritance hierar-
chy, the JavaScript renderer code defines a class for every
supported scene node and the building function generates
their instances. Each node always implements a construc-
tor, a clone method possibly with a copy method, an init
method for creation, a set method for non-default values
during both scene import and scene updates, and a delete
method for proper disposal of resources both locally and
on the GPU. The classes either derive from native Three.js
classes, enhancing them to fit X3D concepts, or were im-
plemented anew.

The biggest difference between the X3D standard prin-
ciples and the Three.js approach to the representation of
the scene comes in the form of the X3D’s Shape nodes.
While the X3D standard specifies a Shape node capable of
holding any kind of geometry node and appearance de-
scriptions, Three.js provides different scene objects for
different geometry types they are able to present. This
forced us to divide some of the X3D node definitions from
objects actually used in the scene and keep them both,
which allowed for better control over shared resources and
scene updates.

The most important classes that hold X3D definitions
and manage separate Three.js objects are shape, all geom-
etry classes, and appearance classes containing material
classes and texture classes. All of them influence values
in (usually multiple) Three.js objects that actually play a
part in the scene rendering and manage re-referencing and
reusing the resources, or their disposal when they are not

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

used anywhere anymore.

A source code example for a material update can be seen
below. It implements base/diffuse texture addition to all
required real materials in the Three.js shape objects:

/ / go t h r o u g h a l l r e g i s t e r e d x3d m a t e r i a l s
/ / w i th base o r d i f f u s e t e x t u r e
f o r (c o n s t x3dmat o f a r r a y)
{

c o n s t newmap = t h i s . t e x t u r e . c l o n e () ;
/ / go t h r o u g h a l l a p p e a r a n c e s u s i n g them
f o r (c o n s t app of x3dmat . x 3 d a p p e a r a n c e s)
{ / / a p p l y appe a ran ce ’ s t e x t u r e t r a n s f o r m

app . s e t T e x t u r e T r a n s f o r m (newmap) ;
c o n s t mats = app . g e t R e a l M a t e r i a l s () ;
/ / and a p p l y i t t o a l l r e a l m a t e r i a l s
/ / l i n k e d t o t h a t appe a ran ce ’ s shape
f o r (c o n s t mat o f mats)
{

i f (mat . map) / / remove o l d t e x t u r e
mat . map . d i s p o s e () ;

mat . map = newmap . c l o n e () ;
mat . needsUpda te = t r u e ;

}
}
newmap . d i s p o s e () ;

}

The implementation of the text rendering in particular
is non-trivial. This is due to the X3D standard being
more flexible than the text rendering methods offered by
Three.js (mainly the alignment, justification, direction,
UTF-8 fonts, and material application requirements). We
implemented it by rendering the text into texture from
an HTML canvas element, which we deemed flexible
enough. The texture is used as a mask on a plane shape
which can have a material applied to it. An example can
be seen in Figure 4. The downside of this approach is that
the resolution for the rendered texture is pre-set. Making
this dependent on the position of the camera could be a
topic for future work.

The new renderer’s supported nodes’ mapping to
Three.js classes can be seen in Table 1. Geometry gets
already triangulated in the internal scene, originally for
OpenGL, X3D geometry nodes missing in the table are ex-
ported for the renderer as pre-triangulated IndexedFaceSet.
Supported sensors are also not included in the table, they
do not derive from any Three.js class and are discussed in
the following paragraphs.

Three.js has an inbuilt loader for models of glTF for-
mat [13]. We have also allowed the inclusion of such mod-
els in inline nodes using the loader. However, their prop-
erties cannot be modified, because the internal scene does
not work with this format yet. The models are just inserted
into the scene and are influenced by the transformation hi-
erarchy.

Table 1: Overview of implementing X3D nodes using
Three.js.

X3D Node Three.js class relationship

Networking Component
Anchor Group inheritance
Inline Group inheritance

Grouping Component
Group Group inheritance
Switch Group inheritance

Transform Group inheritance
Rendering Component

IndexedFaceSet BufferGeometry inheritance
IndexedLineSet BufferGeometry inheritance

Shape Component
Material MeshPhongMaterial, encapsulation

LineBasicMaterial,
MeshUnlitMaterial

PhysicalMaterial MeshStandardMaterial, encapsulation
LineBasicMaterial,
MeshUnlitMaterial

Shape Mesh, encapsulation
LineSegments

Geometry3D Component
Box BoxGeometry inheritance
Cone BufferGeometry inheritance

Cylinder BufferGeometry inheritance
Sphere SphereGeometry inheritance

Text Component
Text PlaneGeometry inheritance

FontStyle [none] –
Lighting Component

EnvironmentLight Scene parameter
DirectionalLight DirectionalLight inheritance

SpotLight SpotLight inheritance
PointLight PointLight inheritance

Texturing Component
ImageTexture Texture, encapsulation

CanvasTexture
TextureTransform [none] –

Navigation Component
Billboard Group inheritance

NavigationInfo Object3D inheritance
Viewpoint Object3D inheritance

Navigation Component
Background Mesh/Scene encapsulation

/parameter

3.2.2 Sensor Nodes Functionality

Sensor nodes we have implemented in the new renderer so
far include ProximitySensor, TouchSensor, PlaneSensor,
LinePickSensor, and PrimitivePickSensor. When an en-
abled sensor is called to update on every simulation step, it
evaluates its state and when needed, adds its output infor-
mation to a message queue that gets sent over to MATLAB
after all sensors are evaluated. The messages are then pro-
cessed in the internal scene representation to be available
for reading by the user or Simulink model. Only one can-

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

vas is chosen as the main and is responsible for producing
and sending back possible sensor updates.

We have used simple collision detection and intersec-
tion computation functions provided by Three.js for the
sensor activity evaluation. That includes ray-casting into
the scene, or triangle/sphere and triangle/box intersec-
tions. A special case was LinePickSensor, which uses
line geometry to detect hits with a chosen subtree of scene
graph objects. The line geometry does not have to be made
out of individual straight lines for every sensor but instead
can be a general line geometry with many line segments.
Thus we process every line segment individually during
the update. The pseudocode for processing an individual
segment can be seen below. LinePickSensor node in use is
shown in Figure 5.

ALGORITHM 1
Sensor line segment processing algorithm

startPoint← parent.localToWorld(startPoint)
endPoint← parent.localToWorld(endPoint)
length← startPoint.distanceTo(endPoint)
direction← endPoint.clone().sub(startPoint)
direction.normalize()
raycaster.set(startPoint, direction)
raycaster. f ar← length
intersects← raycaster.intersectObjects(...target)

Figure 4: Text rendering for the official example vr panel.

3.2.3 User Interaction and Navigation

A viewpoint binding mechanism was implemented di-
rectly according to the X3D specification. We wanted
to ensure quick and usable methods of navigation in the
scene, so we decided to implement the following princi-
ples:

• The camera can orbit around a selected target in the
scene.

• The camera can rotate around the center of its local
coordinate system.

• The camera can zoom in and out on a selected target
in the scene proportionally based on a distance to the
target.

• The camera movement can be controlled by keyboard
input.

• The camera is grounded under the WALK navigation
type of X3D specification.

Apart from navigation and some of the sensors, user is
also able to interact with the scene in edit mode. In this
mode, the sensor functionality is postponed, and picking
interaction is instead evaluated as node selection through
ray-casting. The clicked nodes in the scene get highlighted
and their fields are revealed in a world editor to modify as
shown in Figure 6.

3.2.4 Rendering Pipeline

For post-processing management, we have used post-
processing add-on to Three.js developed by Raoul van
Rüschen [17]. Apart from the normal render pass, outline
pass for highlights is added in edit mode. Subpixel mor-
phological anti-aliasing pass can be added through can-
vas settings. A custom screen capture pass renders to a
buffer on screenshot request. As an experimental feature,
we have also added screen space reflections implementa-
tion from Realism Effects developed by 0beqz [8] in two
additional passes - velocityDepthNormal pass and SSREf-
fect pass.

4 Results

Most of the examples used for testing, comparisons, and
showcase are the official examples of Simulink 3D Ani-
mation [16].

4.1 Communication Protocol

Before our work, the experimental X3DOM-based viewer
did not use any message confirmation protocol and did not
guarantee to offer up-to-date information on its virtual re-
ality canvas properties. Furthermore, being independent
on drawnow calls from the scene meant that modifications
of multiple simulation steps were applied at the same time,
resulting in the loss of visible changes and also an inability
to reasonably measure performance.

Now, the implemented communication protocol does
guarantee waiting on load events, and confirmation of
messages when a renderer-dependent property value is re-
quested. Due to the object nature of the new protocol,
screen capture image data transfer from the renderer to the
canvas was made possible and implemented as well. The
same communication stress tests, which failed before the
implementation, all passed with this new implementation.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 5: Simulink 3D Animation vrcollisions lidar official example showing the functionality of the LinePickSensor
node with the new renderer. There is a robot with many sensors on its body. If a sensor detects a collision with a wall, the
point of collision is visualized by color of the sensor beam. The blue beam has not yet hit anything, the green part of the
beam is occluded by a wall.

Figure 6: Example of highlights rendering for editing
mode made with Outline rendering pass.

4.2 Supported Nodes

Current scene export and import for the experimental ren-
derer supports most of the nodes the internal scene by itself
does with the exceptions of points-related nodes, a Movi-
eTexture node, a PixelTexture node, sound nodes, and the
rest of the sensor nodes, which have not been implemented
yet. Most of the scenes used by Simulink 3D Animation
official examples are able to fully load with minor visual
differences. Loading times of the scenes vary, the offi-
cial examples taking a maximum of seconds, but scenes
heavy on detail with millions of vertices do not get loaded

in a reasonable time, similar to how the previous X3DOM-
based viewer performed, or even the standard Java-based
viewer in some cases does.

Upon modification and enhancement of the internal
scene’s supported node types and implementing support
for given scene node representation in the JavaScript-
based renderer, new visual features are now possible to
use. This has allowed us to update old official Simulink
3D Animation examples, comparisons are shown in Fig-
ure 1. Performance measurements can be seen in Table
2. The example vr octavia is simpler than the other two
in number of animated objects and sensor activity. From
the visible difference between FPS of Java-based viewer
and JavaScript-based viewer in this example we can con-
clude that the bottleneck of the process is the implemented
communication protocol and communication channel of
HTML UI component. The Java-based viewer not limited
by the communication management performs better.

Table 2: Results of tests done on the standard and the
experimental version of Simulink 3D Animation. Each
example was run under a Simulink profiler tool. Exam-
ples used for testing are from official software examples
vrcollisions lidar, vr octavia and vr octavia 2cars. Per-
formance measurements are given in frames per second.

Example Java-based viewer Three.js viewer
vr octavia 75 44

vr octavia 2cars 44 44
vrcollisions lidar 40 44

LinePickSensor node functionality needed for Simulink

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

3D Animation official examples of vrmaze and vrcolli-
sions lidar is fully implemented in the experimental ver-
sion. It does not cover the full functionality specified
by the X3D specification yet, but it does improve on the
main version of SL3D. The intersection computation using
Three.js ray-casting is more precise than that of the main
version of SL3D where only intersections with bounding
boxes and bounding spheres are implemented.

5 Conclusions and future work

Upon exploring the current implementation of Simulink
3D Animation, we proposed modifications to the commu-
nication protocol, supported nodes, and renderer itself. We
implemented the changes, compared the software tool to
its previous state, and showcased the results.

The experimental version of SL3D is now able to render
the scenes of most of the official examples provided by
the software. Its functionality was significantly enhanced
as well as the spectrum of rendering features. Although
throughout the implementation testing was done and the
transition to a new renderer based on the library Three.js
has been fairly successful so far, some issues might still be
addressed during future development.

Missing implementation of certain node types will need
to be implemented in the new renderer as well. For the pur-
poses of using the Three.js visual capabilities to the fullest,
Simulink 3D Animation will probably allow exporting of
its own file format of scene description, which will be an
enhanced variant of the X3D file format.

In the future, it could be interesting to integrate a full
physics engine either into the renderer or even directly into
the internal scene representation in MATLAB.

Acknowledgments

This work was supported by the Grant Agency
of the Czech Technical University in Prague, No
SGS22/173/OHK3/3T/13.

References

[1] Don Brutzman, Andreas Stamoulias, Athanasios G.
Malamos, and Markos Zampoglou. Enhancing
x3dom declarative 3d with rigid body physics sup-
port. 2014.

[2] A Tencent company and Milo Yip. RapidJSON,
Main Page. https://rapidjson.org/.

[3] Web3D Consortium. Information technology –
Computer graphics and image processing – The
Virtual Reality Modeling Language (VRML2) – Part
1: Functional specification and UTF-8 encoding.,
1997.

[4] Web3D Consortium. Information technology —
Computer graphics, image processing and environ-
mental data representation— Extensible 3D (X3D)
— Part 1: Architecture and base components., 2013.

[5] Web3D Consortium. Information technology —
Computer graphics, image processing and environ-
mental data representation— Extensible 3D (X3D)
— Part 1: Architecture and base components., 2022.

[6] Erwin Coumans. Bullet 2.80 Physics SDK Manual.
http://www.cs.kent.edu/∼ruttan/GameEngines/lectures/
Bullet User Manual.

[7] CREATE3000. X ite X3D Browser.
https://create3000.github.io/x ite/.

[8] github.com/0beqz. Realism Effects for Three.js.
https://github.com/0beqz/realism-effects.

[9] github.com/kripken. Ammo.js - Direct port of
the Bullet physics engine to JavaScript using Em-
scripten. https://github.com/kripken/ammo.js.

[10] github.com/mrdoob. Three.js Official Documenta-
tion. https://threejs.org/docs/index.html.

[11] Chris Morley and Braden McDaniel. OpenVRML.
https://sourceforge.net/projects/openvrml/.

[12] Matt Pharr, Wenzel Jakob, and Greg Humphreys.
Physically Based Rendering: From Theory To Im-
plementation. The MIT Press, 4 edition, 2023.

[13] The Khronos Group, Inc. glTF™ 2.0 Specification.
https://registry.khronos.org/glTF/specs/2.0/glTF-
2.0.html.

[14] The MathWorks, Inc. MATLAB Documentation.
https://www.mathworks.com/help/matlab/index.html.

[15] The MathWorks, Inc. Simulink 3D An-
imation Documentation.
https://www.mathworks.com/help/sl3d/classic-
virtual-reality-world.html.

[16] The MathWorks, Inc. Simulink 3D An-
imation Official Examples.
https://www.mathworks.com/help/releases/R2023a/
sl3d/examples.html.

[17] Raoul van Rüschen. Post Processing for Three.js.
https://pmndrs.github.io/postprocessing/public/docs/.

[18] X3DOM. Official X3DOM Documentation.
https://doc.x3dom.org/gettingStarted/index.html.

Proceedings of CESCG 2024: The 28th Central European Seminar on Computer Graphics (non-peer-reviewed)

